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Abstract: Sixth-generation (6G) wireless networks are anticipated to undergo trials and installations as early as 2030, 

offering unprecedented capacity, dependability, and efficiency. However, attention is shifting towards the development 

of 6G networks to meet the demands of emerging applications. The transition to 6G brings new challenges, particularly 

in the realm of intrusion detection, where the sophistication of attacks necessitates advanced security solutions. To 

eliminate this challenge, a novel Hybrid Intrusion DEtection system for the 6G network (HIDE-6G) has been proposed 

to detect intrusion in the 6G network. The proposed method leverages advanced techniques such as Principal 

Component Analysis (PCA) for dimensionality reduction, a Spotted Hyena Optimization Algorithm for feature 

selection, and a Capsule Network-based Deep Autoencoder (CapsDA) for effective anomaly detection. The 

performance of the HIDE-6G is estimated using the NSL-KDD and CICIDS 2019 datasets, demonstrating superior 

results compared to existing techniques such as AD6GN, IDSoft, and LA-HLRW. According to the comparison 

analysis, the proposed HIDE-6G technique's detection rate is 6.10%, 22.27%, and 20.7% greater than the existing 

HADES-IoT, H3SC-DLIDS, and F-BIDS techniques respectively. 

Keywords: 6G network, Intrusion detection, Capsule network-based deep autoencoder, Deep learning, Spotted hyena 

optimization. 

 

 

1. Introduction 

5G network infrastructure deployment has 

already started, and in the upcoming years, a 

widespread expansion is anticipated [1]. To meet the 

demands of applications for the upcoming ten years, 

academia and industry are presently concentrating on 

6G [2]. Several instances demonstrate how 5G 

networks are limited in terms of data rate, latency, 

coverage worldwide, and other aspects [3]. The 

potential of 6G network infrastructures will be fully 

realized by emerging applications like digital twin 

technologies, holographic communications, and 

extended reality [4]. The key benefits of 6G over 5G 

networks are their high data throughput, energy 

efficiency, low latency, and widespread device 

connectivity [5]. 

Zero-day attack detection is a challenging 

problem because suspicious activity is found every 

day. These sophisticated intrusions can have serious 

consequences that increase the difficulty for existing 

intrusion detection systems (IDSs) [6-8]. When they 

detect unexpected activity or a known threat, IDSs 
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issue alerts. They look for indications of potentially 

dangerous conduct, network packets conveying 

unauthorized access to the system, and cyber 

resistance against disruptive activities [9]. 

In 6G networks, an intrusion detection system 

aims to detect unusual patterns in network traffic, act 

quickly to stop security breaches, and monitor 

network traffic proactively [10-12].  

Recent years have seen the emergence of 

numerous advanced optimization algorithms, such as 

Extended Stochastic Coati Optimizer [13], Swarm 

Bipolar Algorithm [14], Four Directed Search 

Algorithm [15], Total Interaction Algorithm [16], 

Walk-Spread Algorithm [17], and Attack Leave 

Optimizer [18]. Each of these algorithms offers 

distinct strengths and applications. However, it's 

essential to recognize that the choice of optimization 

algorithm should align with the specific problem 

being addressed. While newer algorithms often boast 

improved performance, they may not necessarily 

outperform older ones in every scenario. In the case 

of the SHO, its utilization might be justified by its 

unique ability to mimic the cooperative hunting 

behavior of spotted hyenas, which can be 

advantageous in feature selection. 

Due to the increased intricacy and 

interconnectivity of 6G networks, intrusion detection 

systems may find it difficult to quickly and accurately 

detect and neutralize sophisticated and advanced 

cyber threats [19,20]. To overcome these issues a 

novel Hybrid Intrusion DEtection system for 6G 

network (HIDE-6G) has been proposed. The main 

contributions of the proposed method are as follows: 

• Initially, the data are gathered from the 6G 

base station and the data includes normal 

profile data, which is the information about 

the users and their devices, and packet traffic 

data. 

• The collected data are pre-processed using 

data cleaning and data transformation steps to 

make the data suitable for further analysis. 

• From the preprocessed data, the data are 

extracted using the PCA technique. The most 

important and relevant features of data are 

selected using the SHO Algorithm to find the 

best features that can differentiate between 

normal and attack data. 

• Finally, the selected features are given as 

input to the CapsDA model for further 

classification. The output is classified into 2 

classes such as attack detected and no attack 

detected. 

The following explanation pertains to the 

remaining half of this research: In Section II, the 

research is examined concerning the literature. 

Section III provides a detailed explanation of the 

suggested system. The conclusion is found in Section 

V, whereas the result and discussion are found in 

Section IV. 

2. Literature survey 

In current years, an amount of studies have used 

a variety of methodologies to identify the 

vulnerabilities in 6G networks. A number of the 

contemporary evaluation techniques are discussed in 

the part that follows, along with some of their 

drawbacks: 

In 2021, Zhang, Z., et al., [21] created a special 

weight-based ensemble machine learning algorithm 

(WBELA) to detect aberrant signals from the car 

Controller Area Network (CAN) bus system. The 

outcomes of the experiments show that the suggested 

approaches outperform existing methods about 

performance, correctness, and false positive rate. One 

potential disadvantage of this approach is its reliance 

on simulated data for evaluation rather than real-

world data. 

In 2022, Farooq, M. and Khan, M.H., [22] 

suggested a key for a wireless 6G IoT network 

invasion discovery method based on signatures. In 

wireless 6G IoT networks, security is measured by an 

IDS that is based on signatures. This produced a 

98.9% accuracy rate after three distinct methods One 

disadvantage of using a signature-based IDS in 

wireless 6G IoT networks is its limitation in detecting 

unknown or zero-day attacks 

In 2023, Saeed, M.M., et al., [23] suggested a 

brand-new EL based anomaly detection system for 

6G networks (AD6GNs) for communication 

networks. Notably, NSL_KDD had 99.5% accuracy 

(false alarm rate: 0.0038), UNSW_NB2015 had 

99.9% accuracy (false alarm rate: 0.0076), 

CIC_IDS2017 had 99.8% accuracy (false alarm rate: 

0.0009), and CICDDOS2019 had 99.95426% 

accuracy (false alarm rate: 0.00113). One potential 

disadvantage of the proposed method is its reliance 

on historical data for training. 

In 2023, Alotaibi, A. and Barnawi, A., [24] 

suggested a brand-new, cutting-edge security 

architecture known as IDSoft, which stands for 

NextGen IDS. The numerical findings show that the 

suggested HFL method promises higher scalability, 

speeds convergence, and dramatically decreases 

communication overhead. The limitation of the 

suggested IDSoft solution is the increased 

complexity and potential vulnerabilities introduced 

by softwarization. 

In 2023, Bhuvaneshwari, B., et al., [25] suggested 

a technique for 6G attack detection known as Luong 
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Attention and Hosmer Lem show Regression 

Window-based (LA-HLRW). In addition to 

improving attack detection accuracy, the total study 

of the proposed LA-HLRW results showed a 

significant 24% reduction in attack detection time. 

The suggested method's complexity may increase the 

maintenance burden, requiring ongoing efforts to 

ensure the IDS remains effective over time. 

In 2024, Kusuma, P.D. and Kallista, M., [27] 

suggested the migration-crossover algorithm (MCA), 

a revolutionary swarm-based metaheuristic. The 

midpoint of two randomly chosen solutions is key in 

fixed dimension functions, while the global finest 

solution takes precedence in high dimension 

functions. According to the outcome, MCA is finer in 

20, 19, 17, 20, and 17 functions thereafter than TIA, 

OOA, MA, COA, and WaOA. 

In 2024, Kusuma, P.D. and Kallista, M., [28] 

presented a unique metaheuristic, the swarm space 

hopping algorithm (SSHA), This work evaluates the 

performance of SSHA through three assessments. 

The outcome demonstrates that SSHA outperforms 

NGO, ZOA, CLO, OOA, and TIA in functions 21, 20, 

17, 17, and 21, and that the third search's contribution  

 

 

is only meaningful in three of these functions. 

Several investigations have probed security 

vulnerabilities in 6G networks. Yet, existing 

approaches suffer from reduced accuracy and 

increased latency. Our method stands out in its 

performance metrics like accuracy, false positive rate, 

detection time, and computational overhead and 

compared to prior literature. Highlighting these 

differences aims to underscore the novelty and 

effectiveness of our proposed methodology in 

addressing current limitations. The subsequent 

section discusses our unique approach to overcoming 

these drawbacks. 

3. Hybrid intrusion detection system for 6g 

network (HIDE-6G) 

In this section, a novel Hybrid Intrusion 

DEtection system for the 6G network (HIDE-6G) has 

been proposed to detect intrusion in the 6G network. 

Data is initially collected from the 6G base station, 

including normal profile data and packet traffic data. 

This collected data undergoes preprocessing steps  

 

 

 
Figure. 1 The overall workflow of the Proposed HIDE-6G Method 
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involving data cleaning and transformation. PCA is 

then applied to reduce complexity and noise.Relevant 

features are selected using the SHO Algorithm, aimed 

at distinguishing between normal and attack data. 

These selected features are inputted  

into a CapsDA model for classification, resulting in 

two classes: attack detected or no attack detected. The 

proposed HIDE-6G method's whole framework is 

shown in Fig. 1. 

3.1 Data collection 

Data collection is an important step in the 

progression of intrusion detection using a deep 

learning model. It involves gathering two types of 

data from a 6G base station: normal profile data and 

packet traffic data. 

3.2 Data pre-processing 

Data pre-processing involves cleaning and 

transforming the collected data to make it suitable for 

feature extraction and selection. 

3.2.1. Data cleaning 

Data cleaning is vital for boosting accuracy in 

intrusion detection models for 6G networks. It 

involves identifying and rectifying data irregularities 

to ensure dataset reliability by addressing noise, 

outliers, and missing values. This improves the 

efficacy of security protocols by enabling better 

differentiation between hostile and legitimate 

network activity in the complex 6G environment. 

3.2.2. Data transformation 

Data transformation via normalization and 

scaling is essential for maximizing model 

performance in the field of intrusion detection for 6G 

networks. By making linear changes to the initial data, 

min-max normalization aims to produce a balance of 

value comparisons among the data before and after 

the process. Eq. (1) provides the formula that can be 

used with this strategy. 

 

𝑍𝑛𝑒𝑤 =
𝑍−𝑚𝑛(𝑍)

𝑚𝑥(𝑍)−mn(𝑍)
                       (1) 

 

Where 𝑍𝑛𝑒𝑤  is the adjusted value derived from 

the normalized outcomes, 𝑍  denotes the previous 

value, after preprocessing using data cleaning and 

data transformation methods, the preprocessed data is 

given to the feature extraction module. 

 

3.3 Feature extraction 

The preprocessed data is subjected to feature 

extraction using the Principal Component Analysis 

approach. 

3.3.1. Principal component analysis (PCA) 

A popular method for reducing feature 

dimensionality is PCA. The algebraic definition of 

PCA is as follows, Calculate the mean of A for data 

framework A is given in Eq. (2) and Determine A's 

covariance is given in Eq. (3) 

 

𝛿 = 𝐹(𝐴)                           (2) 

 

𝐶𝑈 = 𝐶𝑜𝑣(𝐴) = 𝐹[(𝐴 − 𝛿)(𝐴 − 𝛿)𝑇]       (3) 

 

Where 𝛿  represents the result of the function 

𝐹applied to matrix 𝐴 . 𝐶𝑈  denotes the covariance 

matrix of matrix 𝐴, and 𝐶𝑜𝑣 represents the covariance 

operator. A is the original data matrix. The equation 

is solved for the Covariance CoV; 

 

𝑉𝑘 =
∑ 𝛿𝑛

𝐿
𝑖=1

∑ 𝛿𝑛
𝑀
𝑖=1

                             (4) 

 

Where, 𝛿𝑛 denotes the n-th eigenvalue. 𝐿  is the 

number of eigenvalues considered. 𝑀  is the total 

number of eigenvalues. The mutual range should be 

83% greater than the size of the major segments. 

 

𝑔 =𝑉𝑡 − 𝑋                         (5) 

 
|𝛿𝑙 − 𝐶0𝑉| = 0                           (6) 

 

Where 𝑋 is the original data that was knotted, and 

𝑡  denotes the transfer matrix. 𝑙  give the identity 

matrix credit for having dimensions that resemble 

𝐶𝑜𝑉.  The extracted features are given to the feature 

selection module to select the features. 

3.4 Feature selection 

Even with 6G networks, feature selection is an 

essential step in developing efficient IDS. SHO is 

used to pick features from the retrieved features. 

3.4.1. Spotted hyena optimization (SHO) 

The SHO mimics the community dynamics and 

hunting strategies of spotted hyenas with four stages, 

they are encircling, hunting, attacking prey, and 

searching. Fig. 2 shows the positional vectors of 

spotted hyenas in two dimensions. 
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Figure. 2 Position vectors in two dimensions of spotted 

hyena 

 

 

Encircling: When hunting in a group, hyenas 

attempt to get as near to their prey as they can to guide 

the group there. First, the most exceptional person in 

the group is recognized, and others adjust their 

opinions in line with that recognition. Eq. (7) models 

the encircling mechanism. 

 

𝑑𝑠ℎ
⃗⃗ ⃗⃗ ⃗⃗  = |𝑋 ∙ 𝑃𝑡𝑝𝑦

⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗  ⃗(𝑆) − 𝑃𝑡⃗⃗⃗⃗ (𝑆)|             (7) 

 

𝑃𝑡⃗⃗⃗⃗ (𝑆 + 1) = 𝑃𝑡𝑝𝑦
⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗  ⃗(𝑆) − �⃗� ∙ 𝑑𝑠ℎ

⃗⃗ ⃗⃗ ⃗⃗          (8) 

 

Where 𝑑𝑠ℎ
⃗⃗ ⃗⃗ ⃗⃗   is the distance between a hyena and 

the location of its prey, 𝑃𝑡⃗⃗⃗⃗ (𝑆 + 1) is indicated by the 

hyena's novel location in the current repetition The 

symbol 𝑆  represents the current iteration. 𝑃𝑡𝑝𝑦
⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗  ⃗(𝑆) 

denotes the position vector of the prey at iteration 𝑆. 

𝑃𝑡⃗⃗⃗⃗ (𝑆) signifies the current location of the hyena. 

Vector coefficients 𝑋  and �⃗�  are calculated by 

element-wise multiplication and position vectors in 

Eqs. (9) and (10). 

 

𝑋 = 2 ∙ 𝑟𝑣1⃗⃗ ⃗⃗ ⃗⃗  ⃗                            (9) 

 

�⃗� = 2�⃗� ∙ 𝑟𝑣2⃗⃗ ⃗⃗ ⃗⃗  ⃗ − �⃗�                      (10) 

 

�⃗� = 5 − (𝑖 × (
5

𝑚𝑥𝑖
))                 (11) 

 

Eq. (11) indicates that �⃗�  reduces linearly after 5 

to 0 throughout the repetition and that 𝑟𝑣1⃗⃗ ⃗⃗ ⃗⃗  ⃗ and 𝑟𝑣2⃗⃗ ⃗⃗ ⃗⃗  ⃗ 
are accidental routes in the interval (0, 1). 

Hunting: Hyenas are primarily social creatures 

that hunt in packs and have a good sense of where to 

find food. Eqs. (12) to (14), is used to determine 

which search agent is the best. 

 

𝑑𝑠ℎ
⃗⃗ ⃗⃗ ⃗⃗  = |𝑋 ∙ 𝑃𝑡⃗⃗⃗⃗ 

ℎ − 𝑃𝑡⃗⃗⃗⃗ 
𝑘|                (12) 

 

𝑃𝑡⃗⃗⃗⃗ 
𝑘 = 𝑃𝑡⃗⃗⃗⃗ 

ℎ − �⃗� 𝑑𝑠ℎ
⃗⃗ ⃗⃗ ⃗⃗                      (13) 

 

𝑂ℎ
⃗⃗ ⃗⃗  = 𝑃𝑡⃗⃗⃗⃗ 

𝑘 + 𝑃𝑡⃗⃗⃗⃗ 
𝑘+1 + ⋯+ 𝑃𝑡⃗⃗⃗⃗ 

𝑘+𝑁        (14) 

 

Where, 𝑃𝑡⃗⃗⃗⃗ 
ℎ determines the optimal placement of 

the first hyena, while 𝑃𝑡⃗⃗⃗⃗ 
𝑘 specifies the location of the 

additional hyenas. 𝑂ℎ
⃗⃗ ⃗⃗   is the cumulative search vector 

incorporating the positions of multiple hyenas. 

𝑃𝑡⃗⃗⃗⃗ 
𝑘 , 𝑃𝑡⃗⃗⃗⃗ 

𝑘+1 Position vectors of additional hyenas up 

to 𝑁. The number of hyenas is determined by using 

Eq. (15) and is shown in Parameter N. 

 

𝑁 = 𝑐𝑜𝑢𝑛𝑡𝑠𝑜𝑙 (𝑃𝑡⃗⃗⃗⃗ 
ℎ + 𝑃𝑡⃗⃗⃗⃗ 

ℎ+1 +

𝑃𝑡⃗⃗⃗⃗ 
ℎ+2, … . . , (𝑃𝑡⃗⃗⃗⃗ 

ℎ + �⃗⃗� ))                           (15) 

 

Where �⃗⃗�   is an arbitrary route in the interval 

(0.5,1), and the 𝑐𝑜𝑢𝑛𝑡𝑠𝑜𝑙 stricture in Eq. (15).  

Attacking the Prey: The path ℎ value is reduced 

to develop a scientific perfect for the intended bout. 

If the value of 𝐸 in Eq. (16) is |E| < 1, the pack of 

uncontaminated hyenas is forced to bout the victim. 

 

𝑃𝑡⃗⃗⃗⃗ (𝑆 + 1) =
𝑂ℎ⃗⃗ ⃗⃗  ⃗

𝑁
                     (16) 

 

The ideal position is saved and updated by 

𝑃𝑡⃗⃗⃗⃗ (𝑆 + 1) in Eq. (16),  

Finding prey: This strategy relies on altering the 

vector �⃗�  to make hunting possible. �⃗�  represents the 

arbitrary numbers that are greater than or less than −1. 

A refined set of features are produced utilizing 

SHO. 

3.5 Intrusion detection using capsule network-

based deep auto encoder (CapsDA) 

Intrusion Detection in 6G Networks employs a 

cutting-edge approach, utilizing a CapsDA. The 

architecture of the capsule network-based deep 

autoencoder is shown in Fig. 3. 

3.5.1. Capsule network 

CapsNet is a distinct neural network architecture 

that offers a simpler structure compared to CNN. 

Initially, the primary layer of the feature map is 

obtained by the capsule net architecture using 256, 9 

x 9 complication kernels. Eq. (17) provides a 

summary of the procedure. 

 

𝑌𝑙+1(𝑟, 𝑠) = [𝑌𝑙 ⊗ 𝜑𝑙](𝑟, 𝑠) + 𝑎          (17) 
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Figure. 3 The architecture of capsule network-based deep autoencoder 

 

 

where 𝑎 is the bias and (𝑟, 𝑠) ∈  {0, 1, . . . , 𝑌𝑙+1}. 
Layer l+1's input and output are denoted by 𝑌𝑙 and 

𝑌𝑙+1.and 𝑌(𝑟, 𝑠) is the corresponding pixel. Eq. (18) 

can be used to formalize the definition. 

 

𝑋𝑖|𝑗 = 𝑚𝑖|𝑗 × 𝑣𝑗                      (18)  

 

Its initial logits 𝑎𝑗𝑖  represent the previous 

prospects that capsule 𝑗 should be connected to 

capsule 𝑖, as illustrated in Eqs. (19) and (20). 

 

𝑜𝑗𝑖 =
exp(𝑎𝑗𝑖)

∑ 𝑏𝑗𝑡𝑡
                          (19) 

 

𝑠𝑖 = ∑ (𝑜𝑗𝑖 × 𝑋𝑖|𝑗)𝑗                    (20)  

 

Here, 𝑜𝑗𝑖  represents the connection probability 

from capsule 𝑗 to capsule𝑖. 𝑎𝑗𝑖 is the initial logit. 𝑏𝑗𝑡 

denotes the routing coefficients associated with 

capsule𝑗 for all possible connections Ultimately, it is 

only necessary to calculate 𝑜𝑗|𝑖 instead of updating 𝑣𝑗, 

which can be expressed as Eqs. (21) and (22).  

 

𝑣𝑖 = 𝑠𝑞𝑢𝑎𝑠ℎ(𝑠𝑞𝑖) =
||𝑠𝑞𝑖||

2

1+||𝑠𝑞𝑖||
2 ×

𝑠𝑞𝑖

|𝑠𝑞𝑖|
              (21) 

 

𝑎𝑗|𝑖 = 𝑜𝑗|𝑖 + 𝑚𝑗|𝑖 × 𝑣𝑗               (22) 

 

Here, 𝑣𝑖 is the Output after applying the squash 

function, 𝑎𝑗|𝑖  is the Updated value for the target 

𝑗based on input 𝑖.  𝑜𝑗|𝑖  is the outcome for target 𝑗 

given input𝑖. 

3.5.2. Deep autoencoder 

A deep autoencoder consists of an encoder and a 

decoder with multiple layers. The encoder maps input 

data EI to a lower-dimensional representation D, with 

the encoder function given in Eq. (23). 

 

𝐷 = 𝑓𝑒𝑛𝑐(𝐸𝐼) = 𝜇(𝑤𝑡𝑒𝑛𝑐𝐸𝐼 + 𝑎𝑒𝑛𝑐)        (23) 

 

Where 𝜇  is the activation function, 𝐷  is the 

encoded representation, 𝑤𝑡𝑒𝑛𝑐 is the mass medium, 

and 𝑎𝑒𝑛𝑐 is the bias vector. Eq. (24) can be used to 

express the decoder function. 

 

𝐸𝐼′ = 𝑓𝑑𝑒𝑐(𝐷) = 𝜇(𝑤𝑡𝑑𝑒𝑐𝐷 + 𝑎𝑑𝑒𝑐)        (24) 

 

Here, the decoder weight matrix is 𝑤𝑡𝑑𝑒𝑐, and the 

decoder bias vector is 𝑎𝑑𝑒𝑐. A final softmax layer is 

applied to classify the output into two classes: Attack 

Detected and No Attack Detected. 

4. Results and discussion 

In this section, the experimental results of the 

proposed HIDE-6G method are investigated, and 

performance is discussed in terms of multiple 

assessment metrics such as F1-Score, accuracy, false 

alarm rate, Precision, detection rate, security rate, 

latency and response time. The efficacy of the HIDE- 

6G is assessed with the use of NSL-KDD and 

CICIDS 2019 Datasets. The proposed HIDE-6G 

method have been compared to those of existing 

techniques, including AD6GN [23], IDSoft [24], and 

LA-HLRW [25] 

 

 
Figure. 4 Performance Comparison 
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(a) (b) 

Figure. 5: (a) Accuracy Curve and (b) Loss Curve 

 

 

4.1 Performance analysis 

The accuracy, precision, and F1 score 

performance comparison between the NSL-KDD and 

CICIDS 2019 data sets is displayed in Fig. 4. The 

model's accuracy and precision are higher than those 

of the NSL-KDD dataset, as shown by the F1 scores, 

which are 99.96%, 94.8%, and 95.3%, respectively. 

Figs. 5 (a) and 5 (b) show the training and test 

data sets, as well as the accuracy and loss curves. The 

Accuracy Curve in 5 (a) shows how the model's 

accuracy increases on both the training and during 

training epochs.5 (b) shows a declining trend in both 

training and validation losses. 

4.2 Comparative analysis 

Fig. 6 compares the accuracy of the proposed 

HIDE-6G methodology with the existing methods, 

including AD6GN [23], IDSoft [24], and LA-HLRW 

[25] using the 2 datasets. The accuracy of the 

proposed system increases by 15.75%, 26.57%, and 

14.6% when compared to the existing techniques. 

Fig. 7 shows how the proposed HIDE-6G method 

compares to the existing AD6GN [23], IDSoft [24], 

and LA-HLRW [25] methodologies in terms of false 

alarm rate, based on datasets. The proposed HIDE-

6G technique has a reduced false alarm rate than 

other existing techniques. 

Fig. 8 presents a performance comparison of the 

detection rate for the proposed HIDE-6G technique 

and existing methods, using the datasets. Compared 

to the existing LA-HLRW, IDSoft, and AD6GN 

techniques, the detection rate increases by 6.10%, 

22.27%, and 20.7% more than the proposed HIDE-

6G method. 

 
Figure. 6 Performance comparison in terms of accuracy 

 

 
Figure. 7 Comparison in terms of False alarm rate 

 

 
Figure. 8 Comparison in terms of detection rate 
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Figure. 9 Comparison in terms of security rate 

 

 
Figure. 10 Comparison in terms of latency and response 

time 

 

 

Fig. 9. compares security rates of recommended 

and available intrusion detection approaches. The 

graphic illustrates each strategy's effectiveness in 

safeguarding systems. The security rate of proposed 

method is higher than the other existing methods. 

Fig. 10 presents a comparison of latency and 

response time for both existing AD6GN [23], IDSoft 

[24], and LA-HLRW [25] and the proposed HIDE-

6G method. Lower values indicate better efficiency.  

5. Conclusion 

In this paper, a novel Hybrid Intrusion DEtection 

system for the 6G network (HIDE-6G) has been 

proposed to detect intrusion in the 6G network. The 

incorporation of innovative techniques such as PCA 

for dimensionality reduction and the SHO for feature 

selection adds sophistication to the intrusion 

detection process. Additionally, the integration of 

CapsDA enables nuanced pattern learning for 

effective anomaly detection. The experimental 

results are based on evaluations using NSL-KDD and 

CICIDS 2019 datasets. The proposed HIDE-6G 

model's effectiveness is contrasted with existing 

technique in terms of F1-Score, accuracy, false alarm 

rate, Precision, detection rate, security rate, latency 

and response time. The proposed HIDE-6G method 

has a higher detection rate (6.10%, 22.27%, and 

20.7%) than the current LA-HLRW, IDSoft, and 

AD6GN strategies. Future work will concentrate on 

adding real-time threat information inputs to the 

model to increase its awareness of the latest security 

threats. 
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Notations lists: 
Notation Definition 

𝑍𝑛𝑒𝑤 Adjusted value derived from normalized 

outcomes 

𝑚𝑥(𝑍) Highest possible value 

𝑚𝑛(𝑍) Lowest possible number 

𝐶𝑈 Covariance matrix of matrix A, 

𝐶𝑜𝑣 The covariance operator 

A Original data matrix 

𝛿𝑛 n-th eigenvalue 

𝐿 Number of eigenvalues considered 

𝑀 Total number of eigenvalues 

𝑋 Original data that was knotted 

𝑑𝑠ℎ
⃗⃗ ⃗⃗ ⃗⃗   Distance amid a hyena and location of its 

prey 

𝑃𝑡⃗⃗⃗⃗ (𝑆
+ 1) 

Hyena's novel location in the current 

repetition 

𝑃𝑡𝑝𝑦
⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗  ⃗(𝑆) Position vector of the prey at iteration 𝑆 

𝑃𝑡⃗⃗⃗⃗ (𝑆) Current position of the hyena 

𝑃𝑡⃗⃗⃗⃗ 
ℎ Optimal placement of the first hyena, 

�⃗⃗�  arbitrary route in the interval (0.5,1) 
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𝑂ℎ
⃗⃗ ⃗⃗   Cumulative search vector incorporating 

the positions of multiple hyenas 
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