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Abstract: Electric load forecasting plays a significant role in electric power systems for numerous applications, in 

terms of specific time horizons like Demand Side Management (DSM), grid stability, optimal operations, and Long-

term strategic planning. However, inaccurate forecasts minimize the power supply safety, affecting the social and 

economic activities, security, and national defense. Therefore, Temporal Convolutional Attention-based Long Short-

Term Memory (TCA-LSTM) is proposed for accurately forecasting electric load using Deep Learning (DL). By 

including an attention mechanism in an LSTM approach, the proposed technique focuses more on parameters with 

greater weights. Initially, the power load dataset is employed to evaluate the proposed approach. The obtained data is 

then pre-processed by utilizing the min-max normalization to reduce the impact of outliers. Then, the Fast Fourier 

Transform (FFT) technique is performed to extract the dominant amplitude-frequency. At last, the TCA-LSTM is used 

to accurately forecast the electric load. The proposed TCA-LSTM achieves a better Mean Square Error (MSE) of 0.002, 

0.0074, and 1.5047 respectively in Godishala, Warangal, and Vijayawada, compared to the existing techniques namely, 

Regression Tree (RT), Principle Component Analysis with Recurrent Neural Network (PCA-RNN), and Artificial 

Neural Network (ANN). 

Keywords: Temporal convolution attention-based long short-term memory, Deep learning, Electric load, Fast fourier 

transform, Vijayawada. 

 

 

1. Introduction 

Load Forecasting (LF) plays a significant role in 

power system operation and scheduling. This 

procedure forecasts the demand of future load by 

utilizing both available and historical data. There are 

numerous benefits of accurate LF in the power 

market, like achieving an equilibrium among load 

and supply demand, electricity market profits, and 

transactions in economical energy to enable 

appropriate decisions in future generations. It 

enhances the power system stability, prediction of 

electricity price, and so on [1]. LF is split into three 

types, and in that, Short-Term LF (STLF) is the 

primary work of dispatching the power grid, and it 

becomes significant in the system in electrical power 

[2, 3]. STLF has a pivotal role in advanced power grid 

context systems [4]. Using huge amounts of data 

produced by the infrastructure of a smart grid permits 

accurate energy estimation demand, which 

contributes to increased energy distribution 

management, security, and economy [5]. An 

inappropriate electrical STLF impacts irregular flow 

in power and system congestion that minimizes the 

protection and security of electrical power systems, 

leading to unbalanced generation planning [6]. 

Electrical LF is crucial in constructing and enhancing 

the efficiency of power systems as it facilitates 

economic and reliable planning, operation, and 

control of power systems [7]. Accurate load forecasts 

are essential for supporting energy trading in 

electricity markets. When accurate load forecast 

depends on accurate historical information, data 

integrity attacks can contaminate the historical 

information [8]. Electricity load demand forecasting 

is influenced by a time-series of Gross Domestic 

Product (GDP) [9].  
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determines a smart grid that combines different forms 

of technology within every aspect of the electrical 

pipeline from generation to consumption. The 

purpose of technology integration is to increase 

markets, reduce environmental burden, strengthen 

service and reliability when reducing costs and 

increase efficiency [10]. A smart grid is a new kind 

of power system that is developed in recent years and 

is employed by power companies because of its 

accuracy in power load prediction [11]. Accurate 

forecasting of electrical load assists in formulating 

scheduling and power generation operational strategy 

which enables service providers to forecast the 

amount of electrical energy needed by the grid users 

[12]. LF not only generates essential data for 

policymakers to ensure effective planning capacity, 

but also assists in achieving optimal scheduling by 

utilizing economic dispatch and unit commitment 

[13]. Moreover, optimal dispatch in a grid-associated 

system is attained when the decision is to employ 

energy storage, while electricity cost is high during 

peak hours which results in minimized cost of energy 

and decreased peak electrical demand on the grid 

levels [14]. Various approaches are established to 

forecast electrical LF by using DL because of their 

ability to manage large-scale data, capture complex 

temporal patterns, and adapt to different input 

modalities [15]. However, inaccurate forecasts 

minimize the power supply safety and affect the 

social and economic activities, security, and national 

defense. Therefore, TCA-LSTM is proposed for 

accurately forecasting electric load using DL. TCA-

LSTM improves the efficiency and reliability of 

distribution systems, making stable power supply 

secure against different impacts on social function 

and national security. 

The main contributions of this research are as 

follows: 

• The min-max normalization is used in the pre-

processing phase which is capable of converting 

the present data range which assists in reducing 

the outlier’s impact and increasing the model’s 

performance and stability. 

• FFT effectively extracts the dominant amplitude 

frequency from electric load data that helps in 

determining periodic patterns like daily 

fluctuations. This approach is significant in time-

series analysis which assists in the development 

of robust and accurate forecasting models. 

• The TCA-LSTM is performed to forecast electric 

load data accurately. TCA-LSTM integrates 

TCN with attention to increase the LSTM 

performance by effectively capturing long-term 

dependencies and focusing on salient temporal 

features in input sequences and variations in the 

patterns of electricity consumption. 

The rest of the portions of the manuscript are 

structured as follows: Section 2 represents a literature 

survey. Section 3 determines the proposed 

methodology for electrical LF, while Section 4 

indicates the result of the study, and Section 5 

contains the conclusion. 

2. Literature survey 

The related work about electrical LF forecasting 

is described along with their advantages and 

limitations.  

Veeramsetty [16] suggested an RT to forecast the 

active load power. Initially, the pre-processing was 

performed based on missing values, normalization, 

outliers, and data split. This approach was employed 

for hour-ahead and day-ahead forecasting, and the 

load at a specific time of the day was forecasted 

depending on load at the same time. RT approach 

achieves less error in predicting electrical LF with the 

help of real-time data integration. However, RT faces 

challenges with non-linear relationships due to the 

partitioning data based on single feature thresholds, 

leading to inaccurate predictions. 

Veeramsetty [17] integrated Principle 

Component Analysis (PCA) with Recurrent Neural 

Network RNN to enhance the ability of hourly load 

forecasting on a substation of electric power. The pre-

processing approach was utilized to recognize 

outliers and to determine the skewness of data. PCA 

extracted the appropriate features from the provided 

information. RNN was employed to predict the LF 

effectively. This approach accurately forecasted load 

by a minimized input of data dimensionality which 

minimized the entire computational effect. However, 

PCA did not accurately forecast time-series data 

which limited RNN’s capability to learn intricate 

dynamic loads. 

Rao [18] developed an ANN for efficient load-

day ahead forecasting of load demand in cluster 

microgrids. A zero-mean normalization approach 

was utilized to normalize data on temperature and 

load variables in the pre-processing phase. LM 

technique was employed to select the most 

appropriate features and ANN was established to 

forecast electrical LF. The developed approach 

enhanced the numerical stability and convergence 

rate. However, this approach faced difficulties in 

managing non-linear and dynamic load behavior, 

which affected the forecasting accuracy in intricate 

microgrid environments. 

Ajitha [19] introduced a Recurrent Neural 

Network-LSTM (RNN-LSTM) to forecast electrical 
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load for residential sector by utilizing real-time load 

data gathered from local utilities. Then, the gathered 

data was scaled and normalized by employing two 

scaling approaches such as standard scalar and min-

max scaler. Finally, RNN-LSTM was used to predict 

electrical LF. This approach enhanced the forecasting 

accuracy with past scarce data. Nevertheless, the 

introduced approach faced challenges in capturing 

effective long-range dependencies in load patterns, 

particularly in scenarios with rapidly changing or 

highly irregular load dynamics.  

Alrasheedi and Almalaq [20] presented a hybrid 

approach depending on Convolutional Neural 

Network-Gated Recurrent Unit (CNN-GRU) and 

CNN-RNN to increase the results in Saudi smart grid 

load forecasting for enhancing problem-associated 

features. This accurately forecasted the complicated 

consumption of power to establish a reliable 

prediction approach and acquired knowledge of 

relationships among different attributes and features 

in Saudi smart grid. This optimal forecasting 

performance assisted in optimizing the network 

requirements and scalability. Nevertheless, 

inaccurate forecasts minimize power supply safety, 

affecting social and economic activities, security, and 

national defense. 

From the overall analysis, it is shown that the 

existing techniques faced challenges with non-linear 

relationships due to partitioning data on single 

features and do not effectively capture temporal 

dependencies which leads to inaccurate forecasting. 

It minimizes the power supply safety and affects 

social and economic activities, security, and national 

defense. To overcome these issues, the TCA-LSTM 

is proposed to accurately forecast electrical load data. 

3. Proposed methodology 

The TCA-LSTM is proposed to forecast the 

electric load data accurately. Initially, the power load 

dataset is obtained from Godishala (village) and 

Warangal, Telangana state, India, and wind and solar 

factors from Vijayawada city in A.P state, India. The 

min-max normalization is used to convert the present 

 

 

 
Figure. 1 Block diagram for proposed technique 

data range. FFT is performed for feature extraction 

and A-LSTM is established to forecast electric load 

data. Fig. 1 indicates a block diagram for the 

proposed technique. 

3.1 Dataset 

In this research, a power load dataset is 

established in two places for electric load forecasting 

in the day ahead. The data is gathered from a 33/11 

kV substation distribution in Godishala (village), 

Telangana state, India [21] which has 8712 samples, 

six input, and 1 output feature. Another place is the 

Kakatiya University in Warangal, Telangana state, 

India [22] which contains the overall 2184 samples, 

nine input, and 1 output feature. Next, the data is 

gathered from wind and solar factors from 

Vijayawada city in A.P state, India with 44665 

location ID, -16.65-degree latitude, and -80.65-

degree longitude [23]. These collected data are fed 

into a pre-processing stage to handle missing values 

by imputation with median values and outliers. 

3.2 Pre-processing 

Once the data is gathered, the pre-processing 

stage is performed to transform the data values of 

certain datasets. There is a huge contrast among the 

minimum and maximum values of a dataset. Hence, 

normalizing the data reduces the algorithm’s 

complexity for further processing. Normalization 

enables appropriate benefits for classification 

approaches associated with neural networks. The 

normalization function [24] depends on data scaling 

that contains the min-max technique which is capable 

of converting the present range of data in [-1, 1] and 

[0, 1] intervals. When compared to other techniques 

like Z-score, min-max normalization has higher 

capability to scale data among fixed range which 

generates relationship among features when 

preventing outliers in electrical load forecasting. The 

min-max normalization is expressed in Eq. (1). 

 

𝑃 =
(𝑥−𝑥𝑚𝑖𝑛)(𝑚𝑎𝑥−min)

(𝑥𝑚𝑎𝑥−𝑥𝑚𝑖𝑛)+𝑚𝑖𝑛
                     (1) 

 

Where, 𝑚𝑎𝑥, 𝑚𝑖𝑛  represents specified input 

variable range, 𝑥𝑚𝑖𝑛  and 𝑥𝑚𝑎𝑥  indicate the initial 

variable range of input value, and 𝑝  determines 

converted input value. Then, the final pre-processed 

data are passed through a feature extraction process. 

3.3 Feature extraction 

The FFT is used to extract the features from 

normalized data by converting the time-domain 
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signal into its frequency-domain data which makes 

the identification of the periodic patterns for electric 

load forecasting. In comparison to other conventional 

methods like Wavelet transform, FFT effectively 

captures the period patterns and components of 

dominant frequency from time-series data which 

generates the cyclic behavior identification like daily 

fluctuations. While data availability is too large for 

processing, feature extraction is employed to reduce 

the dimensions when maintaining the properties of 

data. There are different approaches to extracting 

features like frequency, time, and time-frequency 

domain, and so on that are utilized to minimize the 

data dimension. Here, feature extraction in the 

frequency domain is utilized FFT which is employed 

to convert the received signals into a frequency 

domain. Then, the first and second dominant 

amplitude frequencies are extracted. Two detectors 

are employed and two characteristics are extracted 

from each detector. Hence, four characteristics are 

established for training the neural networks which is 

expressed in Eq. (2). 

 

𝑌 (𝑘) = ∑ 𝑥(𝐽)𝑤𝑛
(𝑦−1)(𝑘−1)𝑛

𝐽=1             (2) 

 

Where, 𝑌 (𝑘) = 𝐹𝐹𝑇 (𝑋)  and 𝑤𝑛 = 𝑒(−2𝜋𝑖)/𝑛 

represents one of 𝑛 unity roots. Then, the extracted 

features are fed into the forecasting model to forecast 

electric load. 

3.4 Forecasting 

The extracted dominant frequency amplitudes are 

passed as input to a neural network like the TCA-

LSTM approach for forecasting the electric load data. 

The hyperparameters chosen for TCA-LSTM are 

default values having a grid search with a 32-batch 

size, Adam optimizer, initial learning rate of 0.001 to 

0.01, and dropout regularization technique. These are 

specifically selected to optimize the performance of 

the model by balancing the computational efficiency 

with learning capacity, improving generalization 

capability, and reducing overfitting for accurate 

electric load forecasting. It integrates LSTM cells 

with an attention technique that enables the model to 

focus dynamically on appropriate temporal features 

during forecasting in electric load. LSTM [25] is 

appropriate to process and forecast significant events 

with long intervals in time series. It has three control 

gate units namely, input gate 𝑖𝑡, output gate 𝑜𝑡, and 

forget gate 𝑓𝑡. LSTM has numerous LSTM cells that 

generate the data over time. To remember 

dependence of long-term, input and forget gates are 

the LSTM keys. Input gate evaluates how much data 

about present network state is required to be saved to 

internal state that is formulated in Eq. (3). 

 

𝑖𝑡 = 𝜎(𝑈𝑖ℎ𝑡−1 + 𝑊𝑡𝑥𝑡 + 𝑏𝑖)   (3) 

 

Where, 𝜎  represents logistic function, 𝑋𝑡  and 

ℎ𝑡−1  indicates outcome of memory block at 𝑡 − 1 

time, and 𝑡 determines input vector time, 𝑊𝑖 and 𝑈𝑖 

refers to the input gate’s weight matrix, and 𝑏𝑖 

represents input gate’s bias term. Forget gate shows 

how much data from past is to be eliminated which is 

expressed in Eq. (4). 

 

𝑓𝑡 = 𝜎(𝑈𝑓ℎ𝑡−1 + 𝑊𝑓𝑥𝑡 + 𝑏𝑓)               (4) 

 

Where, 𝑊𝑓  and 𝑈𝑓  indicate the forget gate’s 

weight matrix and 𝑏𝑓 illustrates the forget gate’s bias 

term. Output gate refers to how much data internal 

state is required to output present moment’s external 

state which is determined in Eq. (5). 

 

𝑜𝑡 = 𝜎(𝑈𝑜ℎ𝑡−1 + 𝑊𝑜𝑥𝑡 + 𝑏𝑜)   (5) 

 

Where, 𝑊𝑜  and 𝑈𝑜  represents output gate’s 

weight matrix and 𝑏𝑜  indicates output gate’s bias 

term. Initially, the last moment’s external state ℎ𝑡−1 

and input vector at present moment 𝑥𝑡 are utilized to 

compute 3 gates and candidate state 𝐶�̃�. Then, forget 

gate 𝑓𝑡 and input gate 𝑖𝑡 are combined to update the 

present moment’s internal state 𝐶𝑡. At last, internal 

state data is transferred to external state ℎ𝑡depending 

on output gate 𝑜𝑡. 

3.4.1. Temporal convolution attention-LSTM 

LSTM efficiently solves the issue of gradient 

explosion. In the training process, over-fitting causes 

a test to fail in forecasting an electric load. Therefore, 

a dropout layer is added for optimizing LSTM to 

solve this issue in electric load forecasting due to the 

capability to regularize neural networks by dropping 

random units during training, which produce 

robustness  against  overf i t t ing without  the 

requirement of extra data or early stopping. LSTM 

sets the neural network’s input vector to a fixed 

dimension that has a good effect while managing by 

a low dimension. While an input parameter’s 

dimension is huge, it affects the model’s performance 

because of the dimension explosion issue. To better 

focus on influential parameters, this research 

employs TCA-LSTM for forecasting electric load. 

The attention technique is accomplished by retaining 

an LSTM encoder’s intermediate output for input 

sequence, after which model training is used for  
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Figure. 2 Structure of Attention-based LSTM 

 

 

learning these inputs selectively and relating the 

sequence of output with them. Most of the attention 

techniques depend on the Encoder-Decoder approach. 

The encoder procedure of the original codec 

approach provides an intermediate vector in the 

Seq2Seq that is employed to store the original 

sequence data. However, the vector length is fixed, 

and while the original input sequence is long, this 

vector manages limited data that restricts the model’s 

understanding capability. The attention technique is 

used to break the original codec model’s constraints 

on the fixed vectors. Fig. 2 represents the structure of 

attention-based LSTM. 

The attention technique is primarily established 

in the following phase. The output [ℎ1, ℎ2, ℎ3, … , ℎ𝑛] 
in LSTM is transmitted nonlinearly to acquire 

[𝑢1, 𝑢2, 𝑢3, … , 𝑢𝑛] . In the forecasting procedure, 

certain operating parameters highly influence the 

electric load data. Hence, these parameters are 

required to be provided more significant weight. An 

attention technique will generate an attention weight 

matrix [∝1, ∝2, ∝3, … , ∝𝑛]  that indicates the 

significance of each intermediate state. At last, a 

weighted sum is established for input parameter 

while obtaining weight encoding vector 𝑉. An output 

𝑦  is acquired by decoding based on the encoding 

vector 𝑉 which is expressed in Eqs. (5)-(7). 

 

𝑢𝑘 = tanh(𝑊𝑘ℎ𝑘 + 𝑏𝑘)         (5) 

 

∝𝑘=
exp (𝑢𝑘

𝑇𝑢𝑠)

∑ exp(𝑢𝑘
𝑇𝑢𝑠)𝑛

𝑘=1

                 (6) 

 

𝑉 = ∑ ∝𝑘 ℎ𝑘
𝑛
𝐾                           (7) 

 

Where, 𝑊𝑘  indicates weight matrics, 𝑏𝑘 

represents offset quantity, ∝𝑘  refers to the 

normalized attention weight, and 𝑢𝑠  determines the 

randomly initialized time series attention matrix.  

TCA-LSTM is a mechanism that integrates TCN 

with attention mechanism to increase the LSTM 

performance by generating the model to focus on 

significant temporal features within the input 

sequences. Temporal convolutional layers in TCN 

are established to capture both global and local 

temporal dependencies within the input sequences. 

The convolutional operation scans over temporal 

dimension that extracts features at various time scales. 

The attention mechanism allows the model to weight 

the significance of each time steps while processing 

sequential data, which increases the model’s 

interpretability and captures the effective temporal 

dependencies in electric load forecasting. Consider 𝑋 

indicates input sequence to self-attention layer with 

𝑇 × 𝐷  dimensions where 𝑇  represents sequence 

length and 𝐷  denotes feature dimension. The self-

attention mechanism computes attention weights ∝𝑖 

for every time step 𝑖 which is expressed in Eq. (8) 

 

∝𝑖= 𝑠𝑜𝑓𝑡𝑚𝑎𝑥 (𝑊𝑞𝑥𝑖
𝑇). 𝑊𝑘𝑥𝑖           (8) 

 

Where 𝑊𝑞  and 𝑊𝑘  represents learnable 

parameters that transform the 𝑋 input sequences into 

query and key vectors. The weighted sum of input 

sequences depending on attention weight is 

formulated in Eq. (9) 

 

𝑍 = ∑ ∝𝑖. 𝑊𝑣𝑥𝑖
𝑇
𝑖=1       (9) 

 

Where 𝑍  determines self-attention output, 𝑊𝑣 

indicates another learnable parameter employed to 

transform the input sequence into value vectors. Then, 

the self-attention output 𝑍 is combined with LSTM 

hidden state ℎ𝑡 at each time step 𝑡 which is expressed 

in Eq. (10) 

 

𝐻𝑛𝑒𝑤 = [𝐿𝑆𝑇𝑀(𝑋), 𝑍]  (10) 

 

This integrated representation includes both 

LSTM’s sequential capability processing and self-

attention mechanism ability to focus more on 

appropriate temporal features. It effectively captures 

long-term dependencies and focus on salient 

temporal features in input sequences and variations 

in the patterns of electricity consumption which 

increase the forecasting performance by influential  
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Table 1. Notation description 

Symbols Notation Description 

𝑚𝑎𝑥, 𝑚𝑖𝑛 Specified input variable range 

𝑥𝑚𝑖𝑛 and 

𝑥𝑚𝑎𝑥 
Initial variable input value range 

𝑝 Converted input value 

𝑌 (𝑘) =
𝐹𝐹𝑇 (𝑋) and 

𝑤𝑛 =
𝑒(−2𝜋𝑖)/𝑛 

One of 𝑛 roots unity 

𝜎 Logistic function 

𝑋𝑡  and ℎ𝑡−1 
Outcome of memory block at 𝑡 − 1 

time 

𝑡 Input vector time 

𝑊𝑖 and 𝑈𝑖 Weight matrix of input gate 

𝑏𝑖 Input gate’s bias term 

𝑊𝑓 and 𝑈𝑓 Weight matrix of forget gate 

𝑏𝑓 Forget gate’s bias term 

𝑊𝑜 and 𝑈𝑜 Weight matrix of output gate 

𝑏𝑜 Output gate’s bias term 

ℎ𝑡−1 External state of last moment 

𝑥𝑡 Input vector at present moment 

𝐶�̃� Candidate state 

𝑊𝑘 Weight matrics 

𝑏𝑘 Offset quantity 

∝𝑘 Normalized attention weight 

𝑢𝑠 
Randomly initialized time series 

attention matrix 

𝑋 Input sequence to self-attention layer 

𝑇 Sequence length 

𝐷 Feature dimension 

∝𝑖 Attention weight 

𝑊𝑞 and 𝑊𝑘 Learnable parameters 

𝑍 Self-attention output 

𝑊𝑣 

Another learnable parameter employed 

to transform the input sequence into 

value vectors 

 

 

sequence factors in the prediction process. Table 1 

indicates the Notation description. 

4. Results 

The proposed TCA-LSTM approach is simulated 

by using Python environment with intel i9 processor, 

and 128 GB RAM, 22 GB GPU, and Windows 10 

operating system. The performance of TCA-LSTM is 

assessed in terms of error metrics Mean Average 

Error (MAE), MSE, Root Mean Square Error 

(RMSE), formulated in Eqs. (11)-(13), respectively. 

 

𝑀𝐴𝐸 =
1

𝑚
∑ |𝜆𝜏 − �̂�𝜏

𝑚
𝜏=1 |            (11) 

 

𝑀𝑆𝐸 =
1

𝑚
∑ (𝜆𝜏 − 𝜆𝜏)̂2𝑚

𝜏=1              (12) 

 

𝑅𝑀𝑆𝐸 = √
∑ (𝜆𝜏−𝜆𝜏)̂2𝑚

𝜏=1

𝑚
              (13) 

 

Where, 𝑚 indicates the number of data points, 𝜆𝜏 

represents actual values, �̂�𝜏  determines forecasted 

values, and 𝜆�̅�illustrates the mean values. 

4.1 Performance analysis 

A qualitative and quantitative analysis of A-

LSTM is presented in Tables 2 to 4. Table 2 

represents the evaluation of forecasting performance 

in Godishala village. The Recurrent Neural Network 

(RNN), Deep Neural Network (DNN), CNN, and 

LSTM are compared with the proposed TCA-LSTM. 

Fig. 3 presents a graphical representation of 

forecasting performance in Godishala village. The 

obtained results show that the TCA-LSTM achieves 

better MSE of 0.002 when compared to RNN, DNN, 

CNN, and LSTM, respectively. 

Table 3 shows the evaluation of forecasting 

performance in Warangal. The RNN, DNN, CNN, 

and LSTM are the existing methods employed for 

comparison with the TCA-LSTM approach. Fig. 4 

represents the graphical representation of forecasting 

performance in Warangal. The acquired outcomes 

determine that the TCA-LSTM achieves better MSE 

of 0.0096 in contrast to the existing techniques. 

Table 4 indicates the evaluation of forecasting 

performance in Vijayawada city. The existing 

techniques like RNN, DNN, CNN, and LSTM are  

 

 
Table 2. Evaluation of forecasting performance in 

Godishala village 

Methods MSE MAE RMSE 

RNN 0.009 0.064 0.089 

DNN 0.007 0.057 0.075 

CNN 0.006 0.051 0.062 

LSTM 0.004 0.043 0.057 

TCA-LSTM 0.002 0.035 0.052 

 

 

 
Figure. 3 Graphical representation of forecasting 

performance in Godishala village 
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Table 3. Evaluation of forecasting performance in 

Warangal 

Methods MSE MAE RMSE 

RNN 0.0354 0.098 0.074 

DNN 0.0268 0.087 0.064 

CNN 0.0098 0.066 0.052 

LSTM 0.0082 0.058 0.035 

TCA-LSTM 0.0074 0.047 0.029 

 

 

 
Figure. 4 Graphical representation of forecasting 

performance in Warangal 

 

 
Table 4. Evaluation of forecasting performance in 

Vijayawada city 

Methods MSE MAE RMSE 

RNN 1.6258 150.47 430.14 

DNN 1.5984 147.65 429.35 

CNN 1.5735 165.34 406.27 

LSTM 1.4232 133.48 401.59 

TCA-LSTM 1.5047 101.05 396.24 

 

 

 
Figure. 5 Graphical representation of forecasting 

performance in Vijayawada city 

 

compared with TCA-LSTM. Fig. 5 shows the 

graphical representation of forecasting performance 

in Vijayawada city. The TCA-LSTM with initial 

learning rate (0.001 to 0.01) focus more on 

appropriate temporal features which effectively 

captures the dependencies of long term while 

avoiding redundancy or data loss, and therefore 

generates less errors with enhanced interoperability 

compared to RNN, DNN, CNN, and LSTM. The 

obtained outcomes show that the TCA-LSTM 

achieves better MSE of 1.5047 when compared to the 

existing techniques. 

4.2 Comparative analysis 

The existing methods like RT [16], RDM [17], 

and LM-ANN [18] are used to compare with TCA-

LSTM approach. Table 5 displays a comparative 

analysis of the existing methods in Godishala village. 

The obtained results show that the TCA-LSTM 

achieves better MSE of 0.002, MAE of 0.035, RMSE 

of 0.052, in contrast to RT [16] (Weekday) in 

Godishala village, India. Table 6 determines 

comparative analysis of existing technique in 

Warangal. When compared to PCA-RNN in RDA 1 

[17], the TCA-LSTM achieves better MSE of 0.0074, 

RMSE of 0.029 respectively in Warangal, India. 

Table 7 denotes comparative analysis of existing 

techniques in Vijayawada City. The TCA-LSTM 

accomplishes superior MSE of 1.5047, MAE of 

101.05, and RMSE of 396.24 in comparison to ANN 

[18] respectively. 

 

 
Table 5. Comparative Analysis with existing methods in 

Godishala village 

Datasets Methods MSE MAE RMSE 

Power load 

dataset in 

Godishala 

village 

RT [16] 0.004 0.041 0.067 

Proposed 

TCA-

LSTM 

0.002 0.035 0.052 

 

 

Table 6. Comparative Analysis with existing methods in 

Warangal 

Datasets Methods MSE RMSE 

Power load 

dataset in 

Warangal 

PCA-RNN 

in RDM1 

[17] 

0.0154 0.142 

Proposed 

TCA-LSTM 
0.0074 0.029 

 

 

Table 7. Comparative Analysis with existing methods in 

Vijayawada 

Datasets Methods MSE MAE RMSE 

Solar and 

wind 

factors 

from 

Vijayawada 

city 

ANN 

[18] 
1.8151 131.72 426.06 

Proposed 

TCA-

LSTM 

1.5047 101.05 396.24 



Received:  April 3, 2024.     Revised: May 9, 2024.                                                                                                          397 

International Journal of Intelligent Engineering and Systems, Vol.17, No.4, 2024           DOI: 10.22266/ijies2024.0831.30 

 

4.3 Discussion 

Here, the advantage of TCA-LSTM and 

disadvantage of existing techniques are discussed. 

The RT [16] faces challenges with non-linear 

relationships due to partitioning data based on single 

feature thresholds which leads to inaccurate 

predictions. PCA [17] did not accurately forecast 

time-series data which limited RNN’s capability to 

learn intricate dynamic loads. ANN [18] approach 

faces difficulties in managing non-linear and 

dynamic load behavior which affects forecasting 

accuracy in intricate microgrid environments. RNN-

LSTM [19] faced challenges in capturing effective 

long-range dependencies in load patterns, 

particularly in scenarios with rapidly changing or 

highly irregular load dynamics. CNN-GRU [20] 

inaccurate forecasts minimize power supply safety, 

affecting social and economic activities, security, and 

national defense. The proposed TCA-LSTM 

overcomes these existing limitations. Temporal 

convolutional layers in TCN are established to 

capture both global and local temporal dependencies 

within the input sequences and attention technique 

enables the model to dynamically weight input 

sequences that enhance the forecasting accuracy. 

TCA-LSTM effectively captures long-range 

dependencies and focuses on salient temporal 

features in input sequences and variations in the 

patterns of electricity consumption which increase 

the forecasting performance by influential sequence 

factors in the prediction process. Therefore, TCA-

LSTM achieves a superior MSE of 0.002, 0.0074, and 

1.5047 in Godishala, Warangal, and Vijayawada 

compared to existing techniques like RT, PCA-RNN, 

and ANN. 

5. Conclusion 

In this research, the TCA-LSTM is proposed to 

forecast electric load data. By including an attention 

mechanism in an LSTM approach, the TCA-LSTM 

focuses more on parameters by greater weights. 

TCA-LSTM in electric load forecasting minimizes 

errors by streamlining dynamically on appropriate 

input features at time step which efficiently captures 

temporal dependencies via interpretability. Therefore, 

in contrast to the existing techniques like RT, PCA-

RNN, and ANN, the proposed A-LSTM achieves a 

commendable MSE of 0.002, 0.0074, and 1.5047 in 

Godishala, Warangal, and Vijayawada cities, 

respectively. In the future, another self-attention-

based classification technique will be considered for 

different datasets to enhance the efficiency of short-

term load forecasting. 
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