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Abstract: Plants provides a substantial contribution to the world’s food supply. Plant diseases significantly damages 

the agriculture crops, reducing production and lowering crop grade and availability. Rapid and precise identification 

of leaf diseases is critical for long-term agricultural output increase. For this reason, Transfer Learning (TL)-based 

Model with Vision Transformer (TLMViT) was developed for plant diseases detection. This model utilizes the pre-

trained models and ViT for feature extraction followed by Multi-Layer Perceptron (MLP) for classification. But, the 

weights of pre-trained CNN model layers were not properly fine-tuned leading to high computational complexity and 

lower accuracy. To solve this, an Extended Stochastic Coati Optimized Transfer Leaning with Vision Transformer 

(ESCOTLViT) model is developed to fine-tune the weights of pre-trained CNN models for efficient plant disease 

detection. In this method, Extended Stochastic Coati Optimizer (ESCO) is adopted to identify the ideal weight of layers 

of the pre-trained models and parameters like number of neurons, hidden units, epochs, learning rate, weight decay, 

batch size, dropout rate, number of partitions, number of clusters per batch, momentum, optimizer and loss function. 

ESCO differs from Coati Optimization Algorithm (COA) by dividing the population into two fixed groups and 

employing three sequential phases in each iteration. In ESCO, an initial population of each coati represents the weight 

layers of pre-trained CNN models. The computation of each coati’s subsequent locations represents the search space 

for the best weights layers to identify the optimal values for pre-trained models. The evaluation of these individuals 

are done using a fitness function. Individuals with better fitness values are more likely to be selected for directing 

others with ideal positions i.e., layers in CNN variations for weight optimization. According to this ESCO, the weight 

layers of pre-trained CNN models in TLMViT are optimized for plant diseases detection. Finally, the test findings 

revealed that the ESCOTLViT model achieves 94.22%,  94.81% and 94.42% of accuracy on PlantVillage, PlantDoc 

and DiaMOS Dataset respectively compared to the existing models like Convolutional Neural Network-Vision 

Transformer (CNN-ViT), Optimum Mobile Network-based CNN (OMNCNN), Convolutional Block Attention 

Module (CBAM), DeepplantNet, Attention Mechanism with MobileNet V2 (AM-MNV2), Improved Quantum Whale 

Optimization with Principle Component Analysis and Deep Neural Network (IQWO-PCA-DNN) and TLMViT. 

Keywords: Plant diseases deep learning, Coati optimizer, Pre-trained CNN models, Vision transformer. 

 

 

1. Introduction 

Agriculture is crucial for global food security, but 

challenges like population expansion, climate change, 

arable land scarcity and plant diseases pose additional 

obstacles [1]. These diseases reduce crop yield and 

food productivity, affecting national and global food 

production systems [2]. Rapid recognition and 

anticipation of plant diseases are essential for 

increasing food yield, managing illnesses, 

minimizing famine and ensuring adequate food 

supply [3]. 

Classical plant disease detection requires 

professional inspection and ongoing monitoring 

systems, which can be costly and time-consuming for 

large farms [4]. Farmers often lack access to experts, 
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making consulting more expensive in some countries. 

Human bias and fatigue can also affect the accuracy 

of these procedures [5]. Image processing algorithms 

have been developed to detect plant diseases using 

collected images, including procurement, pre-

processing, segmentation, feature extraction and 

categorization [6]. Pathologists can forecast plant 

diseases by analysing changes in color, texture, spot 

and size in captured images. This framework aids in 

high-precision plant analysis for repair and future 

disease prediction, benefiting farmers in various 

agricultural activities [7]. Despite its potential 

benefits, Image processing faces challenges like 

lower accuracy on larger data samples and the time-

consuming and potentially biased process of human 

feature extraction [8]. 

In recent times, Artificial Intelligence (AI) 

models like Machine Learning (ML) and Deep 

Learning (DL) are increasingly used in plant 

pathology to identify, manage and prevent diseases 

and infestations [9]. When compared to the ML 

frameworks, DL models offer efficient plant disease 

prediction and classification, reducing crop treatment 

costs and increasing productivity without human 

intervention [10]. Some of the DL algorithms like 

Convolutional Neural Network (CNN), Recurrent 

Neural Network (RNN), Long- Short Time Memory 

(LSTM), Deep Belief Network (DBN) etc. These 

algorithms aid pathologists to detect plant diseases 

based on unique features from images, improving 

crop productivity, disease management and 

recognition accuracy [11]. 

Several deep learning models have been created 

to identify and categorize plant diseases based field 

images. For example, a hybrid model termed TL-

based Model followed by a Vision Transformer 

(TLMViT) was developed for plant disease 

categorization [12]. Initially, THE dataset was 

expanded to address overfitting and increase training 

samples. Leaf features were extracted through two 

phases: initial features extraction using pre-trained 

CNN models (AlexNet, Res-Net 50, VGG-16, VGG-

19 and Inception-V3) and deep features extraction 

using ViT model. Multi-Layer Perceptron (MLP) was 

used for plant disease classification. However, the 

hyper-parameters of the pre-trained models were not 

optimized, leading to high computational 

complexities and lower accuracy rate.  

To solve this, ESCOTLViT model is proposed in 

this paper for the efficient plant diseases prediction 

and classification. In this paper, the ESCO [13] model 

is employed to select the optimal weight layers of the 

pre-trained models like number of neurons, hidden 

units, learning rate, weight decay, number of epochs, 

batch scale, dropout rate, partitions, clusters per batch, 

momentum, optimizer and loss function. The COA 

[14] proves its inefficiency while generating low 

maximum iteration and low population size 

circumstances. This can be resolved by ESC by 

expanding the sequential phase, references in the 

guided search, number of searches and shifting the 

fixed split to a stochastic split in the roles segregation 

and references used in COA. ESCO also implements 

a stochastic process for each unit to choose the 

searches that will perform. It differs from COA, 

which splits the population into two fixed groups, 

each performing its strategy. ESCO implements three 

sequential phases in every iteration. Two options can 

be chosen in every phase. ESCO has three references 

in its guided search: the global best unit, a randomly 

selected unit and a randomized unit within the search 

space.  

In ESCO, the central premise is to mimic two of 

the coati’s natural behaviours: (i) chasing and 

devouring iguanas and (ii) evading enemies. The 

ESCO method employs an initial population of 

individuals assigning each coatis’ position in the 

search space dictating the values of decision variables 

or weight optimization layers. The coatis’ posture 

represents a potential solution in optimizing the pre-

trained model’s parameter. The fitness function 

measures an individual’s ability to find the best 

solution and assesses their performance. Individuals 

with higher fitness values are more likely to be 

selected to guide others to optimal locations and 

adjust weights in CNN variants. Finally, the weight 

layers of AlexNet, Res-Net 50, VGG-16, VGG-19 

and Inception-V3 models will be optimized by using 

ESCO to enhance leaf disease detection accuracy. 

The rest of this article is arranged as the following: 

different works associated with the plant diseases 

identification and categorization models are 

presented in Section II. Section III explains the 

proposed ESCOTLViT model whereas Section IV 

displays its validity. Section V outlines the entire 

study and discusses the upcoming enhancement. 

2. Literature survey 

2.1 Survey on DL based plant leaf diseases 

classification models 

Channel-Spatial Segmentation Network (CSSN) 

model [15] was developed for classifying leaf 

infections. But, the model’s hyperparameters were 

not optimized properly leading to lower accuracy 

results.  An Improved YOLOV3-Tiny model [16] 

was suggested for the early detection of turmeric 

plant diseases. But, lower accuracy was resulted as it 

was trained with limited dataset. 
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A CNN model was integrated with ViT to 

autonomously classify plant diseases using ViT [17]. 

However, its accuracy was not inefficient while 

performing on large-scale datasets. An OMNCNN 

was used to identify the conditions affecting plant 

leaves [18]. But its precision was less due to the 

limited number of samples. 

A plant disease classification method was 

developed by using One-Shot Learning (OSL) and 

Siamese Neural Network (SNN) models [19]. 

However, this approach was sensitive to outliers 

which lowers the detection accuracy. A CBAM [20] 

was developed to classify the plant disease. But, 

models hyper-parameters were not properly fine-

tuned, resulting in lower accuracy results.  

A DeepplantNet model was developed for plant 

leaf diseases detection and classification [21] using 

convolutional layers and deeper layers for disease 

detection. But when the data samples increases, the 

model lowers its performance accuracy. A Deep 

Transfer Learning (DTL) method [22] was suggested 

for detecting heterogeneous diseases in plant images. 

But, lower accuracy and F1-score results were 

obtained when handling the larger datasets   

The plant disease detection and classification 

algorithm [23] was developed by AM-MNV which 

extracts both spatial and channel dimensions for 

plant-disease recognition. However, the maximal 

training duration leads in high localization errors and 

lower accuracy rate. An IoT-enabled plant disease 

prediction system was developed using IQWO-PCA-

DNN [24].   However, this model results with high 

computation time and lower sensitivity values. 

2.2 Survey on metaheuristic optimization models 

A new metaphor-free metaheuristic search model 

called Swarm Bipolar Algorithm (SBA) was 

introduced [25] based on splitting the swarm into two 

equal-sized swarms to diversify the searching process 

while performing intensification within the sub-

swarms. But, the computational complexity was high 

compared to other metaheuristic models significantly 

lowers the accuracy. 

A novel metaphor-free swarm-based 

metaheuristic model called Swarm Space Hopping 

Algorithm (SSHA) was presented [26] which 

constitutes of three searches i.e., two directed 

searches and one crossover-based search. But, 

computational complexity was high and utilizes only 

the uniform distribution which affects the 

performance efficiency.  

A new swarm metaheuristic model called 

Migration-Crossover Algorithm (MCA) was 

developed [27] which uses crossover technique and 

neighborhood local search space. It uses the global 

finest solution as a reference in the first step, the 

middle between two stochastically chosen solutions 

as the reference in the second step and neighborhood 

search in the third step. However, third step was less 

significant than the first and second steps which 

certainly lowers the accuracy on larger datasets. 

2.3 Research gap 

An appropriate selection of parameters for DL 

models is the main issue of exiting works. Some of 

the works utilized metaheuristic algorithms to select 

optimal parameters. However, fast convergence or 

low diversity in the populations are the main issues 

of the metaheuristic algorithms. This paper utilizes a 

new metaheuristic model ESCO which overcomes 

the limitations of other metaheuristic optimization 

models including COA. 

3. Proposed work 

This section illustrates the complete framework 

of the suggested ESCOTLViT model for plant 

disease detection. In this method, the weighted layers 

of pre-trained CNN models in TLMViT [16] are fine-

tuned using the ESCO to reduce the complexity and 

improve the classification accuracy for plant diseases 

detection. The Fig. 1 depicts the procedure of the 

developed method. Notation list for variables are 

listed in Table 1. 

 

 
Table 1. List of Notations 

Notations Description 

𝐴𝑥 Initial Population 

𝐹(𝐴) Objective Function 

𝓒 Entity Member  

R Range between 0 to 1 

𝑅1 First Stage Threshold 

𝑅2 Second Stage Threshold 

𝑅3 Third Stage Threshold 

𝑇 Iteration 

𝐼 Constant Arbitrary 

𝐴𝑥 Equivalent unit 

𝐴𝑧 Arbitrarily Chosen Unit 

𝐴𝒰 Upper limit 

𝐴ℒ  Lower limit 

𝐴𝐵 Global best Unit 

𝑎 Group of Entity  

𝐴ℒℒ  Local Lower Limit 

𝐴ℒ𝒰  Local Upper Limit 

𝐴𝐺𝑅 
Randomized entity inside search 

space 
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Figure. 1 Entire Procedure of the developed model 

 

 

3.1 Fine-tuning pre-trained CNN weights using 

ESCO 

The ESCO is employed in the structure of pre-

trained models to optimize the weight layers for 

reducing the complexity in the detection of plant 

diseases. 

The ESCO aims to improve the existing COA. 

The enhancement stems from two terms: extending 

and stochastic. First, ESCO broadens the plan 

outlined in the COA. Second, ESCO exhibits greater 

stochasticity than COA. ESCO lists three extensions. 

First, ESCO’s COA contains three sequential phases 

rather than two. Second, ESCO conducts six searches 

rather than three, as specified in the COA. Third, 

ESCO employs three references in its guided 

searches: the global best unit (iguana on the tree), a 

randomized unit within the search space (iguana on 

the ground) and a randomly chosen unit. 

ESCO handles role diversity differently than the 

COA. ESCO performs role segregation throughout 

all phases. It differs from the COA, which only 

implements role segregation in the first phase. ESCO 

uses a stochastic approach to role separation. It also 

differs from COA in that role segregation is a static 

process in which the first half of the population 

conducts a guided search for the optimal global unit. 

In comparison to the randomized unit, the second half 

of the population conducts directed searches. 

The reasons for selecting this method are as 

follows. First, because many weak metaheuristics 

conduct repeated searches, additional searches may 

provide a better potential for improvement. Second, 

many faulty metaheuristics that aim to improve 

exploration capability use a randomly picked unit as 

a reference. Third, a stochastic approach to role 

segregation is chosen over a static split to prevent a 

monotone search, which is conducted in a static split 

in COA.  

The ESCO is divided into three parts that occur in 

sequence. During the first and second phases, each 

unit conducts guided searches. 

During the third phase, each unit does a random 

search. Each step contains two possible searches. In 

the first phase, each unit conducts a guided search for 

the global best unit or a randomized unit inside the 

search space. During the second phase, each unit 

conducts a directed search relative to a randomly 

selected unit. However, there are two alternatives in 

the second step. The guided search might begin with 

either the corresponding unit or a randomly picked 

unit. In the third phase, each unit conducts a 

neighborhood search. However, two alternatives can 

be used for the local search boundary. The options 

chosen in each step are stochastically determined 

depending on a threshold. If a randomly produced 

number drops below the threshold, the first choice is 

chosen. Otherwise, the second option is selected. 

Each process generates a candidate. The proposed 

ESCO employs a tight acceptance-rejection process, 

with a candidate replacing the current unit only if 

they outperform the current unit. The last value of the 

global best unit is used to determine the final answer. 

Meanwhile, Eqs. (1) to (16) determines the detailed 

formalization of each process within the algorithm. 

The initialization step involves two processes. 

The first step is to generate an initial unit randomly 

inside the search space, as specified in Eq. (1). 

 

𝐴𝑥 = 𝐴ℒ + 𝑅(𝐴𝒰 − 𝐴ℒ)                                     (1) 

 

In COA, the objective fitness function (𝐹 ) has 

each of its optimal location placed in the 

hyperparameters as number of neurons (𝑓1), number 

of hidden units (𝑓2), learning rate (𝑓3), weight decay 

(𝑓4), number of    epochs (𝑓5), batch size (𝑓6), dropout 

rate (𝑓7), number of partitions (𝑓8), number of clusters 

per batch (𝑓8), momentum (𝑓9), optimizer (𝑓10), loss 

function (𝑓11). In COA, every data pattern 𝐴 in Eq. 
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(2) in a data collection is considered a coati’s location 

and the number of iguanas in these positions, 𝐴 

contains 𝐹(𝐴) in Eq. (3): 

 

𝐴 = 

[
 
 
 
 
 
 
 
 
 
 
 
𝐴1

𝐴2

𝐴3

𝐴4

𝐴5

𝐴6

𝐴7

𝐴8

𝐴9

𝐴10

𝐴11]
 
 
 
 
 
 
 
 
 
 
 

      (2) 

 

𝐹(𝐴) =

[
 
 
 
 
 
 
 
 
 
 
 
𝑓(𝐴1)
𝑓(𝐴2)

𝑓(𝐴3)
𝑓(𝐴4)
𝑓(𝐴5)
𝑓(𝐴6)
𝑓(𝐴7)
𝑓(𝐴8)
𝑓(𝐴9)
𝑓(𝐴10)
𝑓(𝐴11)]

 
 
 
 
 
 
 
 
 
 
 

                                                (3) 

 

The ideal solution defines the location of coati to 

search for most with iguanas.  In COA, the fitness 

function value is used to assess the functionality of a 

candidate decision (coati’s location) which is used in 

ESCO. The member of the population that assesses 

the finest outcome for the targeted operation is 

considered as the ideal member of the population and 

it is modified with every iteration. 

 Then, the second step is to update the global best 

unit from the following fitness operation 𝐹 , as 

specified in Eq. (4). 

 

𝐴𝐵
 ′ = {

𝐴𝑥 , 𝐹(𝐴𝑥) <  𝑓(𝐴𝑦)

𝐴𝐵
 ′ , 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

                              (4) 

 

The guided searches in the first phase are 

formalized using Eqs. (5) to (7). Eq. (5) states that a 

reference is created within the search space (GR). Eq. 

(6) formalizes the guided search for the global best 

unit. Eq. (7) formalizes the guided search with respect 

to the randomized unit in the search space. 

Meanwhile, Eq. (8) formalizes the updating 

procedure for the relevant unit. 
 

𝐴𝐺𝑅 = 𝐴ℒ + 𝑅(𝐴𝒰 − 𝐴ℒ)                                (5) 

𝒞 = {𝐴𝑥  + 𝑅 (𝐴𝐵 − 2𝐴𝑥)                                  (6) 

 

𝒞 = {
𝐴𝑥 + 𝑅(𝐴𝐺𝑅 − 2𝐴𝑥), 𝐹(𝐴𝐺𝑅) < 𝐹(𝐴𝑥)

𝐴𝑥 + 𝑅(𝐴𝑥 − 2𝐴𝐺𝑅), 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒
  (7) 

 

𝐴𝑥
 ′ = {

𝒞, 𝐹(𝒞) < 𝐹(𝐴𝑥) 
𝐴𝑥 , 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

                                   (8) 

 

The guided search in the second phase is 

formalized in this section. (9) formalizes the 

randomly selected unit from the population. Because 

the uniform random method is utilized, all units have 

an equal chance to choose. Eq. (10) formalizes the 

guided search for the appropriate unit in relation to 

the randomly picked unit. In contrast, Eq. (11) 

formalizes the directed search of the randomly picked 

unit relative to the matching unit. 

 

 𝐴𝑧 = 𝐼𝐴                                                                  (9) 

 

𝒞 = {
𝐴𝑥 + 𝐼(0,1). (𝐴𝑧 − 2𝐴𝑥), 𝐹(𝐴𝑧) < 𝐹(𝐴𝑥)

𝐴𝑥 + 𝐼(0,1). (𝐴𝑥 − 2𝐴𝑧), 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒
                                         

                                                                       (10) 

 

𝒞 = {
𝐴𝑧 + 𝐼(0,1).  (𝐴𝑧 − 2𝐴𝑥), 𝑓(𝐴𝑧) <  𝑓(𝐴𝑥)

𝐴𝑧 + 𝐼(0,1). (𝐴𝑥 − 2𝐴𝑧), 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒
       

(11) 

 

The random search in the third phase is 

represented by Eq. (12) to (14). As part of the 

neighborhood search, a candidate is arbitrary 

produced at the appropriate unit. Eq. (12) validates 

the local lower boundary calculation and Eq. (13) 

formalizes the local upper boundary computation. Eq. 

(14) depicts the random search by using both local 

bounds. 

 

𝐴ℒℒ = {

𝐴ℒ

𝑇
, 𝐼(0,1) < 𝑅3

𝐴ℒ (1 −
𝑇

𝑇𝑚𝑎𝑥
) , 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

           (12) 

 

𝐴ℒ𝒰 = {

𝐴𝒰

𝑇
, 𝐼(0,1) < 𝑅3

𝐴𝒰 (1 −
𝑇

𝑇𝑚𝑎𝑥
) , 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

        (13) 

 

𝒞 = 𝐴𝑥 + (1 − 2𝐼(0,1)) . 𝐼(𝐴ℒℒ , 𝐴ℒ𝒰)    (14) 

 

Once the performance is executed, the optimal 

decision obtained from all algorithm iterations is 

derived as the final outcome. The optimum fitness 

operation yields the finest potential outcome, with the 

fitness operation with the lowest value being the ideal 

answer. The processes outlined above are continued  
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Figure. 2 Flowchart of ESCO for weight layer selection of pre-trained CNN models 
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until the ideal solution is reached. 

This approach helps to improve the weighted 

layers of a pre-trained CNN models to lessen the 

complexity for effective plant diseases. The 

pseudocode of ESCO for optimizing the weight 

layers of pre-trained CNN models is described in 

Algorithm 1. Also, an overall workflow of the e 

ESCO for fine-tuning the weight layers is shown in 

Fig. 2. 

 

Algorithm 1: Optimizing the weight layers using 

ESCO 

Input: Set of hyperparameters for pre-trained CNN 

models (i.e., number of neurons, number of hidden 

units, learning rate, weight decay, number of epochs, 

batch size, dropout rate, number of partitions, number 

of clusters per batch, momentum, optimizer and loss 

function). 

Output: Optimal weight layers  

1. Start 

2. for 𝑥 = 1:𝑁(𝐴) 

3. Initialize 𝐴𝑥 using Eq. (1) 

4. Determine the objective function 𝐹(𝐴) using Eq. 

(2) and Eq. (3) 

5. Identify 𝐴𝑏𝑒𝑠𝑡 using Eq. (4) 

6. for 𝑇 = 1: 𝑇𝑚𝑎𝑥 

7. for 𝑥 = 1:𝑁(𝐴) 

  // Stage 1 

9. Obtain 𝐴𝐺𝑅 by Eq. (5) 

10.  If 𝐼(0,1) < 𝑅1 then 

11. Produce 𝒞 as per Eq. (6) 

12. else 

13.  Produce 𝒞 as per Eq. (7) 

14.  Update  𝐴𝑥 and 𝐴𝐵 using Eq. (8) & Eq. (4) 

// Stage 2 

15. Determine 𝐴𝑧 by Eq. (9) 

16.  If 𝐼(0,1) < 𝑅2 then 

17. Produce 𝒞 as per Eq. (10) 

18. else 

19.  Produce 𝒞 as per Eq. (11) 

20.  Update  𝐴𝑥 and 𝐴𝐵 using Eq. (8) & Eq. (4) 

// Stage 3 

21. Evaluate 𝐴ℒ𝒰 and 𝐴ℒℒ by Eq. (12) & Eq. (13) 

22. Generate 𝒞 as per Eq. (14) 

23. Update  𝐴𝑥 and 𝐴𝐵 using Eq. (8) & Eq. (4) 

24. end for 

25.  Save the optimal candidate solution identified so 

far 

26. end for  

27. Determine the feasible solution by ESCO (Fine-

tuning the weights of pre-trained CNN layers) 

28.  end for 

 

 

4. Experimental results 

4.1 Dataset description 

PlantVillage Dataset [28]: The PlantVillage 

collection developed by the non-profit PlantVillage 

project, includes approximately 54,000 photos of 38 

crop types, including cassava, tomato, pepper and 

potato. For experimental purposes, 22787 images are 

linked to 15 plant diseases, including pepper-bell 

bacterial spot, pepper-bell healthy, potato early blight, 

potato late blight, tomato bacterial spot, tomato early 

blight, tomato late blight, tomato leaf mold, tomato 

2-spotted spider mites, tomato target spot, tomato 

yellow leaf curl virus, tomato mosaic virus and 

tomato health. 

PlantDoc-Dataset [29]: This dataset comprises 

2,598 data points from 13 plant species and up to 17 

disease classifications, representing around 300 

person hours of labor in annotating internet scraped 

images. After processing, 2564 images were 

collected from 17 classes for testing purposes. 

DiaMOS Dataset [30]: This dataset constitutes 

of 3505 images of fruit and leaves affected by four 

severity level of diseases like leaf spot, leaf curl, slug 

damage and healthy leaf. By leaving the fruit diseases 

images, 3006 plant diseases images are adopted for 

the experimental task. 

4.2 Experimental setup and performance metrics  

The implementation of both proposed and existing 

models are carried out in Python 3.11 and executed 

on a system with an Intel® CoreTM i5-4210 CPU @ 

3GHz, RAM and a 1TB HDD running on Windows 

10 64-bit, evaluated with the Plant Village, Plant-Doc 

and DiaMOS datasets (given in section 4.1). 

Similarly, Table 2 depicts the parameter values 

utilized for simulating both existing and proposed 

model to measure performance.  

All three datasets are divided into 80% for training 

and 20% for testing.  In this section, efficiency of the 

proposed ESCOTLViT model is evaluated and 

compared with existing models like CNN-ViT [17], 

OMNCNN [18], CBAM [20], DeepplantNet [21], 

AM-MNV2 [23], IQWO-PCA-DNN [24] and 

TLMViT [12] on PlantVillage, PlantDoc and 

DiaMOS datasets. The model’s efficiency in 

predicting PPD is measured using various 

performance metrics, which are provided below. 

Accuracy: It is the fraction of proper partition and 

categorization of diseased plant samples (plant 

images) over the total samples tested. 
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Table 2. List of optimal hyperparameters for both 

proposed and existing models 

Parameters Search Space 
Optimal 

Range 

Pre-Trained Models(AlexNet, Res-Net 50, VGG-16, 

VGG-19 and Inception-V3) 

Number of 

Neurons 

[32, 64, 96, 128, 160, 

192] 
128 

Number of hidden 

units 
[64, 128, 256, 512] 256 

Learning  rate [0.01, 0.001, 0.0001] 0.001 

Weight decay 
[0.0002, 0.0004, 

0.0005, 0.0006] 
0.0005 

Number of epochs [25, 50, 75, 100] 75 

Batch size [32, 64, 128, 512] 64 

Dropout rate [0.1, 0.2, 0.3, 0.5] 0.5 

Number of 

partitions 
[50, 100, 150, 200] 100 

Number of 

clusters per batch 
[3, 4, 5, 6] 5 

Momentum [0, 1] 0.7 

Optimizer 
[Stochastic gradient 

descent, Adam] 
Adam 

Loss Function 

[Cross-entropy, Mean 

Squared Error 

(MSE)] 

MSE 

ViT 

Patch Size [2, 4, 6, 8] 4 

Projection 

Dimension 
[32, 64, 96, 128] 96 

Number of heads [2, 3, 4, 5] 4 

Transformer 

Layers 
[4, 8, 12, 16] 12 

MLP 

Number of 

neurons in initial 

hidden layers of 

MLP 

[256, 512, 768, 1024] 1024 

Number of 

neurons in second 

hidden layers of 

MLP 

[128, 256, 384, 512] 512 

ESCO 

Test suite 

Dimensions 
[10, 30, 50, 100] 100 

Maximum 

Number of  

Iterations 

[20. 40, 60, 80, 100] 80 

 

 

𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =
𝑇𝑟𝑢𝑒 𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒 (𝑇𝑃)+𝑇𝑟𝑢𝑒 𝑁𝑒𝑔𝑎𝑡𝑖𝑣𝑒 (𝑇𝑁)

𝑇𝑃+𝑇𝑁+𝐹𝑎𝑙𝑠𝑒 𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒 (𝐹𝑃)+𝐹𝑎𝑙𝑠𝑒 𝑁𝑒𝑔𝑎𝑡𝑖𝑣𝑒 (𝐹𝑁)
   (11) 

 

In Eq. (11), TP represents the amount of healthy 

plant samples appropriately categorized as healthy, 

whereas TN is the proportion of abnormal plant 

samples accurately categorized as corresponding 

diseased classes. Similarly, FP is the percentage of 

diseased plant samples categorized as healthy and FN 

is the ratio of normal plant samples categorized as 

abnormal. 

Precision:  Out of all the positive predictions 

produced by the model, it estimates the proportion of 

real positive predictions, which are samples of plant 

diseases that are successfully anticipated in Eq. (12). 

 

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =
𝑇𝑃

𝑇𝑃+𝐹𝑃
              (12) 

 

Recall: The ratio of accurate projections to total 

positive occurrences in the dataset is calculated. 

 

𝑅𝑒𝑐𝑎𝑙𝑙 =
𝑇𝑃

𝑇𝑃+𝐹𝑁
               (13) 

 

F1-score: It represents the partials medians of 

precision and recall.it is represented in Eq. (14): 

 

𝐹1 − 𝑠𝑐𝑜𝑟𝑒 =
2×𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛×𝑅𝑒𝑐𝑎𝑙𝑙

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛+𝑅𝑒𝑐𝑎𝑙𝑙
                 (14) 

 

Fig. 3 portrays the performance of ESCOTLViT 

model against different existing models which is 

tested on PlantVillage dataset. It is noticed that the 

accuracy of ESCOTLViT is 94.22% which is 25.14%, 

19.59%, 17.76%, 14.39%, 11.09%, 7.53% and 2.34% 

greater than other existing models respectively. The 

precision of ESCOTLViT is 90.95% improved by 

21.06%, 18.64%, 15.08%, 11.98%, 9.43%, 6.64% 

and 3.67% than other models accordingly. The recall 

of ESCOTLViT is 94.38% enhanced by 25.44%, 

19.18%, 16.3%, 14.49%, 10.89%, 9.01% and 2.18% 

in contrasted to existing models respectively. Finally, 

F1-Score of ESCOTLViT is 92.47% increased to 

23.19%, 19.61%, 15.76%, 13.64%, 10.46%, 7.59% 

and 3.09% than other model respectively. From this 

analysis, it is observed that the proposed 

ESCOTLViT provides best performances than other 

existing models on Plant Village dataset for plant 

diseases detection. 

Fig. 4 portrays the performance of ESCOTLViT 

model against various existing models on PlantDoc 

dataset .  I t  i s  not iced that  the accuracy of 

ESCOTLViT is 94.81% increased up to 23.74%, 

20.86%, 16.40%, 13.26%, 10.81%, 8.14% and 2.13% 

than other existing models respectively. The 

precision of ESCOTLViT is 94.73% improved by 

26.10%, 21.35%, 15.51%, 12.11%, 9.79%, 6.99% 

and 2.36% compared to the other algorithms, 

accordingly. The recall of ESCOTLViT is 94.93% 

enhanced by 23.71%, 19.89%, 14.74%, 13.43%, 

8.65%, 5.70% and 2.09% in contrasted to other plant 

diseases respectively. Finally, the F1-Score of  
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Figure. 3 Performance of proposed and classical DL models for Plant Village dataset 

 

 

 
Figure. 4 Performance of proposed and classical DL models for Plant Doc dataset 

 

 

 
Figure. 5 Performance of proposed and classical DL models for DiaMOS dataset 
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ESCOTLViT is 94.71% which is increased to 

25.99%, 19.41%, 16.60%, 12.87%, 10.24%, 8.43% 

and 2.27% than other detection models respectively. 

From this analysis, it is observed that the proposed 

ESCOTLViT provides best performances than other 

existing models on Plant Doc dataset for plant 

diseases detection. 

Fig. 5 portrays the performance of ESCOTLViT 

model against various existing models on DiaMOS 

Dataset. It is noticed that the accuracy of 

ESCOTLViT is 94.42 % increased up to 24.43 %, 

22.38%, 15.36%, 11.90%, 10.77%, 6.39% and 2.88% 

than other existing models respectively. The 

precision of ESCOTLViT is 93.56% improved by 

23.02%, 18.02%, 13.34%, 9.83%, 7.94%, 4.66% and 

1.64 %compared to the other algorithms, accordingly. 

The recall of ESCOTLViT is 94.73% enhanced by 

23.59%, 18.50%, 15.61%, 12.80%, 9.59%, 5.51% 

and 3.09% in contrasted to other plant diseases 

respectively. Finally, the F1-Score of ESCOTLViT is 

93.89% which is increased to 24.37%, 17.79%, 

14.03%, 11.48%, 9.77%, 5.99% and 1.875 than other 

detection models respectively. From this analysis, it 

is observed that the proposed ESCOTLViT provides 

best performances than other existing models on 

DiaMOS dataset for plant diseases detection.  

In the literature, CNN-ViT [17], DeepplantNet [21], 

AM-MNV2 [23], IQWO-PCA-DNN [24] and 

TLMViT [12] models have utilized PlantVillage 

dataset. Similarly, OMNCNN [18] and CBAM [20] 

utilized PlantDoc and DiaMOS dataset respectively.  

Hence, this work evaluates proposed and existing 

models on   PlantVillage, PlantDoc and DiaMOS 

dataset using the parameters as per Table 2. From the 

above comparison, it is proved that the proposed 

ESCOTLViT model obtains efficient results on all 

three datasets for the plant diseases prediction. This 

is because the weight layers of pre-trained CNN 

models are optimized using ESCO which results 

enhanced accuracy results for plant diseases 

detection and classification. 

5. Conclusion 

In this paper, ESCOTLViT model is developed to 

enhance the classification accuracy and lowers the 

complexity for efficient plant disease detection. The 

adopted ESCO optimizes the weights layers of pre-

trained CNN models by considering factors like 

number of neurons, hidden units, learning rate, 

weight decay, epochs, batch size, dropout rate, 

partitions, clusters per batch, momentum, optimizer 

and loss function. ESCO divides the population into 

two fixed groups and employs three sequential phases. 

ESCO uses a fitness function to evaluate individuals 

and select the best weight layers for optimal results. 

At last, the ESCOTLViT model outperforms with 

other existing models CNN-ViT, OMNCNN, CBAM, 

DeepplantNet, AM-MNV2, IQWO-PCA-DNN and 

TLMViT with accuracy of 94.22%, 94.81% and 

94.42% on PlantVillage, PlantDoc and DiaMOS 

Dataset respectively. 
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