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Abstract: Utilizing received signal strength indicators (RSSIs) is one of the most widely used cost-effective techniques 

for the localization and tracking of mobile targets using wireless sensor networks (WSNs). Significant estimation 

errors in target localization are caused by the noise variability in received signal strength indicator (RSSI) readings, 

particularly in indoor environments. In this paper, a new method is proposed based on a Nomadic People Optimizer 

(NPO) and Artificial Neural Network (ANN) to overcome the weaknesses of the traditional method, which is called 

NPO+ANN algorithm to improve the accuracy of target localization and tracking. This study presents a novel method 

for estimating the initial location of a single target moving in a 2-D space within a wireless sensor network (WSN) 

that combines hybrid NPO+ANN as a substitute for the common RSSI-based method. The Unscented Kalman Filter 

(UKF) is then used to improve and fine-tune these preliminary estimations to increase target localization accuracy, the 

research suggests NPO+ANN+UKF. The simulation outcome validates the NPO+ANN+UK architecture's capability 

for solving the real-time target tracking issue in WSN utilizing RSSI. The NPO+ANN+UKF provides a remarkable 

improvement of 98.2%, and 88% over the traditional RSSI, and NPO+ANN, respectively. 

Keywords: RSSI, Accuracy, Log-normal shadowing model (LNSM), Indoor environments, WSN. 

 

 

1. Introduction 

In wireless sensor networks (WSNs) several 

sensors are placed over a sizable area to monitor a 

variety of environmental characteristics. It is 

essential to guarantee proper data transfer between 

these network nodes. The fundamental goal of L&T 

is to determine the positions of moving targets and 

trace their paths based on field measurements 

collected at consistent intervals. To address the 

tracking challenge, a series of localization challenges 

must be tackled periodically [1]. 

Current localization technologies are divided into 

three groups: range-free, range-based, and AI-based 

[2]. Calculating the distances or angles between an 

unknown node and the network's known nodes is 

crucial when trying to pinpoint where it is to other 

nodes. This approach called the range-based method 

[3], such as angle of arrival, time of arrival, phase of 

arrival, time difference of arrival, received signal 

strength indicator (RSSI), global positioning system 

(GPS), and acoustic energy [4, 5]. Among these 

methods, the RSSI approach offers several 

advantages (i) There is no requirement for further 

hardware, (ii) it is cost-effective and (iii) No 

requirement for time synchronization [6]. 

On the other hand, the range-free method offers 

cost-effectiveness but suffers from reduced accuracy 

in estimating the location of sensor nodes. The 

distances between nodes do not need to be estimated 

when using range-free localization techniques. Such 

methods have the benefit of not requiring additional 

hardware for sensors to measure distance, such as 

DV-hop hexagonal intersection, Approximate Point 

in Triangle (APIT), rectangular intersection, and 

centroid [2]. 

In localization approaches for numerous 

applications, such as wireless sensor networks and 
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tracking systems, AI-based solutions have 

demonstrated promising results. Several AI-based 

localization techniques include ANNs [7], Support 

Vector Machines (SVM), k-nearest Neighbours (k-

NN), Decision Trees, Fuzzy Logic, and Adaptive 

Neural Fuzzy Inference System (ANFIS) are a few 

examples of machine learning algorithms that can be 

trained using received signal strength (RSS) data to 

forecast the location of a target node inside a wireless 

sensor network [2, 8, 9]. 

Despite being often employed for target 

localization and tracking, RSSI field measurements 

are susceptible to high levels of noise and fluctuations, 

particularly in challenging indoor RF environments. 

Significant localization mistakes are caused by the 

difficulties faced by RSS-based L&T systems, which 

include indoor interference, multipath fading, noise, 

and different obstructions [1]. Due to its simplicity of 

use, trilateration, a straightforward method for target 

L&T, is extensively used. However, because of the 

ambiguities in RSSI measurements or the dynamic 

nature of interior surroundings, it frequently has low 

localization accuracy. The erratic nature of RSS 

measurements frequently has an impact on the 

precision of trilateration [10]. Contrarily, ANN 

algorithms offer advantages over trilateration in more 

dynamic indoor environments with reflections, 

interference, and obstructions. more accurate and 

reliable target localization. Therefore, in this research, 

we adopted the use of neural networks to overcome 

the weaknesses of the traditional method. To obtain 

the best performance of artificial neural, we need to 

adjust a set of parameters to achieve the desired goals 

in the accuracy of localization. The number of 

neurons in each concealed layer and the 

hyperparameter of the training process (Learning 

Rate) are key factors in Artificial Neural Networks. 

However, choosing these criteria is not simple and 

frequently entails trial and error, which might not 

always produce the best result. To solve this problem, 

The optimal number of neurons in each hidden layer 

and the most suitable learning rate for the ANN are 

chosen using the Nomadic People Optimizer (NPO) 

technique. The NPO algorithm can strike a balance 

between global exploration and local exploitation, 

ultimately leading to the discovery of the optimal 

solution for our problem in adjusting the number of 

neurons in each hidden layer and the learning rate are 

two important parameters in the ANN architecture. 

By reducing the localization error, this hybrid 

strategy also referred to as the "NPO+ANN 

algorithm" enhances the performance of the ANN. 

The approach improves its accuracy in determining 

the best parameter settings for the neural network by 

integrating NPO with ANN, which improves overall 

performance across a range of applications. After 

obtaining the estimated coordinates we enhance these 

location estimates by employing the Unscented 

Kalman filter (UKF) to attain enhanced results. 

The following are the research's main findings: 

1. A novel hybrid NPO-ANN localization and 

tracking model was introduced, utilizing RSSI 

measurements to address the challenges posed by 

dynamic RSSI readings in indoor environments. The 

proposed approach was compared with a 

trilateration-based scheme using six RSSI 

measurements for both methods and localization 

accuracy was rigorously evaluated through 

simulations. 

2. The NPO-ANN-UKF framework was 

created by applying the Unscented Kalman filter 

(UKF) to the location estimations produced from the 

NPO-ANN scheme. In comparison to the trilateration 

and basic NPO-ANN-based systems, the 

performance of the NPO-ANN-UKF-based scheme 

performed better. The NPO-ANN-UKF-based 

system outperformed the other two approaches in 

terms of target location estimate, confirming its 

potency in enhancing localization accuracy. 

This paper is structured as follows. In Section 2, 

a brief review of significant studies related to target 

localization and tracking methodologies within 

target-tracking WSNs is presented. Section 3 lays out 

the approach for localizing a mobile target using a 

Nomadic People Optimizer and Artificial Neural 

Network. Comprehensive simulation studies, which 

delve into the system architecture and performance 

evaluation of the proposed methods, are explained in 

Section 4. Concluding remarks are highlighted in 

Section 5. 

2. Related works 

The localization of sensor nodes in WSNs has 

recently attracted a lot of concern in academic 

research. The two primary kinds of indoor target 

localization and tracking (L&T) algorithms that make 

use of RSSI readings are machine learning (ML) -

based approaches and filter-based methods. ML-

based approaches frequently make use of supervised 

learning concepts and RF fingerprinting techniques. 

Radial basis function, recurrent neural network, k-

nearest Neighbour, multilayer perceptron, extreme 

learning machine, backpropagation neural network, 

convolutional neural network, backpropagation 

neural network, and support vector machine are a few 

examples of popular ML-based solutions that have 

been studied in the literature. By learning patterns 

and characteristics from the RF fingerprints obtained 

from RSSI measurements, these machine learning 
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ML-based approaches seek to increase localization 

and tracking accuracy [10-12]. 

In the study [13] the researchers developed two 

algorithms: RSSI + Kalman filter (KF) and RSSI + 

Unscented Kalman filter (UKF), which were carried 

out in a simulated environment that covered a 100m 

x 100m area. To provide a smoother target trajectory, 

these techniques were proposed to enhance the 

estimations produced from the conventional RSSI-

based methodology. Concerning the three scenarios, 

the working area contained 4, 6, and 8 anchor nodes. 

The simulation results for each scenario show that 

better tracking results are obtained by increasing the 

density of anchor nodes. The scenario with 8 anchor 

nodes shows the greatest improvement in tracking 

accuracy. In particular, when compared to the 

conventional RSSI-based method, the RMSE in the 

RSSI + KF and RSSI + UKF algorithms is lowered 

by roughly 70% and 90%, respectively. This suggests 

that greater tracking precision is associated with more 

anchor nodes. Despite the positive results, the 

accuracy of localization depends on increasing the 

number of anchor nodes and thus increasing the cost. 

Using RSSI measurement and artificial neural 

networks, this paper [14] proposed a method for 

localization possibilities for wireless sensor networks. 

To achieve the best outcomes, three distinct learning 

algorithms LM, Bayesian regularized artificial neural 

networks (BRANN), and Back Propagation (BP) are 

used. Different ANN topologies with various hidden 

layer and node counts were tested. The 12-12-2 ANN 

structure was then assessed. The three learning 

algorithms were applied to this ANN structure to train 

it.  The learning strategies are compared using the 

maximum and average distance error. The smallest 

maximum error was obtained using the BRANN 

approach, but the smallest average error was obtained 

using the LM method. Though tiny, method-to-

method mistake exists. The drawback is the need to 

adjust a set of parameters in NN. With the number of 

neurons in each hidden layer, choosing these criteria 

is not simple and frequently entails trial and error, 

which might not always produce the best result. 

To tackle the complexities posed by dynamic RF 

channels and the nonlinear system dynamics inherent 

in indoor Localization and Tracking (L&T) of mobile 

targets, this study [15] introduces an improved 

architecture referred to as the Trilateration Centroid 

Generalized Regression Neural Network (TCGRNN). 

Solving the challenge of indoor L&T for mobile 

targets necessitates addressing the issues arising from 

dynamic RF channels and nonlinear system dynamics. 

During simulations, the parameter representing the 

normal random variable in the LNSM path loss model 

is systematically varied from 3 to 9 dB in 3 dB 

increments to simulate the uncertainty associated 

with RSSI measurement noise. Even if the findings 

were good, the computations became more 

complicated when the coordinates were found using 

the Centroid and Trilateration methods and then 

added to the RSSI as inputs to GRNN. 

In this research [16], a localization system using 

LoRaWAN-RNN is presented. Various experiments 

were conducted, involving different learning rates 

(0.0002, 0.002, 0.02, 0.2, and 2) and different 

numbers of hidden neurons (8, 16, and 20) to assess 

the system's performance and accuracy in an indoor 

environment, considering both LOS and NLOS 

scenarios. The results indicated that in the LOS 

scenario, the best localization accuracy was achieved 

with a learning rate of 0.2 and 20 hidden neurons in 

the RNN network architecture, resulting in a 

minimum average localization error of 0.12 meters. 

Conversely, for the NLOS scenario, the minimum 

localization error was 13.4 meters. In this study, the 

researcher relied on the principle of trial and error to 

choose a parameter, learning rate, and the number of 

neurons, and this led to an increase in the time taken 

and maybe not getting optimal results. 

In the context of WSNs with uncertain 

measurement noises, this paper [1] suggests using 

Generalized Regression Neural Networks (GRNN) to 

improve real-time target tracking efficiency in the 

Kalman Filtering (KF) framework. To effectively 

track a single moving target in 2-D in the WSN, two 

RSSI-based methods, GRNN+KF and GRNN+UKF, 

are introduced. The target's initial location estimates 

are initially determined using a GRNN-based method, 

and they are then further improved using the 

KF&UKF framework. The results show a about 50% 

reduction in RMSE when comparing the RMSE of 

the GRNN+UKF algorithm with the conventional 

RSSI+UKF, demonstrating that the GRNN+UKF 

approach beats the conventional RSSI-based method. 

In this study, the researchers relied on choosing the 

important factor the spread constant in GRNN based 

on trial and error, which is insecure and does not 

always yield the best result. 

In [17], a target-localization technique based on 

Convolutional Neural Network (CNN) was proposed, 

utilizing RSSI data as inputs. The intricacy of the 

online estimating stage was successfully transferred 

to an offline training stage. As a result, a localization 

accuracy of 2 meters was achieved. For this 

localization, thousands of RSSI fingerprints in a size 

area of 12.5 meters by 10 meters were used, 

employing the Access Points (APs) deployed in the 

environment. The average localization errors 

obtained using the recommended fingerprint-based 

methods were 4.11 meters, 4.16 meters, and 3.91 
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meters, respectively, using SVM, KNN, and CNN-

based methodologies. These results demonstrate the 

effectiveness of the CNN-based approach. The main 

disadvantage of target L&T methods that use CNN is 

the time-consuming process of fine-tuning the CNN 

hyper-parameters, including the activation function, 

threshold, and learning rate. 

In [18] The suggested WiFi-fingerprinting 

localization method offers good indoor localization 

performance while saving time and effort when 

creating a radio-map. The system employs FFBP 

neural networks and GRNN for location estimation, 

with FFBP outperforming GRNN when it comes to 

structural simplicity and GRNN outperforms other 

models, yielding more precise prediction results with 

an average distance error as low as 0.48 meters. 

Instead of the traditional RSSI-based approach, 

this study [19], suggested a hybrid technique termed 

particle swarm optimization-generalized regression 

neural network (PSO-GRNN) to increase the sensor 

nodes' capacity to predict location and target tracking 

with better accuracy. The RSSI values can be used by 

the GRNN method as start data to determine the 

target node's location and trace it. The spread 

constant (σ) is a crucial part of the GRNN design. The 

ideal GRNN spread constant value is found using the 

PSO approach. The hybrid tracking algorithm PSO-

GRNN beat the traditional LNSM approach and 

yielded remarkable outcomes. By comparing the 

suggested approach to the traditional RSSI, a 

significant 87.58% gain can be achieved. The GRNN 

provides a robust initial estimate but may not fully 

capture the dynamic nature of the localization process, 

especially in the presence of uncertainties and noise. 

3. Propose system 

Both the conventional approach (based on RSSI 

data and LNSM) and a hybrid NPO-ANN algorithm 

were used to estimate the localization. 

3.1 LNSM based on RSSI 

The Log-Normal Shadowing Model used in this 

work as the foundation for the simulated RSSI 

measurements has the following mathematical 

formula  [20,21]. 

 

𝑅𝑆𝑆𝐼 = 𝐴 − 10𝑘𝑙𝑜𝑔 (
𝑑

𝑑0
) + 𝑋𝜎    (1) 

 

Where A is RSSI evaluated at the reference 

distance receiver node d0 1m from the transmitter, k 

is the Path loss exponent, Xσ is a typical random 

variable (a measurement of the shadowing effect that 

often falls between 3 and 20 dBm). In this study, the  

Table 1. Frequently used symbols. 

Symbol Definition 

𝑃𝑟 RSSI value at reference distance 𝑑0 

𝑅𝑆𝑆𝐼 Received Signal Strength Indicators 

𝑛 Attenuation factor 

𝑋σ Normal random variable 

d 
Distance between transmitter and receiver 

nodes 

A1& A2 
The number of neurons in the first and 

second hidden layers respectively 

LR Learning rate 

𝑑𝑖 Discretization time step 

𝑣𝑥𝑖& 𝑣𝑦𝑖  
The speed in x and y directions 

respectively at i time instant 

UB & LB 
Upper bound and lower bound 

respectively 

𝑋0& 𝑌0 
Coordinates of the central point (origin) 

within the circle 

𝑅1& 𝑅2 
The random coordinates of a point located 

within the circle's boundary 

σ Leaders 

σc The positions of the leaders 

θ The angle value 

𝑋𝑖
𝑁 & 𝑋𝑖

𝑂 The current family's new and old position 

𝛷 The number of families in each clan 

∆Pos 
the normalized distance between the 

optimal Leader and the normal Leader 

𝜎𝐸  The position of the optimal Leader 

𝜎𝐶
𝑁 the position of the normal Leaders 

𝛹 Direction 

D The number of dimensions 

𝑇𝑖  Current iteration 

𝑇 Total number of iterations 

𝜎𝑐
𝑛𝑒𝑤  A new position of the normal Leaders 

𝛼𝐶  
Distance between all of the normal 

families 

𝑅𝑀𝑆𝐸 The Root-Mean-Square Error 

ALE Average Localization Error 

 

 

parameters are selected so that X~ (3,1) with a 

difference of 3 dBm and 1 dBm as a standard 

deviation value. The mathematical symbols used 

frequently in this paper are summarized in Table 1. 

3.2 Nomadic people optimizer 

The inspiration behind Nomadic People 

Optimizer (NPO) is the movement and behaviour of 

nomadic people in their search for sources of life, 

such as water or grass for grazing. The algorithm 

simulates how nomadic people have lived for 

hundreds of years, continuously migrating to the 

most comfortable and suitable places to live. It is 

designed based on the multi-swarm approach, where 

each clan within the algorithm looks for the best 

solution based on the position of their leader. The 
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algorithm also incorporates the Meeting Room 

Approach (MRA), which represents the 

communication between the clans and helps balance 

exploration and exploitation. The exploration 

capability of NPO is achieved through the use of 

several members of swarms, differentiating it from 

other metaheuristics that commonly use a specific 

mechanism between the global best solution and the 

whole swarm [22]. 

The NPO algorithm consists of five primary 

operations: Initial meeting, Semi-circular distribution, 

Family searching, Leadership transition, and lastly, 

Periodic meeting. 

1. Initial meeting 

A collection of Leaders (σ), denoted σ= (σ1, σ2, 

σ 3,…, Clans), The positions of the leaders(σc) in 

each clan are initialized randomly using an Eq.2 that 

takes into account the upper bound (UB) and lower 

bound (LB) of the search space, as well as a random 

value between 0 and 1. 

 

𝜎𝑐 = 𝑅𝑎𝑛𝑑 ∗ (𝑈𝐵 − 𝐿𝐵) + 𝐿𝐵   (2) 

 

2. Semi-circular distribution 

The families (represented by the set of families, 

x) in the NPO algorithm are distributed around their 

leaders (represented by σ). The arrangement of points 

is based on the angle value, which determines their 

position in the circular pattern. 

 

𝑋 = 𝑐𝑜𝑠(𝜃) ∗ (√𝑅1 ∗ 𝑅𝑑) + 𝑋0   (3) 

 

𝑌 = 𝑠𝑖𝑛(𝜃) ∗ (√𝑅2 ∗ 𝑅𝑑) + 𝑌0   (4) 

 

𝑋0 and 𝑌0  denote the coordinates of the central 

point (origin) within the circle, whereas 𝑅1 and 𝑅2 

indicate the random coordinates of a point located 

within the circle's boundary. Additionally, θ 

represents the angle value of this point, a random 

value falling within the range of [0, 2π]. 

3. Families searching  

When the swarm does not contain a new local 

best solution, the exploration phase of the NPO 

algorithm is carried out. This means that the families 

in the swarm begin looking for better positions in the 

search space. Every family in the swarm moves in a 

separate direction inside the search space during the 

exploration phase. The Levy Flight formula generates 

random steps and directions that dictate their 

movement's direction and distance. 

 

𝑋𝑖
𝑁 = 𝑋𝑖

𝑂 + (𝛼𝐶 ∗ (𝜎𝐶 − 𝑋𝑖
𝑂)⨁𝐿𝑒𝑣𝑦)  (5) 

 

Where 𝑋𝑖
𝑁  and 𝑋𝑖

𝑂stand for the current family's 

new and old positions, respectively, and 𝛼𝐶  stands 

for the clan's area, which is the mean distance 

between all of the normal families and 𝜎𝐶 . This 

formula can be used to determine 𝜎𝐶: - 

 

𝛼𝐶 =
∑ √(𝜎𝐶−𝑋𝐼

𝑂)2𝛷
𝑖

𝛷
      (6) 

 

where Φ denotes the number of families in each 

clan. 

The value of 𝛼𝐶 determines the distribution of the 

families around the leader. If the families are 

distributed in a small circle around the leader, the 

value of 𝛼𝐶will be small, leading to a small step size 

in the exploration phase. On the other hand, if the 

families are distributed far from the leader, the value 

of 𝛼𝐶 will be large, allowing for larger steps in the 

exploration phase. The families move in various 

directions and with arbitrary step sizes that are 

produced by the Levy flight (𝜆𝐶) equation as follows: 

 

𝐿𝑒𝑣𝑦 ~ 𝜐 = ʈ−𝜆    (1 < 𝜆 < 3)    (7)  

 

The Levy flight equation is based on a Levy 

distribution, which has an infinite mean and variance. 

A random walk is generally a Markov chain, meaning 

that the future steps only depend on the current 

location and not on the past steps. 

4. Leadership transition (exploitation) 

Look for any new families in each clan that are 

better fitness than the leader of that clan. If so, that 

family becomes the leader and vice versa. 

5. The periodical meetings (exploitation–

exploration)  

Periodical meetings among the Leaders in the 

desert aim to resolve external problems and discuss 

relocation locations without arousing the ambitions 

of others. The meetings occur in two stages, with the 

first phase determining the most powerful Leader 

who proposes solutions for other Sheikhs to update 

their locations based on the variance between the 

strongest Leader and the normal Leader as shown in 

the equation that follows: 

 

∆𝑃𝑜𝑠 = (
√∑ (𝜎𝐸−𝜎𝐶

𝑁)2𝐷
𝑖

𝐷
) ∗ 𝛹    (8) 

 

where 𝜎𝐸  indicates the position of the optimal 

Leader, and 𝜎𝐶
𝑁 signifies the position of the normal 

Leaders. Meanwhile, D represents the number of 

dimensions within the problem, Ψ  denotes the 

direction, and ∆𝑃𝑜𝑠 signifies the normalized distance 
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between the optimal Leader and the normal Leader. 

The direction variable Ψ guides the normal Leaders 

towards more advantageous positions, contingent 

upon the fitness value of the optimal sheikh, as 

follows: 

 

Ψ = {
1         𝑖𝑓  ℱ (𝜎𝐸) ≥ 0
−1               otherwise

      (9) 

 

Using Eq. (10), normal Leaders modify their 

positions. A part of the NPO exploring phase is 

represented by this equation: 

 

𝜎𝑐
𝑛𝑒𝑤 = (∆𝑃𝑜𝑠 ∗ (𝜎𝐸 − 𝜎𝐶

𝑁) ∗
𝑇𝑖

𝑇
) + 𝜎𝐶

𝑁        (10) 

 

where 𝑇𝑖 and 𝑇 stand for the current iteration and 

the total number of iterations, respectively, and 𝜎𝑐
𝑛𝑒𝑤 

and 𝜎𝐶
𝑁 for the new and old positions of the normal 

leader, respectively. 

All normal leaders have their positions revised 

during the periodic meeting. The Leader remains in 

the new position if it is superior to the previous one, 

with the exception of creating a new clan based on 

the second step (semi-circular distribution) if not, he 

moves back to the previous location. It is worth 

noting that the periodic meeting represents a 

cooperative arrangement for several swarms, making 

it a special means of information exchange amongst 

swarms. Every clan is a separate swarm and contact 

between them is facilitated by the regular meeting. 

MRA is a cooperative multi-swarm approach that 

enables them to achieve faster convergence than 

other standard versions of the algorithms by 

balancing exploration and exploitation. 

The MRA helps guide normal leaders to follow 

the best leader by using the direction variable Ψ , 

which guides them towards better places and 

positions for their clans. By incorporating the MRA, 

NPO ensures that the clans within the algorithm work 

together towards finding the best solution, balancing 

between exploration and exploitation capabilities. 

The NPO method uses the Root Mean Square Error 

[18] as its fitness function, as demonstrated in the 

following equation: 

 

𝑅𝑀𝑆𝐸 = √
1

𝑛 
∑ (𝐸)2𝑛

𝑖=1    (11)  

 

Where E= 𝑥 − 𝑥 , 𝑥 and �̂�  are the actual and 

estimation coordinate values for unknown nodes, 

respectively, and n represents the quantity of RSSI 

samples. 

3.3 Learning by NPO 

In this study, the Levenberg-Marquardt (LM) 

training algorithm and a feed-forward neural network 

type are chosen for MATLAB training. The LM 

training algorithm is chosen due to its minimal 

localization error, which has been demonstrated, as 

well as its quickness and effectiveness [23] . 

However, this technique necessitates a sizeable 

working memory resource. Six inputs, two hidden 

layers, and two outputs are taken into account in this 

study when training the neural network. 

The goal is to use artificial neural networks 

(ANN) to represent the process of correct localization. 

The number of neurons in each hidden layer and the 

learning rate are crucial factors in the ANN. However, 

figuring out the ideal values for these factors can be 

difficult and frequently calls for a trial-and-error 

method, which might not always produce the greatest 

outcomes. The Nomadic People Optimizer (NPO) 

technique is used to discover the ideal number of 

neurons in each hidden layer and the best learning 

rate for the ANN to solve this problem. The "NPO-

ANN algorithm" a hybrid strategy, enhances the 

performance of the ANN by reducing localization 

errors. NPO and ANN are combined in the algorithm 

to increase localization accuracy and produce a more 

trustworthy solution to the parameter selection 

problem in the ANN architecture. In this algorithm, 

each particle is made up of three parts: the learning 

rate (LR), the number of neurons in the first hidden 

layer (A1), and the number of neurons in the second 

hidden layer (A2). The results for A1, A2, and LR are 

then used to train an ANN to improve the mobile 

node's localization accuracy. Fig. 1 illustrates the 

flowchart of the suggested approach. 

The elaborate flow of the suggested algorithms 

for one-time step t is given in the following algorithm. 

I: Offline NPO+ANN Training Stage 

Step 1: A dataset containing 880 pairs of RSSI 

measurements obtained from anchors and their 

associated actual positions of the moving target is 

used to train the NPO+ANN model. To figure out the 

ideal ANN learning rate and the optimal number of 

neurons for each hidden layer. 

II. Online Position Estimation using ANN  

Step 2: Every time an anchor node transmits RSSI, 

the moving target receives it. The base station 

receives these RSSI readings.  

Step 3: Every time a moving target, the base station 

runs an ANN (using A1, A2, and LR obtained from 

step 1) algorithm to determine its position. The 

estimated x and y positions' errors are computed and 

recorded. 

III. Online Position Estimation with UKF  
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Step 4: The base station utilizes Unscented Kalman 

Filter (UKF) algorithms to improve the position 

estimates produced by the artificial neural network 

(ANN). At particular sample instants, the errors in the 

estimated x and y positions are calculated and 

recorded. 

Step 5: The process described in steps 2 to 4 is 

iteratively repeated for each subsequent time step 

until the total simulation period is completed. 

IV. Computation of Performance Metrics  

Step 6: All techniques (Traditional RSSI, NPO+ANN, 

and NPO+ANN+UKF) have their RMSE and 

Average Localization Error (ALE) computed. 

 

 

 
Figure. 1 Flowchart of the hybrid NPO+ANN algorithm 
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Figure. 2 Actual and target estimated by the Traditional 

RSSI, NPO+ANN, and NPO+ANN+UKF 

 

 

4. Result and discussion 

The suggested system is made up of a collection 

of anchor nodes that are positioned within a simulated 

area that is 100 M2. In Fig. 2 a mobile target with a 

wireless sensor node attached is shown, and a base 

station outside the simulation area is not visible in Fig. 

2. The mobile target, which serves as a receiver, 

receives the RF signals broadcast by the anchor nodes 

at each time step (i). The RSSI data acquired from 

each anchor node are transmitted to a base station 

outside the simulation area at the end of each time 

step. The laptop that complies with the following 

specifications is connected to the base station using 

8GB RAM, Core i7, and 2.3 GHz. 

A feed-forward neural network with the 

Levenberg-Marquardt (LM) algorithm is 

implemented using the MATLAB software. The 

estimated x and y coordinates are the neural 

network's outputs. The neural network's inputs are the 

RSSI measurements, designated as RSSI1, RSSI2, 

RSSI3, RSSI4, RSSI5, and RSSI6. The UKF 

approaches are used to further improve the findings 

after the neural network's initial estimation. To 

increase the precision of the localization estimation, 

the neural network's training and testing processes 

take into account and optimize every parameter, 

including inputs, A1, A2, LR, weights, and output. 

To get the best localization outcomes for the target, 

the ANN is trained and evaluated using the data that 

is available. 

To enhance the overall performance of the ANN, 

the NPO algorithm optimizes the number of neurons 

in each hidden layer and the learning rate. In turn, the 

ANN seeks to reduce the localization process error. 

The fitness functions produced when the NPO 

algorithm is run with the following swarm sizes (No. 

of Clans x No. of Families): 20 (5 x 4), 40 (5 x 8), and 

60 (5 x 12) are displayed in Fig. 1. These fitness 

functions show how well the NPO algorithm 

performs while improving the ANN's parameters, 

which in turn influences the system's localization 

accuracy. The best performance of artificial neural 

networks was obtained when the swarm size was 40. 

Where the number of neurons was 8 and 12 in the first 

and second hidden layers, respectively, and the 

learning rate was 0.2291. In this study, we have opted 

to utilize a target motion model with constant velocity. 

The following equations describe how the target 

moves: 

 

𝑥𝑖 = 𝑥𝑖−1 + 𝑣𝑥𝑖 𝑑𝑖               (12) 

 

𝑦𝑖 = 𝑦𝑖−1 + 𝑣𝑦𝑖  𝑑𝑖                (13) 

 

where 𝑥𝑖and 𝑦𝑖  pecify the position.  𝑣𝑥𝑖and 𝑣𝑦𝑖   

the speed in  x and  y directions respectively at i time 

instance, and the time elapsed between two 

subsequent time instants is denoted by the 

discretization time step (𝑑𝑖). 
Throughout the study, these equations are used 

to explain the target's movement pattern. The 

motion representation is made simpler by the 

constant velocity model, which also allows us to 

concentrate on particular elements of the 

localization and tracking process. Consequently, as 

indicated in Table 2, the parameters of a hybrid 

NPO+ANN and LNSM can be obtained. The offline 

and online localization phases are the two phases in 

which the study is carried out, as previously 

mentioned. Run a hybrid NPO+ANN to ascertain 

the optimal value before moving on to the analysis 

step of online localization to ascertain the wireless 

scenario. 

 
Table 2. The parameters of a hybrid NPO+ANN and the 

LNSM 

Symbol Parameter Value 

X0 Initial Target State at t-0 [10 10] 

𝑑𝑡 Discretization time step 1s 

F Frequency of operation 2.4 GHz 

 Path Loss Exponent 3.4 

X  Normal Random Variable ~N (3, 1) 

LR Learning rate 0.2291 

 Number of inputs 6 

 Number of outputs 2 

 Number of hidden layers 
[8 12] for 

A1&A2 
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The effectiveness of the Localization. LNSM and 

the suggested approach are evaluated statistically 

using metrics like Root Mean Square Error (RMSE) 

and Average Localization Error (ALE) [24]. The 

findings show that, particularly in indoor settings, the 

LNSM approach does not satisfy the accuracy 

requirements. Consequently, the research offers the 

Hybrid NPO-ANN algorithm as a substitute strategy 

to improve the accuracy of localization and tracking. 

 

𝐴𝐿𝐸 =
1

𝑡
∑

(𝑥�̂�−𝑥𝑖)+(𝑦�̂�−𝑦𝑖)

2
𝑡
𝑖=1               (14) 

 

The online localization phase is processed within 

the identical network parameters as the training phase, 

using the best value (A1, A2, and LR) ascertained 

from the training process. Fig. 2 portrays the target 

paths deduced by both traditional RSSI and NPO-

ANN methodologies. Red squares identify the target 

position, While Black circles designate anchor nodes. 

The black, and blue plus signs respectively, signify 

the estimated positions derived from RSSI, and  

NPO+ANN at a given time instance t, and the green 

triangle the estimated positions by NPO+ANN+UKF. 

The simulation data demonstrate that the 

NPO+ANN+UKF-derived approach holds an 

advantage over RSSI in matters of localization and 

tracking efficiency. 

In MATLAB, RSSI values are generated through 

simulation using the log-normal shadow fading 

model. It's worth noting that the parameter 

represented as the normal random variable Xσ in Eq. 

(1) introduces variability, leading to fluctuations in 

the mean localization error values for the algorithms 

across different runs. The mean localization errors are 

average values of 20 simulation trials for traditional 

RSSI, NPO+ANN, and NPO+ANN+UKF are 6.5748, 

1.0270, and 0.1227, respectively. demonstrating that 

the NPO+ANN+UKF framework can solve real-time 

target tracking issues in WSN utilizing RSSI. In 

comparison, the NPO+ANN+UKF provides a 

remarkable improvement of 98.2%, and 88% over the 

traditional RSSI, and NPO+ANN, respectively. Fig. 

3, Fig. 4, and Fig. 5 depict the contrast in localization 

errors for the x estimate, y estimate, and both x and y 

estimates across all the algorithms mentioned earlier, 

respectively. 

 
Table 3. Error Analysis of all the Algorithms. 

Algorithm 

Avg. 

Localization 

Error (M) 

Avg. RMSE in 

x-y 

Estimation(M) 

Traditional RSSI 5.2246 8.6939 

NPO+ANN 0.3694 0.7300 

NPO+ANN+UKF 0.1227 0.2444 

Figure. 3 Localization Errors in x estimates for 

Traditional RSSI, NPO+ANN, and NPO+ANN+UKF 

 

 

 
Figure. 4 Localization Errors in y estimates for 

Traditional RSSI, NPO+ANN, and NPO+ANN+UKF 

 

 

 
Figure. 5 Localization Errors in x-y estimates for 

Traditional RSSI, NPO+ANN, and NPO+ANN+UKF 
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Figure.  6 The regression coefficient for x and y 

 

 

Table 4. Summary error analysis of the hybrid NPO+ANN+UKF algorithms with previous works 

Ref 

Location 

technology 

algorithm 

ANN type or 

learning 

framework 

Metric 
Environ

ment 

Tested 

area (m) 

Average 

localizatio

n error 

RMSE 

[1] Simulation GRNN+UKF RSSI Indoor 100x100 0.38 0.49 

[14] ZigBee 

LM 

BRANN 

BP 

RSSI Indoor 4x6 

0.22 

0.35 

0.33 

 

/ 

[15] Simulation TCGRNN RSSI Indoor 100x100 3.39 4.91 

[18] APs 
GRNN 

FFBP 
RSSI Indoor 37×32 

0.48 

0.97 
/ 

[12] APs RNN RSSI Indoor 54x32 1 / 

[11] APs KNN RSSI Indoor 69x45 < 2m / 

[19] Simulation PSO+GRNN RSSI Indoor 100x100 0.88 1.63 

(Propos

ed 

Method) 

Simulation 
NPO+ANN+UK

F 
RSSI Indoor 100x100 0.12 0.24 

 

 

The algorithms' computed equivalent RMSE 

values differ (See Table 3). It is clear from the 

simulation studies that the NPO+ANN+ UKF 

strategy has the lowest ALE and RMSE overall 

tracking accuracy when compared to the other 

approaches. 

As shown in Fig. 6 study of regression 

coefficients for predicting x and y coordinates, the 

regression coefficient (R) of determination can be a 

useful indicator of how effectively the hybrid 

NPO+ANN+UKF algorithm predicts the real 

position. The estimated and actual locations have a 

high degree of agreement when the regression 

coefficient (R) value is 1. The hybrid 

NPO+ANN+UKF method for localization in wireless 

sensor networks (WSNs) performs better than the 

algorithms used in earlier studies, as shown in Table 

4. 

All these research as indicated in Table 4 trained 

and tested the gathered RSSI data for localization 

using ANN algorithms. Because RSSI is inexpensive, 

smooth implementation, and requires no additional 

hardware, it has been employed in indoor 

environment research in different area sizes. The 

neural network uses the RSSI performance metric as 

its input, and its target node's position within the 

network as its output. For comparison, the ALE or 

RMSE are considered. Our suggested hybrid 

NPO+ANN+UKF approach, with average errors of 
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0.1227 m and 0.2444 m for RMSE, performs better 

than the algorithms of these prior studies. 

5. Conclusion 

The NPO and ANN-based technique is described 

in this work as a means of enhancing real-time target 

tracking performance. To choose the ideal number of 

neurons in the two hidden layers and to attain the 

ideal learning rate for ANN, the NPO and ANN 

algorithms were combined. calculating the initial 

location of a single target traveling across a wireless 

sensor network (WSN) in a two-dimensional area. 

Then, these initial estimations are improved and 

adjusted using the Unscented Kalman Filter to 

improve the precision of target localization. RMSE 

and average localization error are used to evaluate the 

overall tracking performance. The outcomes of the 

simulation trials showed greater tracking accuracy 

despite rapid changes in target velocity and 

unpredictable measurement noise. The simulation 

findings demonstrate that, in terms of tracking 

performance, the NPO+ANN+UKF-based strategy 

beats all others. The simulation outcome validates the 

NPO+ANN+UK architecture's capability for solving 

the real-time target tracking issue in WSN utilizing 

RSSI. In comparison, the NPO+ANN+UKF provides 

a remarkable improvement of 98.2%, and 88% over 

the traditional RSSI, and NPO+ANN, respectively. 
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