
Received: March 11, 2024. Revised: May 31, 2024. 751

International Journal of Intelligent Engineering and Systems, Vol.17, No.4, 2024 DOI: 10.22266/ijies2024.0831.57

Membrane Computing-based Resource Scheduling Using Meta-Heuristic Firefly

Optimization Algorithm for Cloud Environment

Visalaxi G1* Muthukumaravel A2

1Department of Computer Science and Engineering,

Bharath Institute of higher Education and Research, Chennai, India 600 073.
2Department of Arts and Science, Bharath Institute of Higher Education and Research, Chennai, 600 073, India

* Corresponding author’s Email: vesalaxi53@outlook.com

Abstract: Cloud Computing (CC) offers clients to access services in a variety of situations under the management of

a separate cloud service provider. The CPU, network, and storage are each given specific and distinct responsibilities

through resource scheduling. Users must wait for resources to become available while tasks are being provided in a

cloud environment, which causes longer wait times, and a lower quality of service for cloud users. To overcome these

challenges, this paper proposes a novel MEmbrane Computing based RE source Scheduling in Cloud (MERE-

CLOUD) approach for effective resource scheduling with the advent of membrane computing and evolutionary

techniques to enhance resource allocation. Initially, the user provides the task to the network to check the resource

availability in the cloud environment and the received tasks are prioritized by using Membrane Spiking Neural

Network (MSNN). The Firefly Optimization Algorithm (FOA) is implemented to allocate the resources in cloud based

on dynamic prediction policy. Finally, the allocated task will be assigned to the virtual machine which enhances the

Quality of Service (QoS) and improves availability and reliability with lower error rates. The performance of the

proposed MERE-CLOUD approach is evaluated based on throughput, fitness function and task execution parameters

on different cloud resources and achieves an accuracy of 94.72% which is highly reliable for task prioritization.

Keywords: Cloud computing, Membrane spiking neural network, Firefly optimization algorithm, Resource

scheduling, Membrane computing.

1. Introduction

Cloud computing is an effective way to offer on-

demand software through the internet. Cloud

computing has a number of advantages for instance

the quality of medical services can be improved by

using sensor cloud and Internet of Things (IoT)

technology to provide adequate health care methods

[1-3]. With the rise of cloud computing, it's become

more important to improve task scheduling

approaches and algorithms for massive data

workloads. In cloud computing, it provides a prior

solution which emphasizes the significance of good

massive data job scheduling, which exacerbates data

processing [4, 5].

Resource allocation to cloud clients is a complex

process since it is difficult to achieve optimal

resource allocation, which entails profit

maximization and the deft allocation of scarce

resources [6, 7]. Users may speed up the deployment

of workflow apps and create scaling strategies with

dynamic resource allocation. Replicas are required in

order to transfer several resources to the cloud

infrastructure at once from a shared resource pool [8-

10].

Intrusions, malware, and attempts to collect

personal data for personal gain are among the security

issues that affect networks and machines in public

online environments. To safeguard data and sharing,

security rules are necessary across several cloud

system tiers [11, 12]. Distributed environment,

virtualizes huge machines and can form a virtual

cluster if there are several virtual machines. In light

of variations in computing by various users, this will

offer flexibility and environment adaptation [13].

Received: March 11, 2024. Revised: May 31, 2024. 752

International Journal of Intelligent Engineering and Systems, Vol.17, No.4, 2024 DOI: 10.22266/ijies2024.0831.57

Table 1. Notations

Notation Description

𝑤𝑖𝑗 Connection weight between i and j

τ Pulse's width

𝑑𝑘 Postsynaptic neuron's waking time

k Presynaptic neuron's active connection

𝑢𝑗(𝑡) Neuron j's potential output

β Discount factor

t Time

n Film areas

I Region

d Dimensions of search space

t Next task

y Previous task

F Firefly

𝑀𝑡
𝑘 Unassigned nodes

𝑜𝑡𝑦
𝛼 Number of fireflies on the membrane

object set

α Constant factor

m' Layers of film

Due to the global dispersion of services, changing

work load situations, and diverse cloud client needs,

big data task scheduling in cloud systems is a time-

consuming process [14]. The difficulties that degrade

the cloud environment to the customer include

increased processing time in a virtual network and

low QoS for cloud users [15]. There is a chance of

both internal and external attacks while managing

important data, transactions, and public messages,

which could affect overall performance [16, 17]. To

overcome these challenges, this research proposes a

novel MEmbrane Computing based RE source

Scheduling in Cloud (MERE-CLOUD) approach for

utilizing the benefits of membrane computing to

enable intelligent resource scheduling techniques for

cloud computing. The major contribution of the

research are as follows,

• Initially, the user provides the task to the network

to check the resource availability in the cloud

environment. The received tasks are prioritized

by using Membrane Spiking Neural Network

(MSNN).

• The prioritized tasks are fed to the Firefly

Optimization Algorithm (FOA) to allocate the

resources in cloud based on dynamic prediction

policy. A dynamic prediction rule provides

solutions based on analyzing various

uncertainties within a given timeframe.

• By assigning particular micro-clouds to particular

virtual machines (VMs), it enhances Quality of

Service (QoS), improves availability and

reliability with lower error rates to fulfil

reliability requirements.

• The performance metrics of the proposed MERE-

CLOUD approach is evaluated based on

throughput, fitness function and task execution

parameters on different cloud resource nodes

under overloaded PMs, VM selection policy

outputs, and assessment of the new resource

management model.

The following research is organized as follows:

The literature review of methods that are currently in

use is covered in Section 2. Section 3 provides a

detailed description of the proposed approach and

associated membrane calculations. Section 4 offers a

thorough explanation of the findings along with a

discussion of the proposed approach. Eventually,

Section 5 concludes the research with future scope.

2. Literature survey

An integral component of cloud platform

resource management is task scheduling. In-depth

analyses and research have been presented in

numerous titles. These researchers base their

optimization objectives and scope on problem

features are given below.

In 2021 Chakravarthi, K.K. and Shyamala, L.,

[18] suggested a TOPSIS inspired budget and

deadline aware multi-workflow scheduling for cloud

computing. The suggested T-BDMWS method is

evaluated using the following metrics such as Cloud-

Based Workflow Scheduling Algorithm (CWSA),

Budget Heterogeneous Early Finish Time (BDHEFT),

Budget Heterogeneous Early Finish Time (BHEFT),

and Resource consumption algorithm. However,

scheduling with deadline is a more challenging issue

for cloud systems.

In 2022 Otair, M., et al [19] suggested Use the

multi-sentence ad optimizer to enhance cloud task

scheduling. Using the best and second-best solutions

available, the IMOMVO technique dynamically

improves the AP updating equation to address the

mean positioning (AP) problem. When tested with

various datasets, the suggested technique produces

runtimes of less than 186.33 seconds for 100 tasks

and 934.92 seconds for 600 tasks. The throughput is

0.19 and the processing power Vm is 0.25 kW after

100 operations are completed. However, the resource

efficiency remains an issue.

In 2022 Abualigah, L., et al [20] suggested PSO

swarm intelligence for cloud computing IoT task

scheduling applications with Aquila optimizer. The

task scheduling issue should be resolved and the

benefits should be maintained by using a hybrid CAE

transformation method to get the required changes

between search operators. By comparing the

suggested hybrid CAE approach with parameters

https://www.sciencedirect.com/topics/computer-science/cloud-system

Received: March 11, 2024. Revised: May 31, 2024. 753

International Journal of Intelligent Engineering and Systems, Vol.17, No.4, 2024 DOI: 10.22266/ijies2024.0831.57

such Wilcoxon signed rank test, post hoc analysis,

and maximum, average, and minimum predicted

completion times, results were obtained. However,

the suggested algorithm has slow learning process.

In 2023 Maroosi, A. and Muniyandi, R.C., [21]

suggested an innovative multiverse optimization

method inspired by membranes for building cloud

web services with SLAs that take QoS into account.

This approach introduces the Membrane-Inspired

Multiverse Optimization (PMIMVO) algorithm,

which divides the variables into subgroups for

various types of membranes. The suggested

PMIMVO approach can increase integrated quality

of service (QoS) by up to 38% when compared to

current techniques. However, low accuracy is

observed for tasks with very small length.

In 2023 Purba Daru Kusuma and Ashri

Dinimaharawati [22] suggested Extended Stochastic

Coati Optimizer. The ESCO has three references in

its guided search such as the global best unit, a

randomly selected unit, and a randomized unit within

the search space. ESCO is challenged to solve 23

classic functions and benchmarked with five

shortcoming metaheuristics such as GPA, POA, GSO,

ASBO, and COA in solving 13, 21, 23, 16, and 13

functions, respectively. However, the efficiency of

the suggested ESCO approach is very low.

In 2023 P. Kusuma and A. Dinimaharawati [23]

suggested a New Optimization Method and Its Hyper

Strategy Investigation. FDSA is designed as a

directed search-based metaheuristic without

deploying any neighbourhood search. These four

references are the best member which is the resultant

of three shuffled members within the swarm; a

shuffled member within the swarm; and the resultant

of the best member, a shuffled member within the

swarm, and the corresponding member. However, the

performance of FDSA, a fully executed search

metaheuristic is still mere in some functions.

In 2023 P. D. Kusuma and A. Novianty [24]

suggested a Metaheuristic in Which Each Agent

Interacts with All Other Agents. TIA is a swarm

intelligence which relies on the interaction among

solutions in the population. The core and distinct

concept of TIA is that each solution interacts with all

other solutions in every iteration to find the best

possible solution. However, the performance of TIA

is need to be improved for solving the fixed

dimension multimodal problems.

In 2024 Purba Daru Kusuma and Meta

Kallista[25] suggested a Swarm-based Metaheuristic

Enriched with Crossover Technique and Unbalanced

Neighbourhood Search. In MCA, the global finest

solution becomes the reference in the first step while

the middle between two stochastically chosen

solutions becomes the reference in the second step.

The neighbourhood search is performed in the third

step. However, developing better neighborhood

search and crossover-based search will be

challenging.

The majority of recent research has been on

distributed computing, including task scheduling

issues. By considering a majority of researches,

resource utilisation, overall cost for completing all

user actions, execution time, power consumption, and

fault tolerance are the challenges raised as a result of

growing resource consumption in cloud data centres.

To combat these issues, a novel MERE-CLOUD

approach is proposed for effective resource

scheduling in cloud environments using membrane

computing techniques.

3. Membrane computing based resource

scheduling in cloud

In this research, a novel MEmbrane Computing

based REsource Scheduling in Cloud (MERE-

CLOUD) method is proposed for enabling intelligent

scheduling techniques for cloud computing. The

fundamental purpose of task scheduling algorithms is

to accomplish three significant objectives, namely

resource minimization and task scheduling that

permits the construction of physical systems. Initially,

the user provides the task to the network to check the

resource availability in the cloud. The received tasks

are prioritized by using Membrane Spiking Neural

Network (MSNN). The prioritized tasks are fed to the

Firefly Optimization Algorithm (FOA) to allocate the

resources in cloud based on dynamic prediction

policy. A dynamic prediction rule provides solutions

based on analyzing various uncertainties within a

given timeframe. By assigning particular micro-

clouds to particular virtual machines (VMs), it

enhances Quality of Service (QoS), improves

availability and reliability with lower error rates to

fulfil reliability requirements. The general block

diagram of the proposed MERE-CLOUD method is

shown in Figure 1.

3.1 Task prioritization using spiking neural

network

A sort of Spiking Neural Network model (SNN)

is a way of neurons communication which consist of

spikes, or brief electrical impulses, are primarily

employed for neuronal transmission. In terms of

dynamics, SNN systems are a part of the third

generation of neural network methods. In order to

combine the concepts of dealing with single objects

and storing information in the amount of time that has

Received: March 11, 2024. Revised: May 31, 2024. 754

International Journal of Intelligent Engineering and Systems, Vol.17, No.4, 2024 DOI: 10.22266/ijies2024.0831.57

Figure. 1 Block diagram of the proposed methodology

passed between the spikes involved. A group of

neurons that incorporate delays compose the

components of the SNN architecture. A neuron, j, is

a member of a set where 𝑤𝑖𝑗 is the connection weight

between i and j:

𝑥𝑗(𝑡) = ∑ 𝑤𝑖𝑗𝑖∈Γ𝑗
𝜀(𝑡 − 𝑡𝑖) (1)

Synaptic potential may be computed using

equation (2):

𝜀(𝑡) =
𝑡

𝑇
𝑒1−

𝑡

𝑇 (2)

The pulse's width is defined by the constant τ.

Equation (3) therefore describes the number of

synaptic connections of neuron j:

𝑥𝑗(𝑡) = ∑ ∑ 𝑤𝑖𝑗
𝑘𝑚

𝑘=1𝑖∈Γ𝑗
𝑦𝑘(𝑡) (3)

The neuron's output is described as follows:

𝑦𝑗
𝑘(𝑡) = 𝜀(𝑡 − 𝑡𝑖 − 𝑑𝑘) (4)

where 𝑑𝑘 is the amount of time that separates the

postsynaptic neuron's waking time from the

presynaptic neuron's active connection (k). Equation

5 finally expresses the neuron j's output potential

𝑢𝑗(𝑡):

𝑢𝑗(𝑡) = ∑ 𝜂

𝑡
𝑗
(𝑓)

∈𝐹𝑗

(𝑡 − 𝑡𝑗
(𝑓)

) +

∑ ∑ 𝑤𝑖𝑗𝑡
𝑖

(𝑔)𝑖∈Γ𝑗
𝜀(𝑡 − 𝑡𝑖

(𝑔)
− 𝑑𝑖𝑗 (5)

Were,

𝐹𝑗 = {𝑡(𝑓); 1 ≤ 𝑓 ≤ 𝑛} = {𝑡|𝑢𝑗(𝑡) = 𝜗} (6)

There has been n recorded pulses. In the case of

SNN, three-dimensional kernel programming is

required. Conversely, the perceptron approach makes

use of the simplest one- or two-dimensional

architecture. Stated differently, all of the neuron

outputs of each layer may be estimated concurrently

because of its straightforward activation function

shape. However, because of its exponential structure,

the simultaneous calculation of the time variable

using mathematical approximations, and the fact that

the neurons' output varies, the SNN activation

function is more difficult.

3.2 Dynamic predictor rule

A set of prediction solutions based on various

internal or external uncertainty analyses throughout

time are provided by dynamic prediction rules. In the

dynamic hard case, the objective function is typically

implemented as a succession of instantaneous

Received: March 11, 2024. Revised: May 31, 2024. 755

International Journal of Intelligent Engineering and Systems, Vol.17, No.4, 2024 DOI: 10.22266/ijies2024.0831.57

functions. u:X × C → ℝ𝑛 which is continuous and

restricted. The objective function with the discount

factor β is given by equation 7.

∑ 𝛽𝑡𝜇(𝑥𝑡, 𝑐𝑡)𝑇
𝑡=0 (7)

Therefore, 𝑍𝑡 ∈ 𝑍𝐶𝑅𝑚 , according to IAHC,

represents the uncertainty condition that will be

satisfied in the random variable model. Since the

distribution of the random variable at time t+1 only

varies in accordance with its value at time t, Pr

(𝑍𝑡+1 ≤ 𝑍|𝑍𝑡 , 𝑍𝑡−1 … .) = 𝑃𝑟(𝑍𝑡+1 ≤ 𝑍|𝑍𝑡) . The

equation 𝑄(𝑍′, 𝑍) = Pr(𝑍𝑡+1 ≤ 𝑍′|𝑍𝑡 = 𝑍) is used

to represent stochastic processes. Furthermore, we

presume that someone is aware of 𝑍𝑡 value at time t.

Additionally, a modified version of the standard

moving average technique assesses the predicted

ultimate consumption of the CPU, network

bandwidth, and RAM. In addition, stale

approximations refer to outdated mean values for a

specific time series window size. In order to calculate

the end-user approximation for CPU, RAM, and

Network Bandwidth, the estimate of the old value and

the estimate of the new value, which is equal to

equation 8, 9, and 10, are combined. Maximum

dynamic optimization is anticipated.

�̂�𝐶𝑃𝑈 = 𝑘 ×
∑ 𝑈𝑐𝑝𝑢

𝑖
𝑖∈𝑤𝑖𝑛𝑑𝑜𝑤1

𝑠𝑖𝑧𝑒(𝑤𝑖𝑛𝑑𝑜𝑤1)
+

(1 − 𝑘) ×
∑ 𝑈𝑐𝑝𝑢

𝑖
𝑖∈𝑤𝑖𝑛𝑑𝑜𝑤2

𝑠𝑖𝑧𝑒(𝑤𝑖𝑛𝑑𝑜𝑤2)
 (8)

�̂�𝑅𝐴𝑀 = 𝑘 ×
∑ 𝑈𝑅𝐴𝑀

𝑖
𝑖∈𝑤𝑖𝑛𝑑𝑜𝑤1

𝑠𝑖𝑧𝑒(𝑤𝑖𝑛𝑑𝑜𝑤1)
+

(1 − 𝑘) ×
∑ 𝑈𝑅𝐴𝑀

𝑖
𝑖∈𝑤𝑖𝑛𝑑𝑜𝑤2

𝑠𝑖𝑧𝑒(𝑤𝑖𝑛𝑑𝑜𝑤2)
 (9)

�̂�𝑁𝐸𝑇 = 𝑘 ×
∑ 𝑈𝑁𝐸𝑇

𝑖
𝑖∈𝑤𝑖𝑛𝑑𝑜𝑤1

𝑠𝑖𝑧𝑒(𝑤𝑖𝑛𝑑𝑜𝑤1)
+

(1 − 𝑘) ×
∑ 𝑈𝑁𝐸𝑇

𝑖
𝑖∈𝑤𝑖𝑛𝑑𝑜𝑤2

𝑠𝑖𝑧𝑒(𝑤𝑖𝑛𝑑𝑜𝑤2)
 (10)

Where,�̂�𝐶𝑃𝑈 , �̂�𝑅𝐴𝑀 or �̂�𝑁𝐸𝑇 indicates for well-

known moving average algorithms, the factor k

serves as a defined constant that predicts the

predictive value of CPU, network bandwidth, and

RAM. In more detail, Ui CPU, Ui NET, and Ui RAM

reflect the used values for calendar, and k specifies

the values of the new sample estimate and the old

sample estimate for the projected resource utilization

of the resource type. CPU, RAM, and network

utilization, in that order. bandwidth. Our work

includes multiple criteria such as CPU, network

bandwidth, and RAM. The utilization definition for

high workload risk has now been scaled back and

given priority for resource allocation.

3.3 Firefly optimization algorithm

Firefly algorithm is a recently developed swarm

intelligence system utilised mostly for the

optimization of numerical problems. Each firefly's Fi

= (Fti1, Fti2..., Ftid) position is regarded as an object

and all fireflies that match each part's Fi = (Fti1,

Fti2..., Ftid) are considered as an object and the

firefly corresponds with the solution set is viewed as

the membrane system object set. Each region's many

sets can be stated in equation (11) as follows:

Li = (FiF2i... Fni), I = 1, 2, 3, 5,… (11)

where n is represented in film areas I and Ft1i,

Ft2i, ..., Ftni symbolises the solution for each particle

in region I in which Ftni = (ftni1, ftni2...), and d is the

dimensions of the space to be searched. Tasks would

be assigned with the mapping matrix to a single data

centre at a time, where each row represents a single

item of one value. The proposed approach collects

tasks and data centre ID for the input data. The output

resulting from the tasks transition to the designated

data centres should be considered to map the data

centres to the tasks.

Each firefly chooses classification thresholds and

then uses the interclass variance criterion to analyse

the final solution. Membrane object-set provides

probable answers for the discovery of the next task t

and the previous task y, like Firefly F, by using the

following equation (12):

𝐹𝑡𝑦
𝑘 = {

𝑜𝑡𝑦
𝛼

∑ 𝑙𝜖𝑀𝑡
𝑘𝜏𝑡𝑦

𝛼 , 𝑖𝑓 𝑦𝜖𝑁𝑡
𝑘

0, 𝑖𝑓 𝑦 ∉ 𝑁𝑡
𝑘
 (12)

Here,

𝑀𝑡
𝑘 represents unassigned nodes

𝑜𝑡𝑦
𝛼 represents number of fireflies on the

membrane object set and α is a constant factor. The

overall flow diagram of the firefly optimization

algorithm is depicted in Figure 2.

The firefly iterates to assign tasks based on each

iteration which is shown in equation (13).

𝑜𝑡𝑦 ← (1 − 𝜌)𝑜𝑡𝑦, ∀(𝑡, 𝑦) ∈ 𝐸 (13)

Structure of a membrane system in which the

master film and auxiliary film are defined. At least

one firefly appears in each film. The original

membrane system's structure is as follows: wherein

Received: March 11, 2024. Revised: May 31, 2024. 756

International Journal of Intelligent Engineering and Systems, Vol.17, No.4, 2024 DOI: 10.22266/ijies2024.0831.57

Figure. 2 Flow diagram of Firefly optimization

the structure has m'= 6 layers of film, including the

surface film 1, the membrane 5, and the auxiliary film

3, 4, and 5 The surface film, or film 1, does not

perform the particular fitness calculation because it is

simply responsible for recycling the membrane

object set abandoned by the main film and it is

represented in equation (14) as:

a0 = λ；a1 = F1F2F3 ...Fw1,

w1<w；a2 = Fw1 + 1Fw1 +
2 ...Fw2, w1+w2<w (14)

The objective function should be changed to

reflect the changing locations of the firefly once they

have all moved to the brighter set. The new estimate

should be compared to the previous one to see if the

new location is superior to the previous one. If a

firefly passes by a place that appears to be better than

any other detected locations, but it or any other firefly

does not end up there by the last iteration of the

algorithm for any reason, that best site is still logged.

Following the re-evaluation, the algorithm performs

an update for the selected firefly before moving on to

the next firefly each at a time. In a membrane

objective set, where each firefly is given a unique

starting point in the related search space, a cluster of

fireflies will determine the best solution concurrently,

but in a membrane, object set, the solution is merged

with rapid task assignment.

4. Results and discussion

The simulations were run using the CloudSim

platform using an Intel i5 processor, 16 GB of RAM,

and Windows 10 installed. The comparison took

throughput, functional suitability, and task

performance as the evaluation metrics. The proposed

MERE-CLOUD framework and the existing

PMIMVO [21], IMOMVO [19], T-BDMWS [18],

and Hybrid IAO [20] are suggested approaches. With

additional iterations, the algorithm's convergence

increased for some of the solved problems, producing

more ideal solutions and matching allocation

schemes. As a result, resource planning takes less

time to complete the overall tasks.

4.1 Performance evaluation

The experimental data are used to evaluate the

research are F1 score, recall, accuracy, and precision.

The statistical analysis of the parameters is shown

below.

Accuracy =
𝑇𝑃+𝑇𝑁

𝑡𝑜𝑡𝑎𝑙 𝑛𝑜.𝑜𝑓 𝑠𝑎𝑚𝑝𝑙𝑒𝑠
 (15)

𝑟𝑒𝑐𝑎𝑙𝑙 =
𝑇𝑃

𝑇𝑃+ 𝐹𝑁
 (16)

𝑓1 𝑠𝑐𝑜𝑟𝑒 = 2 (
𝑝𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛∗𝑟𝑒𝑐𝑎𝑙𝑙

𝑝𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛+𝑟𝑒𝑐𝑎𝑙𝑙
) (17)

𝑆𝑒𝑛𝑠𝑖𝑠𝑡𝑖𝑣𝑖𝑡𝑦 =
𝑇𝑃

𝑇𝑃+𝐹𝑃
 (18)

𝑇𝑅𝑃 =
𝑇𝑃

𝑇𝑃+𝐹𝑃
 (19)

The number of true negatives, false negatives,

false positives and true positives are indicated by the

letters TN, FN, FP, TP and FP respectively. The

performance of the forecast is improved by raising

the accuracy value.

Figure 3 shows the accuracy curve with accuracy

and loss on both vectors. The MERE-CLOUD

method's accuracy increases with increasing accuracy.

The accuracy versus loss curve in Figure 4

demonstrates how, as accuracy are improved, the

model's loss decreases. So, the predicted accuracy of

94.72% for the proposed MERE-CLOUD is

highly reliable for task prioritization.

Received: March 11, 2024. Revised: May 31, 2024. 757

International Journal of Intelligent Engineering and Systems, Vol.17, No.4, 2024 DOI: 10.22266/ijies2024.0831.57

Figure. 3 Performance curve of the proposed MERE-

CLOUD Model

Figure. 4 Loss curve of the proposed MERE-CLOUD

model

Figure. 5 Comparison of Throughput

The proposed MERE-CLOUD throughput

analysis compared to other techniques is shown in

Figure 5.

The proposed MERE-CLOUD technique that is

being performs better in terms of throughput than

others. As the number of total tasks rises, the

throughput value for all techniques falls. The initial

throughput number for node 100 obtained by the

proposed method is 99%. From the analysis that the

proposed MERE-CLOUD method has a faster data

transmission rate. The performance of throughput

decreases with the T-BDMWS [20].

Figure. 6 Fitness function

The best solution is decided by the degree of

performance of the pool of solutions obtained, which

assesses the algorithm's efficiency. The method was

analysed by examining the fitness function of the

firefly algorithm as presented in Figure 6. The

findings were based on the fitness function and the

number of iterations it took to complete each function.

The obtained results demonstrate that the algorithm

is capable of delivering the best possible results as

presented in Figure 7. This test distributes 100 jobs

over four virtual machines on four cloud computing

resource nodes, and calculates the average execution

time for all tasks. The task duration arise as the

number of tasks increased as presented in Figure 7,

but it completed the optimal task time, indicating that

the proposed approach works better in resource

scheduling.

The analysis of the neural network techniques'

comparative performance is shown in Figure 8. The

proposed MERE-CLOUD model achieves 98.72%

accuracy, 93.17% of sensitivity, 95.5% of recall and

96.72% of specificity when compared to prior neural

network approaches. The existing ANN has low

performance scores and the RNN and CNN

approaches yielded results that were acceptable for

each metric, although they were much different from

the proposed model. This research demonstrates that

the proposed approach results in high scores across

all performance measures.

Figure 9 shows the task execution time in loose

situation. It is found out that the proposed MERE-

CLOUD approach has the minimum task execution

time. The resource contentions occur when best-

effort task is preempted by the task. As resource

contention is less in loose situation, so that estimated

finish time of task is close to the actual finish time.

Hence existing techniques does not impact the job

execution time significantly.

Received: March 11, 2024. Revised: May 31, 2024. 758

International Journal of Intelligent Engineering and Systems, Vol.17, No.4, 2024 DOI: 10.22266/ijies2024.0831.57

(a) (b)

(c) (d)

Figure. 7 Task Execution on different Cloud Resource Nodes: (a) Virtual Machine 1, (b) Virtual Machine 2, (c) Virtual

Machine 3, and (d) Virtual Machine 4

5. Conclusion

Cloud computing's main goal is to provide cloud

clients with the best possible big data task scheduling

with the least amount of downtime, as well as load

balancing and higher concurrency. The fundamental

goal of big data job scheduling algorithms is to

achieve these objectives as quickly as possible.

Because job scheduling is such an important part of

increasing the overall efficiency of complex resource

allocation techniques, the proposed method addresses

a wide range of task scheduling issues. Finally, the

calculation results demonstrate that the proposed

approach yields the best results, which may be

95.21% better than the top results obtained from the

comparison algorithms in terms of failure rate. VM

cost, network bandwidth, VM sort, RAM capacity,

penalty, data center load, disc size, and CPU

processing speed are the most important

characteristics. Depending on these characteristics

condition, an optimal algorithm it will be conferred

in future work.

Conflicts of Interest

The authors declare that they have no conflicts of

interest to report regarding the present study.

Author Contributions

The following statements should be used as

follows: “Conceptualization, Visalaxi. G and

Muthukumaravel. A; methodology, Visalaxi. G;

software, Muthukumaravel. A; validation, Visalaxi.

G and Muthukumaravel. A; formal analysis,

Muthukumaravel. A; investigation, Muthukumaravel.

A; resources, Visalaxi. G data curation,

Muthukumaravel. A; writing—original draft

preparation, Visalaxi. G writing—review and editing,

Muthukumaravel. A; visualization, Visalaxi. G;

supervision, Muthukumaravel. A; project

administration, Visalaxi. G; funding acquisition,

Muthukumaravel. A”, etc.

Acknowledgments

Authors should thank those who contributed to

the article but cannot include themselves.

References

[1] X. Liu, J. Yu, J. Wang, and Y. Gao, “Resource

allocation with edge computing in IoT networks

via machine learning”, IEEE Internet of Things

Journal, Vol. 7, No. 4, pp.3415-3426, 2020.

[2] D.K. Jain, S.K.S. Tyagi, S. Neelakandan, M.

Prakash, and L. Natrayan, “Metaheuristic

optimization-based resource allocation

Received: March 11, 2024. Revised: May 31, 2024. 759

International Journal of Intelligent Engineering and Systems, Vol.17, No.4, 2024 DOI: 10.22266/ijies2024.0831.57

technique for cybertwin-driven 6G on IoE

environment”, IEEE Transactions on Industrial

Informatics, Vol. 18, No. 7, pp. 4884-4892, 2021.

[3] A.M. Seid, G.O. Boateng, S. Anokye, T.

Kwantwi, G. Sun, and G. Liu, “Collaborative

computation offloading and resource allocation

in multi-UAV-assisted IoT networks: A deep

reinforcement learning approach”, IEEE

Internet of Things Journal, Vol. 8, No. 15, pp.

12203-12218, 2021.

[4] J. Praveenchandar, and A. Tamilarasi,

“Dynamic resource allocation with optimized

task scheduling and improved power

management in cloud computing”, Journal of

Ambient Intelligence and Humanized

Computing, Vol. 12, pp. 4147-4159, 2021.

[5] K. Raghavendar, I. Batra, and A. Malik, “A

robust resource allocation model for optimizing

data skew and consumption rate in cloud-based

IoT environments”, Decision Analytics Journal,

Vol. 7, pp. 100200, 2023.

[6] S.K. Chowdhary, and A.L.N. Rao, “QoS

Enhancement in Cloud-IoT Framework for

Educational Institution with Task Allocation and

Scheduling with Task-VM Matching Approach”,

Wireless Personal Communications, Vol. 121,

pp. 267-286, 2021.

[7] S.B. Sangeetha, R. Sabitha, B. Dhiyanesh, G.

Kiruthiga, N. Yuvaraj, and R.A. Raja, “Resource

management framework using deep neural

networks in multi-cloud

environment.Operationalizing Multi-Cloud

Environments: Technologies”, Tools and Use

Cases, pp. 89-104, 2022.

[8] S. Abedi, M. Ghobaei-Arani, E. Khorami, and M.

Mojarad, “Dynamic resource allocation using

improved firefly optimization algorithm in cloud

environment”, Applied Artificial Intelligence,

Vol. 36, No. 1, pp. 2055394, 2022.

[9] Y. Xu, and A.H. Mohammed, “An energy‐aware

resource management method in cloud‐based

Internet of Things using a multi‐objective

algorithm and crowding distance”, Transactions

on Emerging Telecommunications Technologies,

Vol. 34, No. 1, pp. e4673, 2023.

[10] R. Aron, and D.K. Aggarwal, “Resource

scheduling of concurrency-based applications in

IoT based cloud environment”, Journal of

Ambient Intelligence and Humanized

Computing, Vol. 14, No. 6, pp. 6817-6828, 2023.

[11] T. Salehnia, A. Seyfollahi, S. Raziani, A. Noori,

A. Ghaffari, A.R. Alsoud, and L. Abualigah,

“An optimal task scheduling method in IoT-

Fog-Cloud network using multi-objective moth-

flame algorithm”, Multimedia Tools and

Applications, pp.1-22, 2023.

[12] F. Arvaneh, F. Zarafshan, and A. Karimi, “Using

fog computing (FC) and optimization techniques

for tasks migration and resource allocation in the

internet of things (IoT)”, International Journal

of Computers and Applications, pp. 1-9, 2024.

[13] Q. Huangpeng, and R.O. Yahya, “Distributed

IoT services placement in fog environment using

optimization-based evolutionary approaches”,

Expert Systems with Applications, Vol. 237, pp.

121501, 2024.

[14] P. D. Kusuma, and A. Dinimaharawati, “Swarm

Bipolar Algorithm: A Metaheuristic Based on

Polarization of Two Equal Size Sub Swarms”,

International Journal of Intelligent Engineering

and Systems, Vol. 17, No. 2, 2024, doi:

10.22266/ijies2024.0430.31.

[15] P. D. Kusuma, and M. Kallista, “Swarm Space

Hopping Algorithm: A Swarm-based Stochastic

Optimizer Enriched with Half Space Hopping

Search”, International Journal of Intelligent

Engineering and Systems, Vol. 17, No. 2, 2024,

doi: 10.22266/ijies2024.0430.54.

[16] P. Kusuma, and A. L. Prasasti, “Walk-Spread

Algorithm: A Fast and Superior Stochastic

Optimization”, International Journal of

Intelligent Engineering and Systems, Vol. 16,

No. 5, pp. 275-288, 2023, doi:

10.22266/ijies2023.1031.24.

[17] P. D. Kusuma, and F. C. Hasibuan, “Attack

Leave Optimizer: A New Metaheuristic that

Focuses on The Guided Search and Performs

Random Search as Alternative”, International

Journal of Intelligent Engineering and Systems,

Vol. 16, No. 3, pp. 244–257, 2023, doi:

10.22266/ijies2023.0630.19.

[18] K.K. Chakravarthi, and L. Shyamala, “TOPSIS

inspired budget and deadline aware multi-

workflow scheduling for cloud computing”,

Journal of Systems Architecture, Vol. 114, pp.

101916, 2021.

[19] M. Otair, A. Alhmoud, H. Jia, M. Altalhi, A.M.

Hussein, and L. Abualigah, “Optimized task

scheduling in cloud computing using improved

multi-verse optimizer”, Cluster Computing, Vol.

25, No. 6, pp. 4221-4232, 2022.

[20] L. Abualigah, M.A. Elaziz, N. Khodadadi, A.

Forestiero, H. Jia, and A.H. Gandomi, “Aquila

optimizer based PSO swarm intelligence for IoT

task scheduling application in cloud computing”,

Integrating Meta-heuristics and Machine

Learning for Real-world Optimization Problems,

pp. 481-497, 2022.

Received: March 11, 2024. Revised: May 31, 2024. 760

International Journal of Intelligent Engineering and Systems, Vol.17, No.4, 2024 DOI: 10.22266/ijies2024.0831.57

[21] A. Maroosi, and R.C. Muniyandi, “A novel

membrane‐inspired multiverse optimizer

algorithm for quality of service‐aware cloud web

service composition with service level

agreements”, International Journal of

Communication Systems, pp. e5483, 2023.

[22] P. D. Kusuma, and A. Dinimaharawati,

“Extended Stochastic Coati Optimizer”,

International Journal of Intelligent Engineering

and Systems, Vol. 16, No. 3, 2023, doi:

10.22266/ijies2023.0630.38.

[23] P. Kusuma, and A. Dinimaharawati, “Four

Directed Search Algorithm: A New

Optimization Method and Its Hyper Strategy

Investigation”, International Journal of

Intelligent Engineering and Systems, Vol. 16,

No. 5, pp. 598-611, 2023, doi:

10.22266/ijies2023.1031.51.

[24] P. D. Kusuma, and A. Novianty, “Total

Interaction Algorithm: A Metaheuristic in

Which Each Agent Interacts with All Other

Agents”, International Journal of Intelligent

Engineering and Systems, Vol. 16, No. 1, pp.

224-234, 2023, doi: 10.22266/ijies2023.0228.20.

[25] P. D. Kusuma, and M. Kallista, “Migration-

Crossover Algorithm: A Swarm-based

Metaheuristic Enriched with Crossover

Technique and Unbalanced Neighbourhood

Search”, International Journal of Intelligent

Engineering and Systems, Vol. 17, No. 1, 2024,

doi: 10.22266/ijies2024.0229.59.

