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Abstract: The worldwide problem instigated by multiple mutant forms of the prevalent COVID-19 epidemic; the 

severe clinical diagnosis remains uncertain. Various clinical prognostic imaging approaches have previously been 

offered to medical practitioners to identify COVID-19 people. In this article, we introduce a novel diagnostic approach 

leveraging Generative Adversarial Networks (GAN) and machine learning techniques to enhance the precision and 

efficiency of COVID-19 diagnosis. Our method integrates advanced image processing algorithms with deep learning 

models to accurately identify patterns indicative of COVID-19 contamination in medical imaging data. By harnessing 

the power of GANs, we facilitate the creation of synthetic data for training, thus overcoming limitations posed by 

sparse datasets. Through rigorous experimentation and validation, we demonstrate the efficacy of our approach in 

achieving superior diagnostic accuracy compared to existing methods. This research represents a significant 

advancement in the field of medical imaging diagnostics and holds promise for more effective identification and 

management of COVID-19 cases. The latter technique supplements Computed Tomography as well as chest X-ray 

imaging. As a result, utilizing the picture database (7050 Ultrasound Images), our innovative approach utilizes gradient 

mapping and different haralick characteristics. Distinct techniques were employed to evaluate the classification 

performance of test sets accompanied by 2110 clinical imaging data. Interestingly, the paper demonstrates that the 

suggested model's multiple classification accuracy reached 98.1% efficiency among the normal, Pneumonia, as well 

as COVID-19 by ultrasound image dataset. 

Keywords: Generative adversarial networks, Gradient mapping, Haralick features, Ultrasound imaging, COVID-19. 

 

 

1. Introduction 

SARS-CoV-2 has contaminated about 704 

million individuals as well as died around 7.2 million 

(https://coronavirus.jhu.edu/map.html). (Accessed 

on November 24, 2023). Its long and dispersed 

hatching period necessitates swift, precise, and 

consistent methodologies for primary ailment 

diagnosis to effectively combat the contamination [1]. 

Pre-processing time for the polymerase chain 

reaction test (RT-PCR) might be up to one day [2]. 

Some papers reported accuracy as low as 0.7 [3], 

while a meta-study estimated the false-negative 

quantity to be around 0.2 throughout the illness [4]. 

Medical imaging enhances the analytic cycle, which 

may govern further PCR testing, especially in 

emergencies [5]. The optimal imaging level of quality 

for aspiratory infections is computed tomography 

(CT) screening [6]. Although an essential evaluation  

 

Table 1. A comparison of chest X-rays, CT scans, as well as ultrasound scans. 
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Ultrasound CT scan Chest X-ray 

When the contamination happens in 

its initial stages, ultrasound can spot 

pleural as well as interstitial 

thickening, as well as subpleural 

consolidation events due to 

variations in lung erection [12]. 

CT provides a more realistic way for 

COVID-19 diagnosis as well as is the 

most often used diagnostic tool [10, 

11]. 

 

Chest X-rays are frequently 

employed to identify lung conditions. 

In the early stages, they are not well 

suited to recognize COVID-19 [9]. 

 

B-lines are an important 

phenomenon to diagnose while 

identifying COVID-19 individuals. 

Ground glass opacities (GGO) were 

reported as bilateral as well as 

consolidated when COVID-19 

individuals were monitored [13]. 

Patchy, ambiguous bilateral alveolar 

consolidations with a peripheral 

distribution are important in 

identifying COVID-19 patients. 

Cheap, easy to sterilize, portable, 

safe, non-irradiating, as well as 

widely accessible. 

It is extremely radiative, costly, and 

difficult to sterilize. 

Expensive, radiating, and with no 

statistical significance. 

 

 

of patients illustrates conventional CT scans, it is 

deemed reliable for Coronavirus diagnosis in certain 

countries [7]. Nonetheless, a CT scan is an expensive 

and extremely revealing procedure that poses a 

noteworthy risk of cross-contamination to medical 

practitioners as well as necessitates widespread, time-

consuming decontamination [8]. Table 1 shows 

contrasts of radiography images like CT scans, chest 

X-rays as well as ultrasound against numerous 

criteria. 

Currently, ultrasound pictures, an extra widely 

available, cost-effective, secure, as well as consistent 

imaging technology, have come under scrutiny in the 

setting of severe respiratory disorders. Lung 

ultrasonography (LUS) in particular provides 

enormous advantages in the point-of-care scenario 

for the detection and management of individuals with 

severe respiratory disorders [14, 15]. In some 

instances, it was more effective than a chest X-ray in 

recognizing pneumonia [16]. Doctors have currently 

illustrated the use of ultrasound scans in the calamity 

for the identification of COVID-19-affected 

individuals [17]. Findings suggest that clear LUS 

characteristics and imaging biomarkers for COVID-

19 individuals [18]-[20] might be used to both 

identify these individuals and deal with the 

respiratory adequacy of mechanical ventilation [21]. 

When individual inflow exceeds the typical medical 

imaging platform capabilities, ultrasound pictures 

provide a broad range of suitability and generally 

lower costs. It is also available to low as well as 

middle-income Nations [22]. Nonetheless, depicting 

ultrasound scans may be a difficult chore; also, it 

leads to inaccuracies due to a high learning curve [23]. 

This article's most important scientific contributions 

are as follows: 

• Using lung Ultrasound images, we proposed a 

gradient mapping using the GAN mechanism to 

distinguish Normal, COVID-19, along 

Pneumonia persons. 

• We thoroughly evaluated the ultrasound image 

samples used to track Normal, COVID-19, as 

well as Pneumonia. Qualified radiologists 

confirmed all of the images including lesions. 

• The collected findings were analyzed using three 

metrics: accuracy, confusion matrix as well as 

ROC. 

• The proposed approach indicated for the current 

experiment assists in the identification of 

COVID-19-contaminated samples and acquired 

an accuracy score of 98%. 

• For the approximation analysis, the suggested 

approach yields 98.1% accuracy. 

The remainder of this paper is structured as ensue: 

The second segment examined the most modern lung 

ultrasound scans. The picture dataset as well as pre-

processing are shown in Section 3. We explained 

gradient mapping as well as image separation on the 

image dataset in Section 4. Section 5 depicts the 

experimental outcomes as well as a discussion of the 

method's performance, and Section 6 concludes with 

an epilogue. 

2. Literature survey 

Conventional techniques for diagnosing COVID-

19, such as polymerase chain reaction (PCR) testing 

and radiological imaging, suffer from several 

limitations that hinder their effectiveness in 

accurately identifying infected individuals. PCR 

testing, while considered the gold standard for  
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(a) (b) (c) 

Figure. 1 Database sample lung ultrasound pictures: (a) An example of a COVID-19-contaminated lung with modest 

subpleural consolidation and pleural abnormalities, (b) A lung that is in good health, and (c) A pneumococcal lung with 

dynamic air bronchograms surrounded by alveolar consolidation 

 

COVID-19 diagnosis, often requires specialized 

laboratory equipment, and time-consuming sample 

processing, and can yield false-negative results, 

particularly in cases of low viral load or improper 

sample collection. Radiological imaging methods, 

including chest X-rays and computed tomography 

(CT) scans, offer rapid results and visual evidence of 

lung abnormalities characteristic of COVID-19 

pneumonia. However, these imaging modalities are 

limited by their subjective interpretation, reliance on 

expert radiologists for analysis, and the potential for 

variability in image quality and consistency across 

different healthcare settings. Lung ultrasound (LUS) 

as shown in Fig. 1 is an imaging method used by 

doctors at the point of care to help with the 

identification as well as treatment of acute respiratory 

failure. In addition to coordinating or outperforming 

X-rays of the chest for most acute respiratory 

illnesses, LUS avoids radiation as well as the 

laborious process of CT [24-26]. Furthermore, as an 

affordable battery-powered solution, LUS may be 

disseminated widely in any context and well-suited 

for pandemic circumstances [27]. B lines are the main 

features of LUS caused by pulmonary edema or the 

non-cardiac consequences of interstitial syndromes 

[28]. 

Clinical imaging, for example, can play an 

important role in augmenting classic symptomatic 

equipment from subatomic research. The authors of 

[29] demonstrated some programmed techniques 

employed by ML as well as AI techniques, capable 

demonstrations using X-ray as well as Computed 

Tomography data. Furthermore, researchers in [30] 

presented a POCOVID-Net convolutional neural 

network to handle present computer vision assistance. 

It is deduced that using the convolutional component 

of VGG-16 and creating a deep convolutional neural 

network successfully impacts multiple picture kinds 

[31]. This is accompanied by one hidden layer with 

64 cells activated by the ReLU activation function, 

0.5 dropouts [32], and group standardization [33]. In 

5-fold cross-validation, the model had a grouping 

precision of 89% as well as an accuracy to identify 

COVID-19 by 96%. The approach demonstrates the 

analytic value of the obtained data as well as the 

applicability of deep learning to ultrasound images. 

Born et al. [34] offer a freely accessible 

Coronavirus LUS database that includes 202 videos 

from four classifications (Bacterial pneumonia, 

Coronavirus, non-coronavirus viral pneumonia, as 

well as typical pictures). In this database, researchers 

explored the use of ML algorithms for differential 

diagnosis of lung diseases. In a blinded report with 

clinical experts, they used interpretability techniques 

for the Spatiotemporal confinement of pneumonic 

biomarkers to investigate the usability of the 

proposed methodology regarded as valuable for 

human-tuned scenarios. As a result, they suggested a 

frame-based technique that correctly identifies 

COVID-19 LUS images from normal along with 

bacterial pneumonia data, yielding an affectability 

score of 0.90 ± 0.08 as well as a specificity score of 

0.96 ± 0.04. 

Hu, Z. et al. [35] proposed MCRFNet, a unique 

classification network that arranges lung sonograms 

using a multimodal combination, channel, along the 

response field.  In addition, the writers assessed the 

predicted classes that mirror the patient's amount of 

lung involvement and supported experts in 

connecting various pointers to survey disease drifts in 

COVID-19 patients. Roy et al. [36] defined the 

benchmark condition of ML techniques for analyzing 

pixel-level identification of COVID-19 image 

biomarkers. Analyses of the dataset demonstrate a 

good conclusion on all of the considered chores, 

paving the way for further research on DL for the 
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aided detection of Coronavirus using the LUS 

database [37-40]. Ferhat et al. [42] proposed Transfer 

Learning positioned CNN recognizing COVID-19 

enabled by X-ray films with 75% veracity and an 

accuracy of 80% for the VGG pre-trained model [43].      

In contrast to conventional techniques, our proposed 

method represents a paradigm shift in COVID-19 

diagnosis by leveraging cutting-edge technologies 

such as Generative Adversarial Networks (GANs) 

and machine learning algorithms. By integrating 

GANs with medical imaging data, we address the 

limitations of sparse datasets by generating synthetic 

images that enhance the robustness and 

generalization of our diagnostic model. Additionally, 

our approach incorporates advanced image 

processing techniques to extract and analyze subtle 

patterns indicative of COVID-19 infection, thus 

enabling more accurate and objective diagnosis 

compared to traditional radiological interpretation 

methods. 

3. Materials and methods 

3.1 Preprocessing the database 

The group of data utilized in this task is freely 

accessible in the GitHub database [37] (Note: IRB 

approval was not required for this study), and it 

contains around 7050 ultrasound images which 

augments 7050 images in various angles, out of 

which 2350 COVID-19-positive instances, 2350 

normal people, as well as 2350 Pneumonia patients. 

The image database archive is available for image 

disjunction approaches, as well as the complete 

database has been checked and clarified, including 

the finding of the LUS pictures. Because the images 

in the collection are not flexible, ultrasound images 

adequately enunciate the characteristic range; we 

have changed all of the photos to a comparable 

dimension of 512 × 512 pixels. Furthermore, RGB 

reversion has been applied, and the resulting input to 

the proposed approach is a 512 * 512 * 3 image. 

Following that, we used gradient mapping, as well as 

GAN to this model along with computed haralick 

features for both spatial areas (GLDM, GLCM & 

Texture) with frequency areas (DWT & FFT). 

3.2 Feature extraction 

Gray-level co-occurrence Matrix (GLCM), 

Texture, Fast Fourier Transform (FFT), Grey Level 

Distance Method (GLDM), and Discrete Wavelet 

Transform (DWT) were used to assess a total of 200 

characteristics in both frequency as well as spatial 

domains. We calculated the 12 Haralick traits as 

Vinod et al. [41]. The feature extraction approach 

yielded almost 200 lineaments for each ultrasound 

picture (“96 lineaments arising from DWT, 12 

lineaments arising from texture as well as FFT 

separately, 40 features arising from GLCM and 

GLDM separately”). 

3.3 Generative adversarial network 

GANs are an element of deep learning models 

[29]. GANs are a unique form of neural system 

representation in which two distinct structures are 

executed concurrently, one focusing on generation 

while the other discriminating. GANs give an 

approach to learning deep knowledge in the absence 

of extensively clarified training data. They learn by 

calculating inverted spread signals via a competitive 

approach that involves two networks. Because of its 

simplicity in dealing with field changes and 

feasibility in developing new picture sets, this 

excellent training strategy has piqued the interest of 

both the scholarly community as well as businesses. 

GANs have made tremendous progress and are 

widely utilized in a variety of applications, including 

picture editing, pattern classification, as well as 

image synthesis [29]. 

 

Figure. 2 Recommended approach for identifying normal/ 

pneumonia/COVID-19 patients 
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4. Suggested approach 

To train the large image dataset, the training 

system employs the “anaconda-Jupyter notebook by 

tensor flow” approach described by Vinod et al. [41]. 

Access to the necessary libraries was granted at the 

outset to link the code from other mechanisms. After 

that, upload the picture database to the route, then 

apply gradient mapping to the LUS scans and extract 

the lineaments using spatial as well as frequency 

areas such as “GLDM, FFT, DWT, GLCM along 

with Texture” for segmentation. Lastly, we added all 

200 haralick features in both areas and used the 

Generative Adversarial Network approach aided by 

the random forest algorithm to determine COVID-19 

individuals, as shown in Fig. 2. Mechanism-1 depicts 

the image pre-processing procedure, whereas 

mechanism-2 depicts the feature elimination of the 

images. Finally, mechanism 3 for an LUS picture 

database with different categories and effectiveness 

procedures of the system are shown. 

 

Mechanism 1: LUS films for Pre-processing 

Input: Input Ultrasound film i(a, b, c) (a, b, c) Ɛ 

(1,2,….m)
3
, a = b = c 

Output: Output Ultrasound film o(a, b, c) (a, b, c) Ɛ 

(1,2,….m)
3
, a = b = c 

Begin 

     For every Input Ultrasound film, i proceed 

         For {a, b, c} = 1 to m proceed 

           Enforce gradient mapping for generating 

the heat maps by Eq. (5) on the films 

               Transform input film i into gray as well 

as resize the film by 512*512 

                  Enforce min-max normalization as 

well as revert the output film(o) 

          End For 

     End For 

 

Here a, b, and c are the classes in the ultrasound 

films and m is the quantity of films. 

 

Mechanism 2: LUS films for Feature 

Extraction 

Input: Input Ultrasound film o(a, b, c) (a, b, c) Ɛ 

(1,2,….m)
3
, a = b = c 

Enforcing GAN 

Begin 

     For each Input Ultrasound film o, proceed 

          For {a, b, c} = 1 to m proceed 

               If file ← a, Then 

                    Class ← 0 

               ELIF file ← b,  

                    Class ← 1 

               ELSE 

                    Class ← 2 

               ENDIF  

          End For 

     End For 

G ← {Determining lineaments on input ultrasound 

films o (12 lineaments)} 

Textual, l ← Calculate G on the input ultrasound 

films, o 

FFT, f ← Calculate G on the input ultrasound 

films, o 

DWT, t1 ← Calculate G on the input ultrasound 

films, o 

DWT, t2 ← Calculate G on Approximation of d1 

image 

T ← t1 + t2 

GLDM, D ← Calculate G on input ultrasound 

films o in 4 aspects by Eq. (6)  

GLCM, M ← Calculate G on input ultrasound 

films o in 4 aspects 

Ultra Covix mechanism ← ∑ {𝐥, 𝐟, 𝐓, 𝐃, 𝐌)}𝒎
𝒊=𝟏  ε o 

(Total G=200) 

Save the mechanism 

 

Mechanism 3: Build the LUS films employed 

by the Ultra Covix mechanism 

Input: Ultra Covix mechanism, number of 

instances = 100, Training ratio = 70%, Testing 

ratio = 30%, Classifier = Random Forest, number 

of trees =100. 
Output: Visualization, Confusion Matrix, 

Training, Performance accomplishment, as well 

as accuracy loss. 
Begin 

     For the Input Ultra Covix mechanism, proceed 

          x = concatenate {(a(G), b(G), c(G))} ε 

(1,2,…m)3   (inputs) 

          y = concatenate {(a(G), b(G), c(G))} ε 

(1,2,…m)3   (target class) 

     End For 

 

4.1 Gradient mapping 

Gradient translation is a prominent mode. It 

explains that it uses extensive average pooling as well 

as allows for the estimation of class-specific heat 

maps that indicate the discriminative parts of the 

picture that elicit suitable class activity of interest 

[38]. Gradient technique based on the basic 

assumption that the final count Xd for a given 

category d may be shown as a linear combination of 

its extensive average pooling last convolutional layer 

feature mappings Bi. 

 

Xd = ∑ 𝑔𝑖
𝑑 . ∑ ∑ 𝐵𝑚𝑛

𝑖
𝑛𝑚𝑖                            (1) 
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(a) (b) (c) 

Figure. 3: (a) COVID-19 gradient mapping sample image (highlighted B-line), (b) normal (highlighted A-lines), and (c) 

Pneumonia (highlighted Pleural consolidations). 
 

Respective spatial location (m, n) in the category-

specific saliency map Sd is then estimated as: 

 

𝑆𝑚𝑛
𝑑 =  ∑ 𝑔𝑖

𝑑 . 𝐵𝑚𝑛
𝑖

𝑖                                      (2) 

 

𝑆𝑚𝑛
𝑑  , precisely associated with the significance 

of a specific spatial location (m, n) for a particular 

class d as well as thus aims as perceptible data of the 

category foreseen by the network. The label 

activation map assesses these weights 𝑔𝑖
𝑑 by training 

a linear classifier for each group d using the 

activation maps of the last convolutional layer skillful 

for a given image, the weights 𝑔𝑖
𝑑  for a suitable 

feature map 𝐵𝑖 and the group d is corresponding to:  

 

𝑔𝑖
𝑑 = Y. 

𝜕𝑋𝑑

𝜕𝐵𝑚𝑛
𝑖    ∀ {𝑚, 𝑛 |𝑚, 𝑛 ∈  𝐵𝑖}            (3) 

 

Here Y is fixed, exploiting gradients flowing 

from the output class into activation maps of the last 

convolutional layer as neuron importance weights 𝑔𝑖
𝑑. 

 

𝑔𝑖
𝑑 =  

1

𝑌
 ∑ ∑

𝜕𝑋𝑑

𝜕𝐵𝑚𝑛
𝑖𝑛𝑚                                       (4) 

 

The label selective saliency maps for a given 

image, Sd are then assessed as a linear combination of 

the forward activation maps, followed by a ReLU 

activation function. Each spatial feature in the 

saliency map Sd is then intended as: 

 

𝑆𝑚𝑛
𝑑 = 𝑅𝑒𝐿𝑢 (∑ 𝑔𝑖

𝑑 . 𝐵𝑚𝑛
𝑖

𝑖 )                           (5) 

 

Gradient mapping or its hypothesis for medical 

purposes Grad-CAMs [39] can provide appropriate 

decision assistance by interpreting either a system 

that detects its placement on exact pathological 

measures or an algorithm that recognizes its location 

on specific pathological measures. Gradient mapping 

can also advise healthcare professionals as well as 

point to descriptive arrangements, which are 

particularly suitable for time-sensitive or insight-

sensitive situations. To diagnose COVID-19 

individuals, the gradient picturing provides numerous 

dissection methods such as Texture, FFT, GLCM, 

Wavelet & GLDM that identify distinct diagnostic 

methods, and conclusions were initiated better 

performance by observation. 

The gradient mapping approach is shown in Fig. 

3 on lung ultrasound scans with and without COVID-

19. We determined the point's maximal activation of 

the gradient translation of every category 

(Pneumonia, Normal & COVID-19) along with all 

image datasets for a more visual evaluation. While 

the heat maps are evenly distributed around the probe, 

pneumonia-associated characteristics, which are 

particularly connected to COVID-19 as well as 

Normal patterns, are concentrated at the center and 

bottom. 

4.2 Segmentation based on FFT 

The Fast Fourier Transform (FFT) measures the 

inverse of the discrete Fourier Transform (DFT). The 

FFT expansion is employed to novitiate a digital 

signal (d) among range (r) from the time region into 

a recurrence district (R), taking into account the 

amplitude of vibration based on its stimulating within 

the recurrence as the sign emerges.  

To robotize the decision-making procedure for 

the susceptible frequencies to the defect under 

examination, the periodicity range vector is divided 

into distinct frequencies. The normal of each degree 

is then used as a physical perspective for the material. 
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We identified the 12 quantifiable aspects of the FFT 

in all ultrasound scans. 

4.3 GLCM-based segmentation 

The Grey Level Co-occurrence Framework is a 

scientific cycle that is widely used to depict images, 

most notably for Second Harmonic Generation 

(SHG) collagen image categorization. This paradigm 

considers the spatial relationship of picture pixels at 

a given position. It is typically approximated for all 

four directions at a specified range. A textural 

characteristic persists across this lattice. Different 

directions are frequently discriminated or identified 

in the center value to get an initial estimation limit. 

Officially, the co-occurrence lattice is defined as 

the probability of a grey level p occurring in the 

vicinity of another grey level q at an offset f in course 

C, S (p, q | f, C), wherein f is a removal vector, f = 

(∆c, ∆i). C is one of the eight possible directions. The 

difference between reverse directions is usually 

ignored, and symmetric probability lattices can thus 

be used specifically for four aspects (135ᶿ, 90ᶿ, 45ᶿ, & 

0ᶿ). Image features are extracted from this lattice 

using accurate estimates. We established the first 10 

quantifiable requirements in four spatial regions for 

full images in GLCM. 

4.4 Segmentation based on texture & GLDM 

Texture as a picture attribute is extremely 

important in many image management applications, 

as well as in applications that use computer vision. In 

the picture refining investigation, a comprehensive 

look at surface evaluation revealed the essential focus 

on hand, division, as well as association. Surface 

characteristics have been employed in a variety of 

applications, including satellite and aeronautical 

image evaluation, clinical image inspection for 

distinguishing variations from abnormalities, and, 

most recently, image recovery utilizing the surface as 

a descriptor. This section describes a method for 

representing the surface utilizing a multi-band image 

degradation with applications to depiction, 

segmentation, object recognition, and image recovery. 

We identified the twelve factual components from 

each of the images during the surface assessment. 

The grey level difference technique thickness 

capacity about the pre-handled grey image. This 

method is used to remove all surface characteristics 

from a high-level image. Contrast is defined as the 

difference in thickness between the most important 

and least important layers in a photograph. As a result, 

the local ranges are on the grey scale. We computed 

the first ten quantifiable features in four spatial 

regions between range, r = 8, in overall images in the  

 
Figure. 4 Wavelet transform technique on the 

Ultrasound slices of COVID-19 

 

data set using reference and neighbor pixels (x, y). 

 

J (x, y) = |I (x, y) - I (x, y + r)|                           (6) 

 

Here I is the input image. J is the output of image 

I, and r is the GLDM estimate distance. 

4.5 Segmentation based on wavelets 

A discrete wavelet transform (DWT) is always 

represented as a non-excess attempted CWT. The 

wavelet transformation seeks to surround a discrete-

time plan, x(s), with as many (wavelet) coefficients 

as possible. These coefficients are often assessed 

using a CWT to establish a balanced set of tolerable 

bounds. Wavelet configurations abound, with 

varying properties. This section, however, is limited 

to the case of even wavelets with little aid. 

The wavelet may be viewed from a handful of 

different perspectives. In this case, we'll look at the 

wavelet via the lens of a channel bank. There are a 

few finite impulse response (FIR) channels 

containing N coefficients shown. One of these 

channels is high-pass, whilst the other is low-pass; 

the two channels cut on/off at various points 

throughout the examination repetition. These 

channels, as well as their recursive use, may be used 

to define the wavelet transform. The channels are 

initially applied to the input time course of action to 

generate distinct low-pass as well as high-pass 

sections, X1(s) and X2(s): 

 

X1(s) = ∑ 𝑒𝑙𝑦(𝑠 − 𝑙)𝑁−1
𝑙=0     (7) 

 

X2(s) = ∑ 𝑓𝑙𝑦(𝑠 − 𝑙)𝑁−1
𝑙=0     (8) 

 

Here 𝑒𝑙, and 𝑓𝑙,  are the low-pass as well as high-

pass filter coefficients separately. It is completely 

normal to construct the high-pass channel before the 

low-pass channel, which is extensively adapted 

utilizing the turning flip arrangement, thus the two 

designs of channel coefficients are related through: 
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𝑓𝑙 = (−1)𝑙𝑒𝑀−𝑙      (9) 

 

The yield of the two filters is a significant portion 

of the input progression transmission capacity, so 

X1(s) contains the lower band, and X2(s) includes the 

higher band. The yields of each channel are a high 

ratio of the initial data transmission of X(s) to give 

these double cross designs containing massive data. 

As indicated in Fig. 4, we used two-way 

sequential coefficient functions such as (Coefficient 

Approximation) CA1, (Coefficient Horizontal) CH1, 

(Coefficient Vertical) CV1, and (Coefficient 

Diagonal) CD1. CA1 identified more wavelet 

coefficients repeatedly; for example, CA2, CH2, 

CV2, and CD2 for each consecutive coefficient, we 

determined the twelve factual characteristics. 

4.6 Applying the random forest technique 

Random Forest is a supervised learning approach 

that may be used to solve classification and 

regression issues. Nonetheless, it is mostly utilized to 

solve categorization difficulties. We believe that a 

random forest has trees and that more trees suggest a 

more effective random forest. In general, the random 

forest approach produces decision trees on samples 

of data and subsequently obtains the random forest 

from each one of them before selecting the best 

explanation. A group decision tree is better than an 

individual decision tree because it reduces over-

fitting by averaging the results. Algorithm 4 depicts 

the random forest classifier's mechanism. 

 

Algorithm 4: Random Forests for Regression 

or Classification 

1. For s = 1 to T: 

i. Build a bootstrap mechanism P of size M 

from the training database. 

ii. Construct a random-forest tree Fs to 

reboot the database by iteratively 

recurrent the following stages for every 

terminal node until the smallest node size 

lmin is obtained. 

           (a) Select t variables at random 

from the o variables. 

           (b) Choose the best variable/split-

point among the t. 

           (c) Divide the node into two 

daughter nodes. 

2. Outcome of the collection of trees {𝑭𝒔}𝟏
𝑻. 

    To achieve a prophecy at a new point x: 

     Regression: 𝝓𝒔𝒇
𝑻 (𝒙) = 

𝟏

𝑻
∑ 𝑭𝒔(𝒙).𝑻

𝒓=𝟏  

     Classification: Consider βs (x) to be the class 

prophecy of the sth random forest tree.  

     𝜷𝒔𝒇
𝑻 (𝒙) = majority vote {𝜷𝒔(𝒙)}𝟏

𝑻. 

End For 

 

Here T is the number of trees, 𝑭𝒔 is the sth tree and 

𝛽𝒔 is the class value for sth tree.  

For this system, the Random Forest approach, an 

ensemble machine learning mechanism well-known 

for outperforming other machine learning classifiers, 

was used. We applied random forest algorithms on 

COVID-19 sample subgroups and classified them as 

Normal or Pneumonia. The random forest approach 

uses the number of trees and the specified number of 

samples 100 to refine whether or not the batch 

prophecy is being implemented. 

5. Result and discussion 

Despite building the model, the evaluation 

samples achieved a loss score of about 1.9% as well 

as an accuracy of 98.1% in lung ultrasound images 

with 100 epochs. The loss rate showed a solid match 

between training and testing, confirming that this 

model is not overfitting or underfitting in the lung 

ultrasound picture database. Then, as shown in Fig. 5, 

we obtained a Receiver Operating Characteristics 

(ROC) curve to assess the applicability of our model. 

(a, b, c). An analysis of COVID-19 lung ultrasound 

images with non-COVID-19 and normal images 

revealed that this system obtains a 97% precision 

value as well as a 98% recall value when tested on a 

test set of 2110 LUS images, as shown in Table 2. 

Thus, we have reached the exactness of the GAN as 

well as the ML mechanism, which produces swift 

outcomes among both films of validation as well as 

verification samples. 

The portrayal evaluations were used for 

identifying the Normal, COVID-19 as well as 

Pneumonia images that followed. Here F.N. 

represents False Negative, T.P. represents True 

Positive, F.P. represents False Positive & T.N. 

represents True Negative. 

 

Accuracy = 
𝑇.𝑃.+𝑇.𝑁.

𝑇.𝑃.+𝐹.𝑃.+𝐹.𝑁.+𝑇.𝑁.
                           (10) 

 

Precision = 
𝑇.𝑃.

𝑇.𝑃.+𝐹.𝑃.
                                          (11) 

 

Recall = 
𝑇.𝑃.

𝑇.𝑃.+𝐹.𝑁.
                                                 (12) 

 

Matthews Correlation Coefficient (MCC) = 
(𝑇.𝑃.𝑋 𝑇.𝑁.) −(𝐹.𝑃.𝑋 𝐹.𝑁.)

√(𝑇.𝑃.+𝐹.𝑃.)(𝑇.𝑃.+𝐹.𝑁.)(𝐹.𝑃.+𝑇.𝑁.)(𝑇.𝑁.+𝐹.𝑁.)
               (13) 

 

F-Measure = 
2∗𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛∗𝑅𝑒𝑐𝑎𝑙𝑙

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛+𝑅𝑒𝑐𝑎𝑙𝑙
                     (14) 
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(c) 

Figure. 5 Ultrasound Image Archive Efficiency: (a) 

The RoC graph generates 2110 test samples, with Normal 

as the target label, (b) The RoC graph elicits 2110 test 

samples, using Pneumonia as the target label, and (c) The 

RoC graph generates 2110 test samples, with COVID-19 

serving as the target label 

Table 2. Obtained performance measures for the 

suggested technique 

Class Recall Precision MCC 
F-

Measure 

Pneumonia 0.98 0.98 0.97 0.98 

Normal 0.97 0.98 0.96 0.97 

COVID-19 0.98 0.97 0.96 0.98 

 
Table 3. Confusion matrix for predicting verification 

films by pneumonia, Normal as well as COVID-19  

Class 
Pneu 

monia 
Normal 

COVID-

19 

Image 

count 

Pneumonia 640 0 10 650 

Normal 10 700 10 720 

COVID-19 0 10 730 740 

Total 2110 

 

 

The Confusion matrix for the ultrasound image 

collection is shown in Table 3. The accuracy and 

kappa values are used to compare the performance of 

five approaches using haralick characteristics, as 

shown in Table 4. The suggested GAN methodology 

provides better prediction than other COVID-19 and 

standard techniques. It demonstrates the significance 

of attaining such a recurrence region and indicates 

that such lineaments are suitable for identifying 

COVID-19 detection in ultrasound images. When 

compared to Texture, FFT, DWT, GLCM, and 

GLDM feature elimination approaches, the suggested 

model increases accuracy by 19.5%, 10.9%, 4.3%, 

10.9%, and 7.6%. When COVID-19 is used as the 

target class, the suggested technique has a recall of 

98%, an MCC of 96%, a precision of 97%, and an F-

measure of 98%. 

In addition, we used a variety of ML as well as 

DL approaches to categorize the COVID-19 data. 

The Random Forest approach provides great 

accuracy when compared to other techniques, as 

shown in Table 5, whereas the DL mechanism 

provides 84.8% accuracy in the Ultrasound picture 

dataset. Table 6 shows the different training and 

testing dividing strategies that we used. Furthermore, 

as indicated in Table 7, we used the cross-validation 

approach. When compared to the cross-validation 

approach and various separation ratios, the splitting 

distribution with 70% training set and 30% testing set 

produced good accuracy with a large number of 

images in the testing set. 



Received:  April 20, 2024.     Revised: May 21, 2024.                                                                                                      607 

International Journal of Intelligent Engineering and Systems, Vol.17, No.4, 2024           DOI: 10.22266/ijies2024.0831.45 

 

Table 4. Contrast the suggested technique by five distinct 

techniques 

Methodology 
Value of 

Kappa 

Accuracy 

(%) 

GLDM (gm) 0.85 90.5 

FFT (f) 0.8 87.2 

DWT (d) 0.9 93.8 

GLCM (gc) 0.8 87.2 

Texture (t) 0.68 78.6 

Suggested GAN 

model 

(t+f+d+gc+gm) 

0.96 98.1 

 

 
Table 5. Performance measures of distinct ML 

mechanisms on LUS films by Validation (70%) – 

Verification (30%) split distribution 

ML Mechanisms Accuracy (%) 

Random Forest 98.1 

Naive Bayes 51.1 

Decision Tree 86.2 

Logistic 93.8 

SVM 46.9 

 

 

Table 6. The contrast of various splits on Ultrasound 

films 

Splits% 

(Train-Test) 

No. of films 

(Train-Test) 

Accuracy 

(%) 

90 - 10 6350 – 700 98.5 

80 - 20 5640 – 1410 97.1 

70 - 30 4940– 2110 98.1 

60 - 40 4230 – 2820 97.8 

50 - 50 3520 – 3520 97.7 

Table 7. Contrast of different folds by Cross-Validation 

technique by RF model 

Cross-Validation Accuracy (%) 

Fold - 5 97.5 

Fold - 10 98.2 

Avg. 97.9 

 

 
Table 8. State-of-the-art models to identify COVID-19 by 

Ultrasound films. 

Reference Technique 
Accuracy 

(%) 

Zhaoyu Hu et al. [35] MCRFNet 97.7 

Born et al. [34] VGG 87.8 

Gabriel et al. [30] POCOVID-19 89 

Rahimzadeh et al. 

[32] 

NASNET 

Mobile 
62.5 

Roy et al. [36] 

U-Net 

Deep v3+with 

U-net and U-

net++ 

94 

96 

 

Suggested 

Technique 
GAN 98.1 

 

 

Gabriel et al.'s [30] POCOVID-19 model 

increases classification execution by using 5-fold 

cross-validation. The testing results show that the 

proposed approach achieved 89% accuracy as well as 

96% sensitivity. Jannis et al. [34] approved a VGG-

positioned model with an accuracy of 87.8%. The 

Deep v3+ ensemble with U-net and U-net++ 

proposed by Roy et al. [36] improves overall 

performance by separating different characteristics 

using Xception and ResNet50V2 networks. The 

proposed technique had a 96% dependability. 

According to Rahimzadeh et al. [32], NASNET 

mobile has an accuracy of 62.5%. Zhaoyu Hu et al. 

[35] suggested an MCRFNet model that achieved 

97.7% accuracy with binary classification. Table 8 

depicts the many strategies used in the image 

collection to estimate COVID-19 persons with 

achievement measures probable correctness (%) for 

subjective research. We implemented the GAN 

technique in the unchanging picture database from 

the GitHub repository, which has been used in several 

recent studies. We fully utilized the machine learning 

process and achieved higher accuracy with balanced 

data than in previous studies. 
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6. Conclusion 

A fictional lumen dissection of the COVID-19   

diagnosis has been developed utilizing LUS images 

incorporating GAN, gradient mapping, as well as 

several haralick characteristics. Gradient 

visualization identifies exceptions and emphasizes 

crucial portions of the picture to superimpose, which 

are then used to fine-tune segmentation algorithms. 

The method is independent of any user-defined limits, 

making it suitable for differently ordered lung 

ultrasound images. Super-pixels are identified, 

aggregated, and separated based on surface and 

geographical data. The mechanism focuses on the 

complete design of a picture and produces 

comprehensive perfect results. The suggested 

mechanism beats POCOVID-Net, COVID-Net, and 

other methods by achieving best-in-class execution at 

a far lower cost. The method is automated and tested 

on a large set of 7050 images, and the results are 

accurate. As a result, our technique may be used to 

develop an effective procedure for identifying 

COVID-19 using LUS image dissection. With an 

accuracy rate of 0.97 and a recall score of 0.98, the 

suggested approach can identify a COVID-19-

positive sample. We had a modest data size and 

obtained a multiclass accuracy of 98% using 

ultrasound images. In addition, as compared to X-

rays as well as CT scans, ultrasounds are less costly, 

portable, easy to sterilize, non-irradiating, safe, and 

widely available. The results obtained are critical for 

quickly communicating to readers the benefits of 

ultrasound pictures in the context of COVID-19, as 

well as future tests that will deal with large databases. 
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