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Abstract: Our novel methodology for tumor identification improves accuracy and efficiency significantly by utilizing 

advanced techniques. Using the BRATS dataset, we combine Maximum A Posteriori (MAP) optimization for pixel 

extraction, Wiener deconvolution, and the EI-Fusion-Net deep neural network. Additionally, preprocessing techniques 

such as resizing, grayscale conversion, and Gaussian filtering are used to improve image quality. For better results, 

our novel image fusion EI-Fusion-Net approach uses specific wavelet transform techniques and a fusion network 

architecture capable of capturing both spatial and temporal information.  Indeed, our findings show remarkable 

performance metrics, with a peak signal-to-noise ratio (PSNR) of 48.42 dB and a structural similarity index (SSIM) 

of 0.992, which outperform those of existing methods on the BRATS dataset. This demonstrates the EI-Fusion-Net 

model's ability to effectively combine diverse data sources, resulting in promising advances in brain tumor detection 

via refined medical image processing techniques. 
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1. Introduction 

Medical imaging is essential in modern 

healthcare, helping to diagnose and treat a variety of 

medical conditions [1-3]. Among these imaging 

modalities, Magnetic Resonance Imaging (MRI) 

stands out as an operative tool for visualizing internal 

structures in high detail and contrast [4, 5]. MRI 

scans of the brain, in particular, are widely used to 

diagnose neurological disorders such as brain 

tumours [6]. However, noise, artifacts, and blurring 

can all have an impact on the quality of MRI images, 

making accurate diagnosis and treatment planning 

more difficult [7-9]. Image reconstruction techniques 

seek to progress the eminence of MRI images by 

increasing resolution, decreasing noise, and 

removing artifacts [10]. These techniques are 

essential for extracting meaningful information from 

medical images [12]. In the context of brain tumor 

MRI scans [13, 14], reconstruction techniques are 

critical for visualizing tumor morphology [15], 

defining tumor boundaries, and monitoring treatment 

response [16].  

Our research methodology includes a series of 

critical steps, that are designed to optimize the 

reconstruction process and improve the fidelity of 

MRI images. The proposed methodology begins with 

retrieving brain tumor MRI images from the BRATS 

dataset, which is a popular repository of brain tumor 

images for research purposes. These images are then 

preprocessed, including resizing and grayscale 

conversion [17], to allow for further analysis. 

Importantly, our deep learning model is trained on an 

augmented dataset derived from the BRATS dataset, 

resulting in consistent performance across a wide 

range of images. Our methodology continues with 

Gaussian filtering [18] to reduce noise and Wiener 

deconvolution to effectively reverse blurring effects, 
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resulting in a reconstructed image with increased 

clarity and detail. 

Notably, our proposed methodology has several 

advantages over current methods. To begin, by 

combining deep learning and advanced image 

processing algorithms, we achieve superior image 

quality and computational efficiency. Furthermore, 

our methodology is robust and adaptable, allowing us 

to deal with a wide range of imaging conditions and 

tumor morphology variations. Furthermore, we 

introduce new features to our methodology, such as 

additional Gaussian filtering and blind deconvolution, 

to improve image quality and reduce artifacts. The 

use of the Daubechies wavelet transform for image 

fusion, as well as the Long Short-Term Memory 

Convolutional Neural Network (LSTM-CNN) 

architecture, are innovative contributions to the field 

of medical image processing.  

In supposition, our findings highlight the critical 

need for improved image reconstruction techniques 

in the context of brain tumor MRI scans. The 

proposed methodology has great potential for 

advancing the field of medical imaging and 

facilitating more accurate diagnoses and treatment 

planning for patients with brain tumours. 

The paper is organised as follows: Section 1 

introduces Brain MRI Imaging and summarises our 

contributions. Section 2 examines related works in 

MRI image reconstruction. Section 3 discusses our 

methodology, which includes data preprocessing, 

denoising, deconvolution, and image fusion. Section 

4 contains results and analysis, including quality 

metrics and computational assessments. Section 5 

concludes the paper by summarising our 

contributions and discussing potential future 

directions in medical imaging. 

2. Literature review 

Xu et al. [19] developed the SepGAN framework, 

which utilizes depthwise separable convolution as a 

key element to improve the accuracy of MRI 

reconstruction. The new method produced 

impressive outcomes, with a PSNR of 44.22 dB and 

a SSIM of 0.985. Nevertheless, SepGAN has specific 

constraints despite its favorable results. The 

computational complexity of this may restrict its use 

in real-time situations or resource-limited settings. 

Furthermore, the effectiveness of SepGAN may 

differ based on the unique attributes of the input MRI 

data, requiring additional validation across various 

datasets and thorough comparison with established 

techniques to comprehensively evaluate its reliability 

and applicability. 

Sabina et al. [20] developed the Deep Residual 

Feature Distillation Channel Attention Network 

(DRFDCAN) to improve high-frequency features 

important for detailed medical diagnostics without 

compromising image quality. The network attains a 

PSNR of 34.20 dB and a SSIM of 0.9468. Despite its 

promising performance, DRFDCAN may have 

limitations in scalability to larger datasets and 

generalization to diverse imaging modalities, 

potentially hindering its applicability in real-world 

medical imaging scenarios. 

Li et al. [21] proposed the Global Attention-

enabled Texture Enhancement Network (GATE-Net) 

to address the problem of reconstructing highly 

undersampled MR images, with a PSNR of 36.81 dB 

and an SSIM of 0.978. By incorporating global 

attention mechanisms, GATE-Net focuses on 

improving textural details that are critical for accurate 

image reconstruction. It may face difficulties in 

generalizing to a variety of MR imaging scenarios 

and acquisition protocols. 

Zhou and colleagues [22] projected a novel 

approach called Multimodal Feature Fusion with 

deep neural networks, which combines three critical 

components. This network architecture aims to 

effectively combine features from various modalities 

while facilitating latent feature learning. Notably, the 

method yields a Structural Similarity Index (SSIM) 

of 0.89 and a Peak Signal-to-Noise Ratio (PSNR) of 

29.46. Potential overfitting issues and the need for 

significant computational resources for training and 

inference are basic limitations that may come. 

Ahmad et al. [23] presented a novel Generative 

Adversarial Network (GAN) architecture designed 

for medical image generation where this method uses 

a reconstruction convolutional layer. Impressively, 

the method achieves a PSNR of 38.83 dB and a SSIM 

of 0.95. It may face limitations such as mode collapse 

and the possibility of artifacts in generated images, 

which could limit its utility in medical diagnostics 

and decision-making processes. 

Hossain et al. [24] proposed a new method for 

MRI reconstruction called the Fully Dense Attention 

CNN (FDA-CNN), which incorporates fully dense 

connectivity and attention mechanisms into the 

standard U-Net model. This enhancement resulted in 

significant improvements, with maximum PSNR 

values of 41.75 dB and a SSIM of 0.98. However, a 

major limitation of the U-Net method, including its 

FDA-CNN variant, is its susceptibility to overfitting, 

which may limit its generalizability.  

Shilpa et al. [25] developed a new hybrid 

compressive sensing algorithm for reconstruction. 

This method aims to efficiently reconstruct signals 

from heavily undersampled data. The reconstruction 
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yielded impressive results, with a PSNR of 41.68 dB 

and a SSIM of 0.975. However, one significant 

limitation of this method is its computational 

complexity, particularly in training the neural 

network component and the iterative process of L1 

minimization. 

Zhou Z et al. [26] proposed the MRI-based Brain 

Tumor Super-Resolution Generative Adversarial 

Network (MRBT-SR-GAN. This network uses 

GANs to achieve super-resolution, which improves 

fine detail in the images. Notably, the reconstruction 

process produces an average PSNR of 29.42 and a 

SSIM of 0.986, demonstrating its ability to preserve 

image quality. Its performance may be limited when 

applied to images containing various tumor types, 

sizes, or imaging artifacts.   

The challenge in medical image processing, 

particularly brain tumor detection and reconstruction 

with MRI scans, is to achieve high accuracy and 

efficiency while maintaining image quality. Despite 

promising techniques such as SepGAN, DRFDCAN, 

and GATE-Net, limitations in scalability, 

generalization, and computational complexity remain. 

The goal is to develop novel methodologies that 

integrate diverse data sources, optimize learning 

parameters, and improve image resolution while 

addressing overfitting issues and ensuring 

applicability across various datasets and imaging 

modalities. Advancements such as the EI-Fusion-Net 

model highlight the need for innovative solutions that 

outperform current accuracy and efficiency 

benchmarks in image reconstruction. 

 

 

Figure. 1 Proposed block diagram for image reconstruction 

3. Methodology 

The research methodology, as illustrated in Fig. 1, 

encompasses a series of essential steps aimed at 

enhancing the quality of brain tumor MRI scan 

images for reconstruction purposes. It commences by 

retrieving images from the BRATS dataset [27], 

followed by resizing and converting them into 

grayscale. The proposed fusion based deep learning 

model was trained on an augmented dataset of 3000 

samples derived from the BRATS dataset's initial 300 

images. Subsequent Gaussian filtering reduces noise, 

while Wiener deconvolution effectively reverses 

blurring effects. The reconstructed image is 

subsequently displayed and rigorously evaluated, 

encompassing parameters such as computational time 

and quality metrics. This comprehensive 

methodology significantly contributes to the field of 

medical mage processing, particularly in the context 

of reconstructing brain tumor MRI scan images. 

Retrieve an image (f(x, y)) from an augmented 

dataset of BRATS [27] via Kaggle. Resize the loaded 

image (f(x, y)) to a desired size, resulting in a new 

image g(x, y). The resizing operation can be 

represented mathematically as follows: 

 

𝑔(𝑥, 𝑦)  =  𝑅𝑒𝑠𝑖𝑧𝑒(𝑓(𝑥, 𝑦), 𝑊𝑖𝑑𝑡ℎ, 𝐻𝑒𝑖𝑔ℎ𝑡)  (1) 

 

Where g(x, y) is the resized image, f(x, y) is the 

original image, Width and Height represent the 

desired dimensions for resizing. 

Apply a color mapping function to convert the 

resized image into grayscale. The function can be 

represented as: 

 

𝑔𝑟𝑎𝑦(𝑥, 𝑦)  =  𝐶𝑜𝑙𝑜𝑟𝑀𝑎𝑝𝑝𝑖𝑛𝑔(𝑔(𝑥, 𝑦))  (2) 

 

Where gray (x, y) is the resulting grayscale image 

Perform Gaussian filtering on the grayscale 

image to smooth and reduce noise. The Gaussian 

filtering operation can be represented mathematically 

as a convolution of the grayscale image (gray (x, y)) 

with a Gaussian kernel (𝐺𝐹(𝑥, 𝑦))). 

 

𝑆𝑚(𝑥, 𝑦)  =  𝑔𝑟𝑎𝑦(𝑥, 𝑦) ⊛ 𝐺𝐹(𝑥, 𝑦)   (3) 

 

Where  𝑆𝑚(𝑥, 𝑦) is the resulting smoothed image., 

gray(x, y) is the grayscale image obtained in the 

previous step,  𝐺𝐹(𝑥, 𝑦) is the Gaussian kernel,  

The Gaussian kernel is defined by the following 

equation: 

𝐺𝐹(𝑥,𝑦) =  (
1

(2  𝜋  𝜎2)
) 𝑒

−(
(𝑥2+ 𝑦2)

(2  𝜎2)
)
   (4) 
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Where (x, y) are the coordinates in the kernel, σ 

(sigma) controls the spread or standard deviation of 

the Gaussian distribution, π (pi) is the mathematical 

constant, e is the base of the natural logarithm.  

Apply Wiener deconvolution to the filtered image. 

Mathematically, Wiener deconvolution can be 

represented as follows: 

 

𝐺(𝑢, 𝑣) =
𝐻(𝑢,𝑣) ⋅𝐹(𝑢,𝑣)

|𝐻(𝑢,𝑣)|2+𝐾.𝑁(𝑢,𝑣)
    (5) 

 

 Where G(u,v) is the estimated Fourier transform 

of the original image.  𝐻(𝑢, 𝑣)  is the complex 

conjugate of the PSF's frequency response. K is a 

constant (Wiener regularization parameter),  

|𝐻(𝑢, 𝑣)|2  represents the magnitude of the PSF's 

frequency response squared. N(u,v) represents the 

noise power spectral density. 

 

 𝑔𝑟(𝑥, 𝑦) = 𝐹−1[𝐺(𝑢, 𝑣)]    (6) 

 

Where gr (x,y) is the restored image in spatial 

domain, which is visually interpretable. 

Mathematically, MAP pixel extraction can be 

represented as follows: 

 

𝐸(𝑔𝑟) = −𝑙𝑜𝑔(𝑃(𝑔𝑟 ∣ 𝑜𝑏𝑠𝑒𝑟𝑣𝑒𝑑 𝑑𝑎𝑡𝑎)) −
𝑙𝑜𝑔(𝑃(𝑔𝑟 ∣ 𝑝𝑟𝑖𝑜𝑟))     (7) 

 

Where, E(gr) is the energy or cost associated with 

the restored image gr(x,y), P(gr ∣ observed data) 

represents the likelihood term, which measures how 

well the restored image fits the observed data, P(gr∣
prior) represents the prior term, which encodes prior 

knowledge or constraints on the image. 

The MAP method aims to find the values of gr

(x,y) that minimize the objective function (E(gr):) 

 

𝑔𝑟 = arg min 𝐸(𝑔𝑟)     (8) 

 

Where 𝑔𝑟 represents the estimated pixel values 

obtained through MAP optimization 

After optimization, the values of gr(x,y) that 

minimize the objective function are extracted as the 

final pixel values: 

 

𝑔𝑒𝑥𝑡𝑟𝑎𝑐𝑡𝑒𝑑(𝑥, 𝑦) =  𝑔𝑟(𝑥, 𝑦)    (9) 

 

𝑔𝑒𝑥𝑡𝑟𝑎𝑐𝑡𝑒𝑑(𝑥, 𝑦) Represents the extracted pixel 

values. 

Mathematically, for each pixel (x,y), the noisy 

pixel value N(x,y) is given by: 

 

𝑁(𝑥, 𝑦) = 𝑔𝑒𝑥𝑡𝑟𝑎𝑐𝑡𝑒𝑑(𝑥, 𝑦) + 𝜂(𝑥, 𝑦)             (10) 

𝑊ℎ𝑒𝑟𝑒 N(x,y) is the noisy pixel value at location 

(x,y) and 𝑔𝑒𝑥𝑡𝑟𝑎𝑐𝑡𝑒𝑑(𝑥, 𝑦) is the pixel value extracted 

from the previous step. 

η(x,y) represents random values 

To further smooth the noisy image and reduce 

noise, we apply Additional Gaussian filtering in the 

Process flow to the image with noise. The Gaussian 

filtering operation can be represented as 

 

𝑆𝑚𝑎(𝑥, 𝑦) = 𝑁(𝑥, 𝑦) 𝐺𝐹(𝑥, 𝑦)             (11) 

 

𝑊ℎ𝑒𝑟𝑒 𝑆𝑚𝑎 𝑟𝑒𝑝𝑟𝑒𝑠𝑒𝑛𝑡𝑠 𝑆𝑚𝑜𝑜𝑡ℎ 𝑖𝑚𝑎𝑔𝑒 𝑤𝑖𝑡ℎ 

 𝑎𝑑𝑑𝑖𝑡𝑖𝑜𝑛𝑎𝑙 𝐹𝑖𝑙𝑡𝑒𝑟𝑖𝑛𝑔 

Apply blind deconvolution to the filtered image. 

The blind deconvolution problem can be 

mathematically formulated as follows: 

 

𝑔𝑟𝑠(𝑥, 𝑦) = (𝑓(𝑥, 𝑦)  ⊛ 𝑘(𝑥, 𝑦)) + 𝜂(𝑥, 𝑦)       (12) 

 

Where gr(x,y) is the restored image obtained from 

the previous step (with noise reduced and additional 

smoothing), f(x,y) is the estimated original image, 

k(x,y) is the estimated blur kernel, η(x,y) represents 

the remaining noise. 

Perform unsharp masking on the deconvolved 

image. Let I(x,y) be the deconvolved image obtained 

in the previous step. The unsharp masking operation 

can be mathematically represented as follows: 

 

𝑈(𝑥, 𝑦) = 𝐼(𝑥, 𝑦) − 𝜆 ⋅ 𝑆(𝑥, 𝑦)             (13) 

 

Where U(x,y) is the unsharp masked image,   

I(x,y) is the deconvolved image,   S(x,y) is a 

smoothed version of the deconvolved image (blurred 

image),  λ is a scaling factor that controls the strength 

of enhancement. Calculate the noise ratio of the 

image: 

 

𝑛𝑜𝑖𝑠𝑒 𝑟𝑎𝑡𝑖𝑜 =
𝑠𝑡𝑎𝑛𝑑𝑎𝑟𝑑 𝑑𝑒𝑣𝑖𝑎𝑡𝑖𝑜𝑛(𝑖𝑚𝑎𝑔𝑒)

𝑚𝑒𝑎𝑛(𝑖𝑚𝑎𝑔𝑒)
         (14) 

 

To eliminate the pixel noise ratio, we can use the 

following mathematical representation 

 

𝑈(𝑥, 𝑦) =  𝑠𝑖𝑔𝑛(𝐷(𝑥, 𝑦)) ⊛

max(𝑎𝑏𝑠(𝑈(𝑥, 𝑦)) −  𝑡ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑, 0)             (15) 

  
where threshold is a threshold value calculated as: 

 

𝑡ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑 =  3 ×  𝑛𝑜𝑖𝑠𝑒_𝑟𝑎𝑡𝑖𝑜 ×
 𝑚𝑎𝑥(𝑎𝑏𝑠(𝑈(𝑥, 𝑦)))               (16) 
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Figure. 2 EI-Fusion-Net model 

 

Create a complementary image from the 

processed image. Apply Daubechies wavelet 

transform for image fusion. Utilize Min-Max fusion 

in combination with a LSTM-CNN architecture. 

Thus, the Name of the Model is Enhanced Image 

Fusion using Daubechies Wavelet and LSTM-CNN 

(EI-Fusion-Net) as shown in Fig. 2 as it conveys the 

concept of a novel image fusion approach that makes 

use of specific wavelet transform techniques and a 

fusion network architecture capable of capturing both 

spatial and temporal information for improved results. 

The simple algorithm of the proposed model  

provided below in a stepwise manner. 

 

Algorithm:   EI-Fusion-Net 

% Step a: Daubechies Wavelet Transform 

input_image = 

imread('your_image_path.jpg'); % Load your input 

image 

wavelet_level = 3; % Choose the level of wavelet 

decomposition 

% Apply Daubechies wavelet transform 

[coeffs, ~] = wavedec2(input_image, 

wavelet_level, 'db1'); 

 

% Step b: LSTM-CNN Model 

% Define LSTM-CNN architecture using 

MATLAB Neural Network Toolbox 

 

% Step c: Enhanced Image Fusion Net (EI-

Fusion-Net) 

% Assuming you have the LSTM-CNN model and 

coefficients from wavelet transform 

% Concatenate or combine the results in a 

meaningful way 

 

% Step d: Min-Max Fusion Technique 

% Assuming you have processed image (from EI-

Fusion-Net) and complementary image 

fused_image = min(input_image, 

complementary_image) + max(input_image, 

complementary_image); 

% Display the final fused image 

imshow(fused_image); 

  

This fusion technique combines the processed 

image and its complementary image to reconstruct 

the final image. Display the reconstructed version of 

the image resulting from the fusion process. This 

reconstructed image represents a combination of 

enhanced features and complementary information 

using the specified fusion technique. Obtain the 

Reconstructed Image and Carry out the Performance 

evaluation for parameters. Their respective formulae 

are provided below 

Computational Time (msec): 

 

𝑇 =  𝐸𝑛𝑑 𝑇𝑖𝑚𝑒 −  𝑆𝑡𝑎𝑟𝑡 𝑇𝑖𝑚𝑒             (17) 

 

Computational Overhead (kb): 

 

𝑂 =
 𝑀𝑒𝑚𝑜𝑟𝑦 𝑈𝑠𝑎𝑔𝑒 𝐴𝑓𝑡𝑒𝑟 𝑅𝑒𝑐𝑜𝑛𝑠𝑡𝑟𝑢𝑐𝑡𝑖𝑜𝑛 −
 𝑀𝑒𝑚𝑜𝑟𝑦 𝑈𝑠𝑎𝑔𝑒 𝐵𝑒𝑓𝑜𝑟𝑒              (18) 

  

𝑃𝑆𝑁𝑅 =  10  𝑙𝑜𝑔10 (
(𝐿2)

𝑀𝑆𝐸
)              (19) 

  

Where L is the maximum pixel value 

The mean squared error, abbreviated as MSE, 

compares the original image to the one that was 

reconstructed. 

 

𝑀𝑆𝐸 =  (
1

(𝑚 ∗ 𝑛)
)  𝛴 [𝛴(𝐼(𝑥, 𝑦) −  𝑅(𝑥, 𝑦))

2
]      (20) 

  

I(x, y) - Original Image Pixel values whereas  R(x, 

y) denotes pixel values for a corresponding 

reconstructed Image. 

 

𝑆𝑆𝐼𝑀 =  
 (2 𝜇𝑥 𝜇𝑦+ 𝐶1) (2  𝜎𝑥𝑦+ 𝐶2)

(𝜇𝑥
2+ 𝜇𝑦

2+ 𝐶1) (𝜎𝑥
2+ 𝜎𝑦

2+ 𝐶2)
             (21) 

 

Where µ is the mean value and  
𝜎 𝑖𝑠 𝑡ℎ𝑒 𝑠𝑡𝑎𝑛𝑑𝑎𝑟𝑑 𝐷𝑒𝑣𝑖𝑎𝑡𝑖𝑜𝑛,  C1 and C2 

are constants 

4. Result and analysis 

The original brain MRI scan image obtained from 

the BRATS dataset [27] is shown in Fig. 3, it may 

also contain noise and artefacts that must be 

addressed in subsequent processing steps.  

Fig. 4 shows the resized image obtained after 

resizing the original image to the desired dimensions.   

Fig. 5 shows the grayscale version of the resized 

image.  
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Table 1. Performance Parameters for Samples of Brain Tumor Images 

 BRATS Brain Scan images MRI Scans 

Parameters 
BRATS 

Sample 1 

BRATS 

Sample 2 

BRATS 

Sample 3 

BRATS 

Sample 4 

BRATS 

Sample 5 

Computational Time 

(msec) 

2.6122 2.564 2.562 2.631 2.5921 

Computational Overhead 

(kb) 

25.543 25.733 25.6913 25.512 25.2456 

PSNR (db) 48.42 48.12 48.18 48.04 48.23 

MSE 10.14 10.62 10.55 11.09 12.11 

SSIM 0.992 0.988 0.983 0.987 0.981 

 

 

 
Figure. 3 Original Image Figure. 4 Resized Image 

 

 

 
Figure. 5 Grayscale Figure. 6. Filtered image 

 

 

 
Fig. 7 Resultant of 

Deconvolution 

Figure. 8 Resultant of 

Pixel Extraction 

 
Figure. 9 Unsharp 

masking 

Figure. 10 Pixel noise 

ratio elimination 

 

 

 
Figure. 11 Reconstructed image 

 

 

Fig. 6 shows the outcome of applying a Gaussian 

filter to a grayscale image. This filtering step aims to 

reduce noise and create a smoother image 

representation. Fig. 7 shows the result of Wiener 

deconvolution applied to the filtered image.  

Fig. 8 is the image after Maximum A Posteriori 

(MAP) pixel extraction.  

The result of the unsharp masking step applied to 

the deconvolved image is shown in Fig. 9. In Fig. 10, 

we see the result of removing the pixel noise ratio.   
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Fig. 11 depicts the reconstructed image 

subsequent to the implementation of enhancements 

on the initial brain MRI scan. The methodology-

processed brain tumor image samples' critical 

performance parameters are detailed in Table 1. The 

aforementioned metrics comprise computational time, 

computational overhead, MSR, PSNR and SSIM. 

PSNR values in the vicinity of 48 dB are suggestive 

of higher image quality. Sample 1, with a PSNR of 

48.42 dB, demonstrates exceptional quality in 

reconstruction. Additionally, computational 

overhead (kb) is evaluated as a significant metric in 

Table 1 [11]. 

Finally, the SSIM (Structural Similarity Index) 

measures image quality by comparing the 

reconstructed and original images and has a value of 

0.992. Figs. 12 and 13 show key performance 

parameters and plots for evaluating the brain tumour 

image processing methodology and model.  Fig. 12 

shows PSNR, MSE, and Computational Overhead for 

various samples. Sample 1's  

 

 

Figure. 12 Performance parameters PSNR, MSE and 

Computational Overhead 

 

Figure. 13 Performance parameters Computational Time 

and SSIM 

Table 2. PSNR and SSIM comparative assessment 

Methods PSNR (db) SSIM 

SepGAN [19] 44.22 0.985 

DRFDCAN [20] 34.20 0.9468 

GATE-Net [21] 36.81 0.978 

Feature Fusion [22] 29.46 0.89 

Novel GAN [23] 38.83 0.95 

FDA-CNN [24] 41.75 0.98 

Hybrid compressive 

sensing [25] 
41.68 0.975 

MRBT-SR-GAN [26] 29.42 0.986 

Proposed Method (EI-

Fusion-Net) 
48.42 0.992 

 

PSNR of 63.25 dB indicates superior image quality 

compared to other samples. Sample 1 has an 

impressively low MSE of 10.14, indicating the 

quality of the reconstructed image. Sample 4 has the 

lowest Computational Overhead (25.512 kb), 

indicating efficient memory and computational 

resource management.  

Computational Time (milliseconds) and SSIM   

values for various samples are shown in Fig. 13. The 

most efficient image reconstruction method is 

Sample 3, which takes 2.562 msec. Sample 1, 

however, performs best with an SSIM value of 0.992, 

indicating high structural similarity between the 

reconstructed and original images.  

 Sample 1 has the highest PSNR, SSIM, and MSE, 

indicating superior image quality. Sample 3 has the 

fastest computation. Sample 4 has the lowest 

computational overhead, indicating memory 

efficiency. 

Table 2 presents a comprehensive comparison of 

various image enhancement and reconstruction 

methods based on PSNR and SSIM metrics. These 

metrics serve as fundamental benchmarks for 

assessing the quality of reconstructed images, with 

higher values indicating greater fidelity to the 

original signal and structural similarities. Among the 

methods tested, the proposed EI-Fusion-Net achieved 

the highest PSNR of 48.42 dB and SSIM of 0.992, 

demonstrating its exceptional ability to generate 

high-quality images while preserving fine structural 

details. In contrast, methods such as Feature Fusion 

and MRBT-SR-GAN have lower PSNR and SSIM 

values, indicating poorer performance in terms of 

both signal fidelity and structural similarity, 

emphasizing the importance of advanced techniques 

such as EI-Fusion-Net for superior image 

reconstruction tasks.  
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Figure. 14 Plot of comparative analysis of PSNR 

 

 

 
Figure. 15 Plot of comparative analysis of SSIM  

Table 2's findings highlight the importance of 

Similarly, in Fig. 15, which depicts the Comparative 

Analysis of SSIM (Structural Similarity Index 

advancement of image processing and novel 

approaches such as EI-Fusion-Net in the 

reconstruction. By outperforming existing methods 

in terms of PSNR and SSIM scores, EI-Fusion-Net 

demonstrates its superiority and fidelity in medical 

imaging. These findings are useful for researchers 

and practitioners working to develop more effective 

and reliable image reconstruction techniques, 

ultimately contributing to advances in fields that rely 

on high-quality image data for analysis and decision-

making. 

Fig. 14 depicts the Comparative Analysis of 

PSNR (Peak Signal-to-Noise Ratio), with the X-axis 

denoting the various methods considered and the Y-

axis representing the corresponding PSNR values. 

Given the values in Table 2, it is clear that the 

proposed method (EI-Fusion-Net) achieves the 

highest PSNR of all methods listed, as evidenced by 

the tallest bar. This suggests that the EI-Fusion-Net   

outdoes others in terms of signal quality and noise 

reduction, making it a promising candidate for image 

enhancement and reconstruction tasks. 

Measure), the X-axis represents the methods used, 

and the Y-axis displays the SSIM values. Once again, 

the proposed method has the highest SSIM value, 

indicating that it preserves structural details better 

than other methods. This reinforces the proposed EI-

Fusion-Net's ability to maintain structural similarity 

with the original image, resulting in higher-quality 

reconstructed images.  

5. Conclusion and summary 
To summarize, this study represents a significant 

advancement in the field of medical image processing, 

specifically the detection of brain tumors using MRI 

scans. The study introduces a novel approach to 

improving tumor detection accuracy and efficacy by 

leveraging cutting-edge techniques and 

methodologies. Using the BRATS dataset, the 

proposed method incorporates a number of 

sophisticated techniques, including Maximum A 

Posteriori (MAP) optimization, Wiener 

deconvolution, and the EI-Fusion-Net deep learning 

model. Additionally, preprocessing steps such as 

resizing, grayscale conversion, and Gaussian filtering 

are used to improve the quality of the MRI images. 

The obtained results show exceptional performance, 

with a PSNR of 48.42 dB and a SSIM of 0.992, which 

outperforms existing methods on BRATS dataset. 

This demonstrates the effectiveness of the EI-Fusion-

Net model in seamlessly integrating disparate data 
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and represents significant progress in brain tumor 

detection using advanced medical image processing 

techniques. Overall, this study paves the way for 

future advances in medical imaging technology, 

which will lead to better diagnostic accuracy and 

patient care in the field of neuroscience. 

 
Notations List : 

• g(x, y) is the resized image 

• f(x, y) is the original image 

• gray (x, y) is the resulting grayscale image 

• 𝑆𝑚(𝑥, 𝑦) is the resulting smoothed image 

• 𝐺𝐹(𝑥, 𝑦) is the Gaussian kernel 

• (x, y) are the coordinates in the kernel 

•  σ (sigma) controls the spread or standard 

deviation of the Gaussian distribution 

•  π (pi) is the mathematical constant 

• e is the base of the natural logarithm. 

• G(u,v) is the estimated Fourier transform of the 

original image.  

• 𝐻(𝑢, 𝑣)  is the complex conjugate of the PSF's 

frequency response.  

• K is a constant (Wiener regularization parameter),   

• |𝐻(𝑢, 𝑣)|2  represents the magnitude of the PSF's 

frequency response squared.  

• N(u,v) represents the noise power spectral density 

• gr (x,y) is the restored image in spatial domain 

• E(gr) is the energy or cost associated with the 

restored image gr(x,y) 

•  P(gr ∣ observed data) represents the likelihood 

term, which measures how well the restored image 

fits the observed data 

• P(gr ∣ prior) represents the prior term, which 

encodes prior knowledge or constraints on the 

image. 

• 𝑔𝑒𝑥𝑡𝑟𝑎𝑐𝑡𝑒𝑑(𝑥, 𝑦) Represents the extracted pixel 

values. 

• N(x,y) is the noisy pixel value at location (x,y) 

• η(x,y) represents random values   

• 𝑆𝑚𝑎(𝑥, 𝑦) represents Smooth image with 

additional Filtering 

• U(x,y) is the unsharp masked image 

•  I(x,y) is the deconvolved image 

• S(x,y) is a smoothed version of the deconvolved 

image (blurred image) 

•  λ is a scaling factor that controls the strength of 

enhancement. 
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