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Abstract: Currently, the Cloud Computing (CC) and Internet of Things (IoT) have emerged as advanced 

technologies that enable new levels of connection and data processing. As the IoT ecosystem grows, it becomes 

more important to ensure the security and integrity of IoT devices and the data they create in cloud. The 

identification and prevention of intrusions in both cloud and IoT cloud systems has become a major challenge. In this 

research work, a new intrusion detection framework based on Extra Tree Regression Classifier and Grid Search 

Optimized Long ShortTerm Memory (ETR-GSO-LSTM) is used to identify and classify intrusions in IoT and Cloud 

environments. The input data is first gathered via the CIC-IDS-2018 and KDD-Dataset, which include a lot of 

information about network traffic and possible security issues. The data preprocessing tasks such as label encoding 

and data augmentation was performed to perform more amount of labelled data for analysis. Another crucial phase in 

the intrusion detection process is feature selection, and the ETR Classifier has shown to be a significant tool in 

determining the most relevant characteristics from the dataset. These chosen features assist in reducing 

dimensionality and improving the accuracy of the intrusion detection model. Finally, GSO-LSTM appears as a 

potential strategy for classification, which employs the capacity of LSTM networks to examine sequential data and 

find abnormalities in real time. The proposed ETR-GSO-LSTM achieves detection or classification accuracy of 

99.95% and 99.9% on the CIC-IDS 2018 and NSL-KDD datasets, respectively. From the result analysis, it clearly 

shows that the proposed ETR-GSO-LSTM obtains better performance in all the metrices when compared to 

Enhanced Long-Short Term Memory with Recurrent Neural Network (ELSTM-RNN) and Unsupervised Technique 

Ensemble based IDS (UTENIDS). 
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1. Introduction  

Internet of Things (IoT) and Cloud Computing 

have emerged as key technologies in today's modern 

world [1]. IoT is a wide network of interconnected 

devices, sensors, and everyday objects, all equipped 

with embedded technology that allows them to 

communicate and share data over the internet. These 

devices can range from smart wearable fitness 

trackers [2] to industrial sensors and autonomous 

vehicles. Concurrently, Cloud computing provides a 

scalable and flexible platform for storing and 

processing the immense amount of data generated 

by IoT devices. Together, they enable a wide array 

of applications across industries, such as smart 

healthcare, smart agriculture, manufacturing, 

transportation, etc. Moreover, these networks have 

the potential to drive efficiency, improve decision-

making [3], and enhance the overall quality of life. 

However, this technological evolution also brings 

forth critical concerns such as security and privacy 

[4]. Nowadays, a vast amount of confidential 

information is being transmitted and stored in the 

cloud. Security issues and cyber threats such as data 

breaches, virus attacks, and unauthorized access 

represent a major hazard to both individuals and 

companies. Common attack kinds include 
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Distributed Denial of Service (DDoS) attacks [5], 

[6], where a network is overwhelmed with traffic to 

disrupt services, and data breaches through 

unauthorized access. Malware and ransomware 

attacks can compromise the integrity of IoT devices 

or Cloud servers.  

Moreover, the sheer scale and diversity of IoT 

devices make them susceptible to botnet formation, 

where compromised devices are controlled by 

malicious actors for coordinated attacks. Intrusion 

Detection Systems (IDS) perform significantly in 

safeguarding IoT and Cloud networks [7]. These 

systems monitor network traffic, identify suspicious 

activities, and trigger alerts or countermeasures 

when potential threats are detected. Traditional IDS 

rely heavily on rule-based systems and signature-

based detection, which may not be effective against 

novel or sophisticated attacks. While Machine 

Learning (ML) algorithms have been employed in 

IDS [8], they often struggle to keep pace with the 

evolving tactics of cyberattacks. On the other hand, 

Deep Learning (DL) excels in identifying intricate 

patterns within vast datasets, making it better suited 

for IDS. However, the effective implementation of 

DL, particularly Long Short-Term Memory (LSTM) 

networks [9], comes with its challenges. LSTM 

networks are sensitive to their hyperparameters, 

includes units per layer, and learning rates. Without 

optimization, LSTM-based IDS may produce high 

false-positive rates or miss critical threats. Without 

proper hyperparameter optimization, LSTM-based 

IDS struggled to achieve optimal detection accuracy. 

So, in this paper, a Grid Search Optimization 

algorithm is used for LSTM to fine tune its 

hyperparameters to obtain improved intrusion 

detection accuracy. The main contributions are as 

follows:  

● In this research, two open-source standard 

datasets such as CIC-IDS 2018 and NSL-

KDD datasets are employed, and the features 

from those datasets are used as input for 

intrusion detection. 

● Pre-processing processes such as label 

encoding and data augmentation are 

performed to organize the input features for 

the selection of optimal features. 

● Moreover, an Extra Tree regression classifier 

is proposed in this research for selecting the 

optimal features for effective intrusion 

detection or classification.  

● Finally, using Accuracy, Precision, Recall 

and F1 measure, the developed model 

performance is validated. 

The remaining of the paper is structured as 

follows: Section 2 presents the previous research 

done based on the development of IDS. The 

proposed methodology is briefly explained in 

section 3 whereas the experimental results are 

detailed in section 4. At last, the research conclusion 

is presented in section 5.  

2. Related works  

To improve the accuracy of a multiclass 

classification model, Lin [10] developed an IDS that 

integrated a Random Forest (RF) with an SMOTE 

resampling approach. The developed model was 

validated using UNSW-NB15 and CSE-CIC-IDS 

2018 datasets. SMOTE was used to rebalance the 

original data by increasing the minority class 

samples, which resulted in fewer classification 

mistakes for minority classes during training. This 

method not only balanced the data, but also 

decreased the feature set, which improved intrusion 

detection performance. While SMOTE with RF has 

been proposed for unbalanced data in intrusion 

detection, practical issues such as possible decreases 

in classification performance owing to underfitting 

on imbalanced data due to the lowering of the 

majority class samples. 

Kanna and Santhi [11] proposed an effective 

hybrid IDS called ABC-BWO-CONV-LSTM. The 

two-stage strategy was used, initially, feature 

selection was done using the Artificial Bee Colony 

(ABC) method. Then, for analyzing system traffic 

data, a hybrid DL classifier named BWO-CONV-

LSTM, was constructed inside a MapReduce model. 

BWO modified the hyperparameters of this 

Convolutional and LSTM network to obtain an 

optimum design. Various datasets such as NSLKDD, 

ISCX-IDS, UNSW-NB15, and CSE-CIC-IDS2018 

were used for performance analysis of the suggested 

model. The findings showed that this model 

outperformed others, with much shorter detection 

and training time, due to the faster training process 

in CNN. 

Wang and Ghaleb [12] proposed an attention-

based CNN intrusion detection model. To boost 

efficiency, image creation methods were included in 

the model's processing loop. To improve feature 

usage, feature fields were structured based on 

significance analysis, and a more complete attention 

mechanism was introduced into the CNN to build 

the detection model. On a subset of the CSE-CIC-

IDS2018 dataset, several comparison tests were 

carried out. The approach exhibited efficient sample 

data computing while retaining excellent 

classification accuracy in experiments. It should be 

noted that many susceptible target items, such as 

critical infrastructure, were often limited to storage 
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and computational power restrictions, more 

computational time, emphasizing the significance of 

their protection. 

Donkol [13] proposed a novel IDS model that 

incorporated Likely Point Particle Swarm 

Optimization (LPPSO) and an improved LSTM for 

feature selection and classification. When the NSL-

KDD dataset was reviewed during validation and 

testing, this technique efficiently differentiated 

attack data from normal data and demonstrated 

higher performance. Notably, the suggested 

approach produced a considerably lower False 

Alarm Rate (FAR) than LPBoost with a high 

detection rate. Overall, the ELSTM-RNN method 

improved efficiency and accuracy while efficiently 

resolving the gradient vanishing problem. 

Furthermore, thorough preparation of the NSL-KDD 

was methodically conducted through normalization 

as well as encoding. 

Wang [14] introduced UTEN-IDS, a new IDS 

that relied on unsupervised approaches. UTEN-IDS 

was created to identify anomalies using an ensemble 

of autoencoders and an Isolation Forest approach, 

including preprocessing, feature grouping, and 

anomaly detection steps. To validate the efficacy of 

the suggested technique, two benchmark datasets 

such as CES-CIC-IDS 2018 as well as MQTT-IOT-

IDS2020 datasets were utilised. The anomaly 

detection module utilizes a two-stage ensemble 

model, with autoencoders used in the first level for 

feature subset reconstruction and RMSE 

computation, and Isolation Forest used in the second 

level for classification based on RMSEs. However, 

particular attack types, such as DoS assaults (Hulk 

and SlowHTTPTest) and DDoS attacks (LOIC-

UDP), were shown to be difficult to identify using 

the suggested technique. 

A hybrid strategy was established by Mariama 

[15] to address the imbalance issue during Intrusion 

detecyion. This hybrid approach combines an 

undersampling and oversampling techniques named 

Tomek link with Synthetic Minority Over-Sampling 

(SMOTE) to minimize noise. In order to produce a 

more effective intrusion detection system, this 

research also employs two DL models, namely 

LSTM and CNN. Moreover, NSL-KDD, 

CICIDS2017, and CICIDS2018 benchmark datasets 

were used to verify the effectiveness of the proposed 

method. Though the SMOTE-SGM with CNN 

produced the higher attack detection rate, there is 

still room for improvement in terms of False Alarm 

Rate (FAR). 

Yin [16] proposed a Temporal Convolutional 

Network (TCN) paired with a Transformer-based 

model for long-term time series prediction in 

network security. As input, multidimensional 

situational data was utilized, and TCN-Transformer 

units were used to process network security 

information fusion and prediction. To measure a risk 

level, the baseline datasets: UNWS-NB15 and CSE-

CICIDS2018 were preprocessed, which decreases 

the subjective dependency of the model data 

processing outputs. Ablation research was carried 

out to test the influence of data source selection on 

prediction accuracy, and it was discovered that the 

DTW algorithm improved accuracy. However, 

model adjustment with the genuine curve might be 

improved, emphasizing the relevance of excellent 

input data for prediction accuracy. 

The problems identified from the existing 

studies are listed as follows, 

• It should be noted that many susceptible target 

items, such as critical infrastructure, were often 

limited to storage and computational 

complexities, emphasizing the significance of 

their protection. 

• However, particular attack types, such as DoS 

assaults (Hulk and SlowHTTPTest) and DDoS 

attacks (LOIC-UDP), were shown to be difficult 

to identify using the suggested technique. Thus 

reduces the model’s detection performance 

• However, the developed model adjustment with 

the genuine curve might be improved, 

emphasizing the relevance of excellent input 

data for prediction accuracy. 

• While SMOTE with RF has been proposed for 

unbalanced data in intrusion detection, practical 

issues such as possible decreases in 

classification performance owing to underfitting 

on imbalanced data. Thus limits the capability in 

the model’s detection accuracy. 

To address the above mentioned problems, a 

new ETR-GSO-LSTM is proposed to identify and 

classify intrusions in IoT and Cloud environments. 

The ETR method is used for feature selection 

process which selects a random threshold point 

instead of choosing the ideal threshold for splitting. 

This randomization is very useful when dealing with 

situations that have a wide range of numerical 

alternatives that might fluctuate dramatically. As a 

consequence, it often improves accuracy by 

providing a smoothing effect and lowering the 

computational complexity involved with 

determining the optimal features. After that, the 

LSTM hyperparameters are optimized using the 

GSO to enhance intrusion detection accuracy 

because of their crucial role in defining the 

network's performance. Intrusion detection often 

requires complicated sequential data patterns, which 
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LSTM networks excel at collecting. GSO algorithm 

iteratively explores alternative combinations of 

these hyperparameters, thoroughly examining their 

influence on model performance. This method 

guarantees that the LSTM network is fine-tuned to 

the unique properties of the intrusion detection 

dataset, resulting in higher detection accuracy. 

3. Proposed methodology  

In today's environment, the development of IDS 

is critical in protecting IoT and cloud systems from 

different kinds of threats, including grey hole attacks, 

wormhole attacks, etc. This IDS mainly functions at 

the network layer of IoT systems under difficult 

settings. Despite these issues, security remains a 

major concern in IoT contexts, prompting the 

development of a unique optimization-based IDS, as 

described in this paper. This study's framework 

includes four key phases: data acquisition using 

CIC-IDS 2018 and NSL-KDD datasets, data 

preprocessing using Label Encoding and Data 

Augmentation, feature selection using the Extra 

Tree Regression Classifier, and intrusion attack 

detection using the Grid Search Optimized LSTM 

model.  

 

 
Figure. 1 Diagrammatic representation of the proposed 

method 

The diagrammatic representation of the 

proposed methodology is shown in Fig. 1. 

3.1 Description of the datasets 

The CIC IDS 2018 and NSL KDD datasets 

comprise events of intrusion in a Cloud Internet of 

Things (IoT) network which are briefly discussed 

below. These intrusions apply to unauthorized and 

possibly malicious actions that represent a risk to the 

security and integrity of IoT devices and data in a 

cloud-based environment. The consequences of such 

intrusions may be significant, involving data 

breaches, service interruptions, and violations of 

privacy. 

3.1.1. CIC-IDS 2018 

The University of New Brunswick developed the 

CIC-IDS2018 dataset to train prediction models in 

the area of network intrusion detection. This dataset 

contains around 16,000,000 occurrences and is the 

most recent intrusion detection dataset available in 

the field of big data that is openly accessible to 

researchers. It provides in-depth coverage of many 

attack kinds and Web assaults. This multi-class 

dataset has a class imbalance, with attack (anomaly) 

traffic accounting for around 17% of the cases. The 

attacking infrastructure contains 50 computers, 

while the victim company is divided into five 

divisions, totaling 420 servers. The dataset contains 

both collected network traffic and system logs from 

every machine, as well as 80 features derived from 

the captured traffic utilising CICFlowMeter-V3 [17]. 

CIC-IDS2018 is available at 

https://registry.opendata.aws/cse-cic-ids2018. 

3.1.2. NSL-KDD-dataset 

The NSL-KDD was created to overcome the 

inherent issues with the KDD'99 dataset [18]. 

Notably, it provides a huge amount of records in 

training as well as test sets, avoiding the need to 

choose a small sample at random for trials. This 

benefit guarantees that the outcomes of multiple 

research initiatives are consistent and readily 

comparative. Intrusion assaults are classified into 

four types in the NSL-KDD: Probe, Remote to User 

(R2L) attacks, Denial of Service (DoS) attacks, and 

User to Root (U2R) assaults are all types of attacks. 

This dataset is accessible at 

https://www.unb.ca/cic/datasets/nsl.html. The 

features from the obtained datasets are given as 

input to the following process named data pre-

processing which is briefly explained as follows. 

https://registry.opendata.aws/cse-cic-ids2018
https://www.unb.ca/cic/datasets/nsl.html
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3.2 Data preprocessing 

An important stage in the data science process 

for dealing with difficulties such as missing or null 

values is data preprocessing. The dataset is now 

completely free of such concerns after eliminating 

the column with missing values. This assures that 

the data has been cleansed and is ready for analysis, 

increasing its dependability and usefulness. Missing 

values must be removed to avoid biases or mistakes 

in later analyses, allowing the data scientist to work 

with a more accurate dataset. There are two kinds of 

processes included in data pre-processing which are 

briefly explained as follows. 

3.2.1. Label encoding 

To transform the string labels into numerical 

representations for a neural network, do the 

following: Make a dictionary of label encodings that 

map each unique string label to a distinct integer 

value. Using this encoding dictionary, replace the 

original string labels in the original dataset with 

their numerical equivalents as shown in Table 1. 

This translation guarantees that the neural network 

can deal with numerical data since training and 

prediction need numerical input. To avoid 

misunderstanding, it is critical to ensure consistency 

in this encoding over the whole collection. This is 

known as label encoding, and it is commonly 

accomplished using Python modules such as scikit-

learn's LabelEncoder. When labels are converted 

into numerical values, neural networks may learn 

and predict more effectively utilizing these encoded 

representations, improving their capacity to process 

and analyze input. 

3.2.2. Data augmentation 

Data augmentation is essential for reducing bias 

and improving fairness in machine learning datasets. 

It offers a more equal representation of distinct 

groups or categories by producing varied copies of 

existing data, minimizing inherent biases.  

 
Table 1. Representation of Label Encoding 

Dataset Attack Label 

NSL-KDD Normal 0 

Dos 1 

Probe 2 

U2R 3 

R2L 4 

CIC-CID-2018 Normal 0 

Attack 1 

This method increases equality and 

dependability in machine learning models by 

avoiding over-representation of certain groups and 

ensuring a more complete knowledge of the 

underlying patterns in the data. Data augmentation 

methods such as image rotation, translation, and text 

synthesis help greatly in the creation of more 

inclusive and representative datasets, resulting in 

fairer and more resilient IDS systems. After 

augmenting the encoded features, further processes 

such as feature selection were conducted to choose 

optimal features for precise intrusion classification. 

3.3 Feature selection 

The datasets that were pre-processed in the 

previous step are used as input for the current step, 

which is known as feature selection. The major goal 

of feature selection is discovering the optimal 

features for increasing classification accuracy. Here, 

the Wrapper Feature Selection method (WFS) is 

used to compute feature significance scores using 

the Extra-Tree Regression (ETR) approach [19]. It is 

a set of numerous Decision Trees (DTs), each of 

which is built using random samples and a portion 

of the dataset's characteristics. As a result, no one 

tree has access to the full dataset. The relevance of 

each feature in each decision tree is determined by 

its contribution to Gini impurity at each node. 

During the tree-building process, features are given 

significance scores, with higher impurity values 

indicating more feature relevance and lower values 

indicating lesser importance. Evaluating the value of 

each feature independently in high-dimensional 

datasets may be difficult and results in high 

computation time. The Extra-Tree technique, on the 

other hand, successfully addresses this difficulty by 

evaluating each feature's relevance by taking into 

account the complete dataset, class labels, and the 

calculated importance scores of all features in the 

dataset. Features with higher significance ratings are 

more likely to be chosen, whereas those with lower 

importance values are less likely to be included in 

the final feature subset. The authors' wrapper 

strategy is a robust approach that considerably 

improves classification accuracy. The Extra-Tree 

classifier is used in this approach to evaluate every 

feature and identify the final subset of K features. 

Notably, ETR provides feature significance values 

to each feature, often ranging from 0 to 1. The 

method for computing these feature significance 

ratings is as follows: The importance of a node in 

each DT is computed utilizing the Gini Importance 

(GI) metric, and the tree structure is binary, with 
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only two child nodes at each split and it is denoted 

in Eq. (1). 

 

nij = wjCj −wLeft(j)CLeft(j) −  

wRight⁡(j)CRight⁡(j)     (1) 

 

Cj - node j’s polluting influence prediction; 

nij - node j’s significance; 

Right⁡(j) - child node’s right division on node j.   

 wj - weighted samples count reached node j; 

Left⁡(j) - child node’s left division on node j; 

Using Eq. (2), a DT computes the significance of 

each feature. 

 

fii =
∑ nijJ:node⁡j⁡splits⁡on⁡feature⁡i  

∑ nikk∈all⁡node  
                (2) 

 

fii - significance of feature i; 
nij - significance of node j.  

By splitting every feature's significance value by 

the total collected feature significance values, 

standardization within [0-1] is accomplished and 

represented in Eq. (3). 

 

norm⁡fi⁡i =
fii

∑ fijj∈all⁡features  
                 (3) 

 

When the total value of three trees equals one, 

except when all three trees are single-node 

structures with just one root node, the feature 

significance scores across all features are equally set 

to zero. In such cases, the mean value of the feature 

significance scores may be determined individually 

for each feature and it is denoted in Eq. (4). 

 

Efii =
 ∑ fijj∈all⁡features⁡norm

T
    (4) 

 

Efii - mean of every feature j computed from all 

trees for ETR;  

norm⁡fij - standardized feature importance for J 

feature. 

T  - total trees count. The final feature 

significance in ETR is normalized by splitting the 

significance of every feature by the sum of all 

feature significances in ETR and it is denoted in 

Eq. (5) 

 

ETfii =
Efii

∑ Efikk∈all⁡features⁡  
                     (5) 

 

Then, the process begins with feature reduction 

applied to the input features. This reduction is 

guided by the feature importance scores obtained in 

the first part of stage 2. These feature importance 

scores serve as inputs to the subsequent phase. The 

incremental threshold values are applied 

systematically to select specific feature subsets. 

Following this feature reduction step, the reduced 

set of features is subjected to the GSO-LSTM to 

evaluate intrusion detection accuracy. Section 3.3.1 

provides a detailed explanation for an in-depth 

understanding of the Extra-Tree algorithm. 

3.3.1. Extra-tree regression classifier 

ETR is an ensemble classifier builds a larger 

kind of binary DTs. Each tree is constructed 

independently of the others. ETR contains the 

following phases after receiving trees:  

1. Selects 𝐾 input dimensions at random. It selects 

an arbitrary binary splitting value 𝑐  for each 

designated dimension d, denoting data points n 

∈ I with xn,d, < c by L(left) and those with xn,d, 

≥ c by R(right). The primary difference 

between RF and this progression is that RF uses 

optimal splitting criterion for value 𝑐. 

2. It computes the score for every dimension d 

and its sd is denoted in Eq. (6): 

 

sd = |L|fscore⁡(yL) + |R|fscore⁡(yR)        (6) 

 
|L|(|R|) - count of data points given to the L(R) 

division,  

yL(yR) - y values in the L (R) division. In binary 

classification, using “Gini” index, F-score is 

computed and denoted in Eq. (7): 

 

fscore(y) = 1 − (p−1
2 + p1

2)            (7) 

 

For regression, fscore⁡ is negative of variance and 

is mathematically denoted in Eq. (8): 

 

fscore⁡(y) = −
1

n
∑ (yi − ⁡mean⁡(y))2n
i=1     (8) 

 

n - size of y and the mean (y) is mathematically 

denoted in (9), 

 

mean⁡(y) =
1

n
∑ ⋅ (yi)
n
i=1      (9) 

 

It selects the “sd” and saves its split value in a 

node. Then, it performs three steps recursively on 

the two resultant subtrees: Left and Right. This 

procedure is repeated until the minimal node size 

(Nleaf ) is attained. It stores the highest standard 

value of classification outputs and the average value 

of regression tasks at a leaf node. This approach is 

comparable to the RF algorithm; however, it has a  
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Figure. 2 Illustration of LSTM  

 

few major differences. It selects a random threshold 

point instead of choosing the ideal threshold for 

splitting. This randomization is very useful when 

dealing with situations that have a wide range of 

numerical alternatives that might fluctuate 

dramatically. As a consequence, it often improves 

accuracy by providing a smoothing effect and 

lowering the computational complexity involved 

with determining the best cut points in existing DTs 

and RFs. Using the GSO-LSTM, intrusion 

classification is performed based on selected optimal 

features, which is explained briefly as follows. 

3.4 Intrusion detection or classification 

3.4.1. LSTM 

Long Short-Term Memory (LSTM) is a kind of 

RNN [20] that has emerged as a powerful tool in the 

field of deep learning. Its unique architecture allows 

it to capture and remember long-range dependencies 

in sequential data, making it particularly well-suited 

for capturing intricate patterns in network traffic. In 

the context of intrusion detection, LSTM models can 

effectively analyze and classify network activities 

by considering the historical context of data packets 

and their temporal dependencies. Unlike traditional 

methods that rely on static rules or signatures, 

LSTM-based intrusion detection systems adapt 

dynamically to evolving attack techniques.  

By learning from historical data, LSTM models 

can identify subtle anomalies and deviations from 

normal network behavior, thus enhancing the 

system's ability to detect both known and novel 

attacks. The LSTM architecture is depicted in Fig. 2. 

Here, 

ht – output of LSTM, 

ct - memory cell value, 

ht−1 - output of previous moment LSTM, 

xt – input data of LSTM at time t.  

The unit computation procedure of LSTM is 

explained in the below points. 

In Eq. (10), the patient's memory cell ct̃  is 

calculated,  

bc - bias,  

Wc - weight matrix. 

 

ct̃ = tanh⁡(Wc. [ht−1, xt] + bc)             (10) 

 

In Eq. (11), the input gate it is computed; current 

input data update of memory cell state value is 

handled by the it, 
bi - bias,  

Wi - weight matrix,  

σ - sigmoid function 

 

it = σ(Wi. [ht−1, xt] + bi)              (11) 

 

In Eq. (12), the value of forget gate ft  is 

determined, ft  controls a memory cell state value 

based on prior data updates,  

bf - bias,  

Wf - weight matrix 

 

ft = σ(Wi. [ht−1, xt] + bf)              (12) 

 

The current moment memory cell ct is computed, 

ct−1  is represented as the final unit state value of 

LSTM, as shown in Eq. (13). 

 

ct = ft ∗ ct−1 + it ∗ ct̃              (13) 

 

Here, a dot product is denoted as ‘*’. Input as 

well as forget gate handles memory cell update 

depends on patient state value as well as final cell. 

In Eq. (14), Output gate ot  value is computed, 

here the memory cell state output value is handled 

by the ot.  
b0 - bias,  

W0- weight matrix, 

 

ot = σ(W0. [ht−1, xt] + b0)              (14) 

 

The unit output of LSTM ht  is computed, as 

shown in Eq. (15). 

 

ht = ot ∗ tanh⁡(ct)               (15) 

 

Depending on memory cells as well as control 

gates, the LSTM [21] is simple to update, read, and 

store long-term information. The LSTM’s internal 

parameter-sharing tool operates the output  

dimensions depending on the weight matrix 

dimension setups.  



Received:  April 20, 2024.     Revised: May 15, 2024.                                                                                                      511 

International Journal of Intelligent Engineering and Systems, Vol.17, No.4, 2024           DOI: 10.22266/ijies2024.0831.39 

 

Table 2. Hyper-parameters of LSTM 

Method Grid Search LSTM (GSO-

LSTM) 

Batch size 32 

Optimizer Adam 

Initial Learning rate 0.01 

Momentum 0.2 

Decay rate 0.001 

n_job -1 

CV 2 

 

 

DL finds labels depend on phrases that weren’t 

identified as well and the class probabilities are 

identified from the data. For two co-learning models, 

every data is recursively trained. In this research, the 

LSTM hyperparameters are optimized using the 

GSO to enhance intrusion detection accuracy 

because of their crucial role in defining the 

network's performance. Intrusion detection [22] 

often requires complicated sequential data patterns, 

which LSTM networks excel at collecting. The 

selection of hyperparameters as shown in Table 2, 

such as the number of LSTM batch size, learning 

rates, and decay rates has a substantial influence on 

model performance. GSO algorithm iteratively 

explores alternative combinations of these 

hyperparameters [23], thoroughly examining their 

influence on model performance and its 

functionality is explained in the following section. 

This method guarantees that the LSTM network is 

fine-tuned to the unique properties of the intrusion 

detection dataset, resulting in higher detection 

accuracy. 

3.4.2. Grid search hyper parameter optimization 

based LSTM 

The selection of suitable hyperparameters [24] 

for an LSTM is critical in growing its performance, 

involving the use of efficient search algorithms. So, 

the GSO technique is being offered as a useful tool 

in this area [25].  

Let xv  and θ  be the validation set as well as 

hyperparameters of the model Mθ , and define L 

(Mθ  , xv) to be the loss function of Mθ . The best 

solution θ̂ of θ is calculated using Eq. (16):  

 

θ̂ =arg arg⁡min⁡θL(Mθ, xv)                     (16) 

 

Here L⁡(Mθ⁡, xv)⁡is the loss function.  

Set θ  = {θ⁡1, θ⁡2, … θ⁡m}, θ⁡i ∈ ⁡ Si⁡, i⁡ ∈
⁡{1, 2, . . . , m},  

m⁡- count of hyperparameters, 

Si  - parameter space, and set θ⁡2, θ⁡3…⁡θ⁡m  the 

initial value θ⁡2
′ , θ⁡3

′ …⁡θ⁡m
′ . The GSO is detailed 

below:  

Step 1: Input data {x(t)}t=1
M  number. Divide the 

data based on 80%:10%:10% of training set, 

validation set and test set. Get three sets of data. 

 

Xtrain = {x(t)}t=1
0.8M , Xvalidation =

{x(t)}t=0.8M+1
0.9M  , and  Xtest = {x(t)}t=0.9M+1

M  .  

 

Step 2: set i = 1.  

Step 3: Replace all candidate θ⁡i  in Si⁡ in turn 

with the corresponding initial values, use Xtrain to 

train Mθ find the best solution θ̂  of θ  when θ̂i 
satisfies:  

θ̂i =arg arg⁡min⁡θiL(Mθ, Xvalidation⁡)  

Step 4: Set i⁡ = ⁡i⁡ + ⁡1, if i⁡ < ⁡M, go back to 

step 3 otherwise go to step 5.  

Step 5: θ = {θ⁡1, θ⁡2, … θ⁡m},⁡⁡, use Xtest to train 

Mθ. Using the loss function L⁡(Mθ⁡, xv), evaluate the 

model Mθ. 

4. Results and discussion  

In this paper, the effectiveness of the ETR-GSO-

LSTM model is evaluated utilizing a simulation 

implemented in Python 3.7 software. Furthermore, 

the efficacy of the created ETR-GSO-LSTM model 

is assessed using a set of assessment measures that 

include detection accuracy, F1-measure, recall, and 

precision. Detection accuracy serves as a 

straightforward assessment parameter in the context 

of IoT IDS, measuring the ratio of successfully 

anticipated observations to a total number of 

observations. Recall refers to the proportion of 

properly identified FP to the total number of TN, 

while precision refers to the proportion of correctly 

identified FP predictions to the total number of 

anticipated TF. In addition, the F1-measure is 

calculated as the mean of accuracy and recall. These 

assessment criteria are clearly stated in the Eqs. (17-

21).                                   

 

𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦⁡ =
𝑇𝑃+𝑇𝑁

𝑇𝑃+𝐹𝑃+𝑇𝑁+𝐹𝑁
               (17) 

 

𝑅𝑒𝑐𝑎𝑙𝑙 = 𝐷𝑒𝑡𝑒𝑐𝑡𝑖𝑜𝑛⁡𝑅𝑎𝑡𝑒 =
𝑇𝑃

𝑇𝑃⁡⁡+𝐹𝑁
            (18) 

 

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =
𝑇𝑃

𝑇𝑃+𝐹𝑃
                            (19) 

 

𝐹1 −𝑚𝑒𝑎𝑠𝑢𝑟𝑒 =
2×𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛×𝑅𝑒𝑐𝑎𝑙𝑙

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛+𝑅𝑒𝑐𝑎𝑙𝑙
             (20) 



Received:  April 20, 2024.     Revised: May 15, 2024.                                                                                                      512 

International Journal of Intelligent Engineering and Systems, Vol.17, No.4, 2024           DOI: 10.22266/ijies2024.0831.39 

 

Table 3. Performance Analysis of various feature selection methods using various performances metrics 

Methods Accuracy (%) Precision (%) Recall (%) F1-Measure (%) 

Actual Features 98.00 98.50 98.00 97.45 

Pearson Correlation 86.00 87.00 87.00 87.57 

ETR 99.95 99.95 99.95 99.95 

 

 
Figure. 3 Graphical depiction of results obtained from 

feature selection methods 

 

𝐹𝐴𝑅 =
𝐹𝑃

𝐹𝑃⁡⁡+𝑇𝑁
                           (21) 

 

Where, 𝑇𝑃, 𝑇𝑁, 𝐹𝑃,  and 𝐹𝑁  represent true 

positive values, true negative values, false positive 

values, and false negative values. 

4.1 Performance evaluation of feature selection 

methods 

The proposed feature selection method's (ETR) 

performance is evaluated using the aforementioned 

performance measures, and the results are shown in 

Table 3. This research includes evaluating 

performance using several feature selection 

strategies, such as Pearson Correlation, as well as a 

situation with no feature selection. Table 3 shows 

that the suggested ETR feature selection technique 

performed very well, with precision, recall, F1-

measure, and classification accuracy of 99.95%. The 

graphical illustration of the results obtained by all 

the methods is depicted in Fig. 3. 

4.2 Quantitative analysis of CIC-IDS 2018 

The performance of the ETR-GSO-LSTM model 

is assessed utilizing important performance 

indicators such as classification accuracy, F1-

measure, recall, and precision on the CIC-IDS 2018. 

The model's performance is compared to that of 

various other classification approaches, including 

LSTM and GSO-LSTM. Table 4 shows that the 

ETR-GSO-LSTM model outperforms previous 

intrusion classification approaches, resulting in 

higher performance values. Notably, Table 5 shows 

that ETR-GSO-LSTM outperforms in the CIC-IDS 

2018 database, with precision of 99.95%, recall of 

99.95%, F1-measure of 99.95%, and classification 

accuracy of 99.95%. The binary classification 

findings of the ETR-GSO-LSTM on NSL-KDD are 

shown in Fig. 4. 

4.3 Quantitative evaluation of the NSL-KDD 

database 

The research assesses the efficiency of the ETR-

GSO-LSTM model on the NSL-KDD utilizing 

important performance metrics. Table 4 compares 

the model's performance to that of many other 

classification algorithms, including SVM, Decision 

Tree, and RF. 

When analysing Table 5, it is clear that the ETR-

GSO-LSTM model excels in intrusion 

categorization. It delivers outstanding performance 

values. On the NSL-KDD, the ETR-GSO-LSTM 

model obtains a remarkable precision rate of 99.6%, 

recall rate of 99.6%, F1-measure of 99.6%, and 

classification accuracy of 99.6%, accurately 

discriminating between normal and attack classes. 

The binary classification findings of the ETR-GSO-

LSTM on NSL-KDD are shown in Fig. 5. 

Similarly, this research evaluates the efficiency 

of the ETR-GSO-LSTM model for multi-class 

classification on the NSL-KDD. Also compares the 

ETR-GSO-LSTM model's performance against 

those of several classification algorithms such as 

SVM, RF, and LSTM. On the NSL-KDD database, 

the ETR-GSO-LSTM model gets remarkable 

accuracy of 99.75%, 99.34%, 97.85%, and 99.76% 

as shown in Table 6. The model also has high 

precision values of 99.78%, 99.34%, 97.19%, and

 
Table 4. Results of Binary class classification of the proposed method on CIC-IDS 2018 database 

Approaches Performance measures (%) 

 Accuracy Precision Recall F1-Measure 

LSTM 97.67 96.53 97.9 96 

GSO-LSTM 98.00 98.50 98.00 97.45 

ETR-GSO-LSTM 99.95 99.95 99.95 99.95 
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Figure. 4 Graphical illustration of classification results 

obtained from different classification methods 
 

99.75%, as well as recall values of 99.66%, 99.30%, 

96.64%, and 97.74% and F1-measure values of 

99.72%, 99.29%, 96.69%, and 99.78% for DoS, 

Probe, R2L and U2R respectively. The multi-class 

classification findings of the ETR-GSO-LSTM 

model on the NSL-KDD are depicted in Fig. 6. 

4.4 Comparative analysis 

A comparison of the ETR-GSO-LSTM model 

with earlier studies is presented in Table 7 in terms 

of Classification Accuracy, Precision, Recall, F-

measure, Detection Rate, False Alarm Rate (FAR), 

and Receiver Operating Characteristic (ROC). The 

primary parameters are batch size, initial learning 

rate, momentum, decay rate which determines how 

much the previous update influences the current 

update, and the how much the impact is provided at 

the end of each batch. Therefore, in this research 

parameters including Batch size (32), Learning Rate 

[0.01], Momentum [0.2], and Decay rate [0.001] are 

optimized using GSO. The best hyperparameter 

values are then determined by employing accuracy 

as a fitness function and obtained values are 

tabulated in Table 7. 

 
Table 5. Results of Binary class classification of proposed method on NSL-KDD database 

Model Type Class Class Performance measures (%) 

Precision Recall F1 Measure 

SVM Normal 92.0 93.0 93.0 

Attack 91.0 91.0 91.0 

Decision Tree Normal 98.0 97.0 98.0 

Attack 95.0 96.0 95.0 

RF Normal 97.0 97.0 97.0 

Attack 99.0 98.0 99.0 

ETR-GSO-LSTM Normal 99.6 99.6 99.6 

Attack 99.6 99.6 99.6 

 

 

 
Figure. 5 Binary classification results obtained by various classification methods 

 

 

In [10] researchers combined RF ensemble 

intrusion classification with SMOTE sampling 

(RF+SMOTE+C4.5) to obtain 96.53% accuracy on 

the CIC-IDS 2018 database. On the CIC-IDS 2018 

and NSL-KDD, a combination of ABC-BWO-

CONV-LSTM [11] achieved an outstanding 

classification accuracy of 98.25% and 98.67%, 

respectively. On NSL-KDD, a combination of 

ELSTM and RNN for IoT intrusion detection 

showed an astounding 99% accuracy in [13]. 

In addition, a UTEN-IDS [14] model for 

intrusion attack detection in IoT contexts was 

established, with an accuracy of 95.19% on the CIC-

IDS 2018 database. Similarly, the SMOTETomek- 
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Table 6. Results of Multi-class classification of proposed method on NSL-KDD database 

Model Type Class Class Accuracy (%) Precision (%) Recall (%) F1 Measure (%) 

SVM DoS 91.61 97.44 82.88 89.56 

Probe 92.82 87.62 91.48 89.33 

R2L 83.37 89.31 64.09 67.11 

U2R 99.51 89.20 72.20 77.27 

RF DoS 99.63 99.46 99.67 99.57 

Probe 99.22 98.83 98.72 98.77 

R2L 97.55 96.79 96.24 96.51 

U2R 99.58 86.77 83.71 84.41 

LSTM  DoS 99.81 99.86 99.71 99.82 

Probe 99.26 98.92 98.71 98.81 

R2L 97.77 97.26 96.55 96.79 

U2R 99.70 96.64 85.21 89.13 

ETR-GSO-LSTM DoS 99.75 99.78 99.66 99.72 

Probe 99.34 99.34 99.30 99.29 

R2L 97.85 97.19 96.64 96.69 

U2R 99.76 99.75 97.74 99.78 

 

 
Figure. 6 Multi-class classification results obtained by various classification methods 

 

Table 7. Comparative findings of the ETR-GSO-LSTM and the prior published studies 

Models Database Performance Measures (%) 

Classification 

Accuracy 

Precision  Recall/Detection 

Rate  

F-

measure  

FAR ROC 

RF+SMOTE+C4.5 

[10] 

CIC-IDS 

2018 

96.53 - - - - 95.72 

ABC-BWO-CONV-

LSTM [11] 

CIC-IDS 

2018 

98.25 97.48 98.67 98.18 2.52 - 

NSL-KDD 98.67 97.48 99.85 98.73 7.5 - 

ELSTM-RNN [13] CIC-IDS 

2018 

98.75 - - - - 99.87 

NSL-KDD 99 - - - 1.02 - 

UTEN-IDS [14] CIC-IDS 

2018 

95.19 - 98.75 96.79 - - 

SMOTETomek-

CNN-LSTM [15] 

CIC-IDS 

2018 

98.17 95 - 94 - - 

NSL-KDD 99.70 - - - - - 

ETR-GSO-LSTM CIC-IDS 

2018 

99.95 99.95 99.95 99.95 0.09 98.72 

NSL-KDD 99.92 99.75 99.98 99.88 0.05 99.98 
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Figure. 7 Comparison analysis of ETR-GSO-LSTM with existing models in terms of Classification Accuracy 
 

CNN-LSTM [15] model for intrusion attack 

detection in IoT contexts was established, with an 

accuracy of 98.17% and 99.70% on the CIC-IDS 

2018 and NSL-KDD database respectively. On the 

other hand, the ETR-GSO-LSTM model stands out 

by obtaining a greater classification accuracy, with 

99.95% and 99.9% on the CIC-IDS 2018 and NSL-

KDD datasets, respectively and are graphically 

depicted in Fig. 7. Additionally, the   ETR-GSO-

LSTM outperforms the compared existing 

techniques [10, 11, 13, 14, 15] by obtaining higher 

Precision, Recall, F-measure, ROC, of 99.95%, 

99.95%, 99.95%, 99.88%, 98.72%, lower FAR of 

0.09% in CIC-IDS 2018 dataset and 99.92%, 

99.75%, 99.98%, 98.88% and lower FAR of 0.05% 

in NSL-KDD. While conducting the experiment on 

these following settings, batch size of 32, initial 

learning rate of 0.01, momentum of 0.2, decay rate 

of 0.001. From the result analysis, it clearly shows 

that the proposed ETR-GSO-LSTM obtains better 

performance in all the metrices when compared to 

existing techniques. 

5. Conclusion  

This research has presented a novel and highly 

effective approach for addressing the critical 

challenges of intrusion detection in IoT and Cloud 

environments. The proposed intrusion detection 

framework such as ETR-GSO-LSTM employs 

effective techniques and datasets (CIC-IDS-2018 

and KDD-Dataset) to achieve significant results. 

Initially, Data preprocessing, which includes label 

encoding and data augmentation, is crucial in 

preparing the input data for analysis. The Extra Tree 

Regression (ETR) classifier is proposed for feature 

selection which improves the model's performance 

by selecting the optimal features. Then, for effective 

intrusion classification, an LSTM network is 

proposed where the hyper parameters are optimized 

using the GSO algorithm. This method optimizes the 

hyperparameters of LSTM networks to analyze 

sequential data and detect abnormalities in real-time, 

making it particularly suitable for intrusion detection 

in dynamic environments. The impressive detection 

and classification accuracies of 99.95% and 99.9% 

on the CIC-IDS 2018 and NSL-KDD datasets, 

respectively, surpass the achievements of prior 

research in this field. As a direction for future work, 

it is essential to address practical challenges like the 

potential decline in classification performance. 

 

Notation 
Parameter Definition 

Cj node j’s polluting influence prediction 

nij node j’s significance 

Right⁡(j) child node’s right division on node j 

wj weighted samples count reached node j; 

Left⁡(j) child node’s left division on node j; 

fii significance of feature i; 
nij significance of node j. 

Efii mean of every feature j computed from 

all trees for ETR 

norm⁡fij standardized feature importance for J 

feature. 

T total trees count. 

|L|(|R|) count of data points given to the left 

(right) division 

yL(yR) y values in the left (right) division 

p−1 distribution of samples with y = 1 

p1 distribution of y = 1 

n size of y and the mean (y) 

sd dimension with the greatest score 

ht output of LSTM cell, 
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ct memory cell value, 

ht−1 output of previous moment LSTM cell, 

xt input data of LSTM cell at time t 
it input gate 

ft forget gate 

ht unit output of LSTM 

bi bias 

Wi weight matrix 

σ sigmoid function 

𝑇𝑃 true positive 

𝑇𝑁 true negative 

𝐹𝑃 false positive 

𝐹𝑁 false negative 
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