
Received: April 29, 2024. Revised: May 24, 2024. 634

International Journal of Intelligent Engineering and Systems, Vol.17, No.4, 2024 DOI: 10.22266/ijies2024.0831.48

Migrating Relational Databases to NoSQL-Oriented Documents Using Object-

Oriented Concepts

Alae El Alami1* Youness Khourdifi2 Zakariyaa Ait El Mouden1 Mohammed Lahmer1

Moulay Lahcen Hasnaoui1

1Department of Computer Engineering, Higher School of Technology, University Moulay Ismail, Meknes, Morocco

2Sultan Moulay Slimane University, Laboratory of Materials Science, Mathematics and Environment,

Polydisciplinary Faculty, Khouribga, Morocco
* Corresponding author’s Email: elalamialae@gmail.com

Abstract: This paper presents a migration from relational databases (RDB) to NoSQL databases, leveraging a data

model that utilizes concepts such as objects, semantic enrichment, and metadata. It addresses the limitations of previous

approaches and extends them to overcome issues encountered in the relational model, allowing for simpler and faster

handling of large datasets. This approach eliminates problems related to joins, incorporates the concepts of references

and embedded documents, and includes a comparative study between our approach and other methods for migrating

from RDB to NoSQL. This comparison covers aspects such as structural changes, insertion rates, selection, and

deletion. Automated migration uses document-oriented nested types to store related data in one database record. This

simplifies the design phase and reduces queries and updates, speeding up user responses. This research provides a

comprehensive summary of the achievement of migrating from a relational database to a document-oriented NoSQL

database. The essence of this migration lies in its automatic nature, aimed at transforming the pre-existing relational

model into an object-oriented model. This transition aims to align the database structure with MongoDB's document-

oriented paradigm, ensuring optimal integration and efficient utilization of the technology's features. This research

significantly distinguishes itself from previous work, primarily due to its ability to facilitate automatic database

migration. It accomplishes this task by autonomously identifying object concepts, including those related to inheritance.

This functionality is unique and represents a significant advancement, as no other migration method has thus far been

capable of performing this automatic detection of object concepts, especially inheritance. The result of the migration

provides several advantages in terms of reducing record count, particularly as we deal with massive data sets, and in

terms of the time required for data deletion and insertion. A prototype shows how effective this automated approach

is. Maintain that the migration process is automated.

Keywords: NoSQL databases, Key-value, Document store, Columnar DB, Graph DB, MongoDB, Software

engineering, Enrichment semantic, RDB relational databases, Database migration.

1. Introduction

The daily generation of billions of bytes of data

across various sectors in recent years has triggered a

migration away from relational databases to other

types of databases based on NoSQL solutions that

complement the classic relational approach. NoSQL

offers various storage formats, including document-

based, graph, column-oriented, and key-value stores

[1].

In comparison to the relational database model,

NoSQL provides improved scalability and enhanced

performance for handling structured, unstructured,

and semi-structured data. It guarantees a flexible,

object-oriented programming plat-form that is easy to

use, offering a wide range of software architecture

options due to its support for non-fixed physical

schemas. NoSQL also supports distributed systems

across multiple servers, ensuring data integrity

through synchronisation [2].

Received: April 29, 2024. Revised: May 24, 2024. 635

International Journal of Intelligent Engineering and Systems, Vol.17, No.4, 2024 DOI: 10.22266/ijies2024.0831.48

The key difference in data integrity and

consistency between RDBMS and NoSQL databases

lies in their respective transaction models. RDBMS

adheres to the ACID properties (atomicity,

consistency, isolation, and durability) [3, 4], which

define specific rules for data transactions. Atomicity

ensures that a transaction is either completed in full

or not at all; consistency ensures that each step of a

transaction maintains a valid state; isolation

guarantees independent execution of transactions,

and durability ensures permanent data persistence,

even in the event of system failures [5].

In contrast, NoSQL adheres to the CAP Theorem

(consistency, availability, and partition tolerance) [6,

7], which allows only two of the three constraints to

be achieved in practice. This led to the development

of the BASE theorem (Basically Available, Soft state,

and Eventual consistency) [8]. BASE accepts that

database consistency may be in a flux state, with

'Basically Available' indicating data availability even

if responses to requests contain errors or the data is

temporarily inconsistent. 'Soft state' suggests that the

system's status can change over time, and 'Eventual

consistency' ensures that the system will eventually

reach a consistent state.

NoSQL encompasses a set of database types that

follow a non-relational approach, each characterized

by a straight-forward concept for storing and

handling data, such as key-value, column-oriented,

document-oriented, and graph-oriented databases [9,

10].

A key-value database, which is a logical data

storage system, is not constrained by a schema

tailored to caching and is efficient at the data access

level, offering improved performance for writing and

reading during disk access [11].

A column-oriented database is a solution that

provides flexible logic for data storage by creating

different columns for each row, unlike the RDB,

which fixes the number of columns without

considering the number of records [12].

A document-oriented database is a representation

of the key-value concept in a document form,

facilitating hierarchical organization based on

indexed fields. It is designed for the storage of

general sessions, files, and web pages [13].

A graph-oriented database is a solution initially

dedicated to social networks for handling complex

variable data relationships. This solution doesn't

optimize performance but rather addresses problems

not solved by the RDB [14].

In this article, we discuss the transition from RDB

to NoSQL in document-oriented mode using the

MongoDB database. MongoDB does not require a

predefined schema and manipulates objects with

BSON (Binary JSON) in binary-encoded format,

which extends the JSON (JavaScript Object

Notation) model [15].

The article is organized into five parts. In the first

part, we conduct a general study of different types of

NoSQL databases. The second part presents previous

work proposing migration solutions. The third part

introduces a new way of representing RDB in a

flattened format enriched by the object concept. In

the fourth part, we propose our main migration

solution.

Finally, we establish a comparative study

between our approach and both the MySQL and

mongoVue approaches.

2. Related works

There is an increasing interest in developing

adaptable data migration frameworks capable of

transferring data from relational databases to NoSQL

data storage [16-19]. These papers provide merely a

market overview of a novel category of

transformation tools and offers decision support for

selecting the appropriate tool. However, my approach

goes beyond simply facilitating migration from

relational to NoSQL MongoDB databases; it

introduces a novel method for transforming a

relational database into an object-relational database

model. This approach involves semantic enrichment

in a flattened model, enabling a seamless transition to

the new document-oriented database architecture,

which inherently incorporates the concept of

embedded documents.

The success of the SQL-to-NoSQL data transfer

carries significant implications. Extracting valuable

insights from internal data, such as system resource

utilisation and employee performance evaluations, is

imperative for any company.

Moreover, NoSQL is the preferable choice over

relational databases for cloud environments due to

the distributed nature of cloud platforms. To

minimise the amount of work required by cloud

consumers when transferring data between multiple

cloud platforms and to have control over concerns

related to the compatibility and transferability of data,

the current standard necessitates the use of unified

API frameworks [20].

An approach to migrate from SQL to NoSQL is

based on the JackHare Framework, associated with

the JDBC driver, a SQL query compiler, and

systematic methods using the MapReduce principle

for processing unstructured data in HBase [21]. The

developed framework is based on Hadoop and HBase

to store RDB data in line with the logic of SQL

queries and MapReduce methods. It presents a

Received: April 29, 2024. Revised: May 24, 2024. 636

International Journal of Intelligent Engineering and Systems, Vol.17, No.4, 2024 DOI: 10.22266/ijies2024.0831.48

conversion model that stores all RDB tables in a

single table. As a result, queries involving numerous

foreign keys may not perform well due to the high

number of join operations [22]. Our approach to

automatic migration from the relational model to the

document-oriented model is significantly more

comprehensive than traditional methods using

MapReduce, for several reasons. Firstly, our method

fully embraces the fundamental concepts of the

document-oriented model, such as schema flexibility

and the use of rich data structures like nested objects

and arrays. Unlike transformation via MapReduce,

which may primarily focus on data conversion

without considering these essential characteristics of

the document-oriented model, our approach ensures

a complete and faithful transition from the relational

model to the document-oriented model.

Another solution for migrating from SQL to

NoSQL aims to reduce operational expenses and

transition from the relational concept to a document-

oriented one. The approach begins by creating

physical data on two logical levels, with users

generating the logical data model and configuring

data for each document. This approach allows for

monitoring over several days to obtain proof-of-

concept for the new document-oriented database,

with document relationships managed solely at the

application layer [23]. Our method integrates a

semantic enrichment process that goes beyond simple

schema conversion. By applying semantic

enrichment techniques, we're able to capture and

leverage semantic relationships and implicit

meanings present in relational data. This allows for a

richer and more contextual representation of data in

the document-oriented model, thereby enhancing the

quality and relevance of the migration. Moreover, our

approach ensures data consistency and integrity

during migration, ensuring that specific constraints

and business rules are adhered to in the resulting

document-oriented model. This is crucial for

ensuring the reliability and robustness of systems that

depend on this data.

S. Sabrina discuss the use of NoSQL solutions to

address issues related to the ever-increasing volume

of data. Their solution provides an algorithm for

transforming data from an RDB to NoSQL databases,

Redis, Cassandra, MongoDB, and Neo4j, offering a

semi-automatic migration approach [24].

C. Carlos describes a data model for creating a

NoSQL database from a relational database. This

involves highlighting similarities between the CDM

conceptual data model and the LDM logical data

model of the relational model, followed by

transformation into a PDM physical data model for a

NoSQL database. The process includes extracting

dependencies between entities for different types of

relationships. The same conceptual and logical

models used for RDBMS modeling are applied to

NoSQL modeling [25]. Our approach to automatic

migration from the relational model to the document-

oriented model is not only more comprehensive and

faithful to the principles of the document-oriented

model, but it also offers a richer and more nuanced

portrayal of data while ensuring data consistency and

integrity throughout the migration process.

Cabral, J. V. L., et al confronts the complexities

inherent in NoSQL databases, where data storage

lacks a fixed schema, leading to intricate query

development due to schema dependencies and the

need to revise queries following schema alterations.

This method leverages conceptual data modeling and

code generation to facilitate intricate data retrieval

queries in a schema-agnostic fashion. It introduces a

language grounded in classic ER algebra tailored for

MongoDB, facilitating the establishment of

mappings between entities, relationships, and

document collections [26].

In our increasingly computer-driven world,

crucial areas such as social communication, security,

commerce, and education heavily depend on

computer science. Institutions handle extensive data,

commonly stored in relational databases for their

user-friendly interfaces and support for intricate

computations. However, the emergence of NoSQL

databases, offering four distinct categories, prompts

the need for migrating data from relational systems.

This paper undertakes a thorough analysis of NoSQL

categories using the WSM method, aiming to identify

the most suitable category for transitioning data from

relational systems, initiating the exploration of this

migration process [27]. Conducting a multi-criteria

analysis can be time-consuming and resource-

intensive. It requires expertise in evaluating and

weighting different criteria, which might introduce

subjectivity. Additionally, this approach may not

fully account for dynamic changes in database

technologies or evolving project requirements over

time. However, our migration approach offers

efficiency and speed, as it can rapidly transform data

from a relational database to a NoSQL database based

on predefined rules and intelligent algorithms. there

is no need for manual intervention and ensures

consistency in the migration process.

This research by Khan. M, et al. delves into the

pivotal role of data as a company's most prized asset,

crucial for analysis, decision-making, and judgment,

necessitating sophisticated cache and accessibility

mechanisms. It explores the effectiveness of SQL and

NoSQL database systems in scientific data

production. SQL, or RDBMS, arranges data into

Received: April 29, 2024. Revised: May 24, 2024. 637

International Journal of Intelligent Engineering and Systems, Vol.17, No.4, 2024 DOI: 10.22266/ijies2024.0831.48

tables, whereas NoSQL provides scalability and an

unstructured framework for handling large data

applications, encompassing diverse types like wide

column stores, documents, graph databases, and key-

value pairs, distinct from SQL's standardized

structure. Both systems, being open-source, have the

capacity for horizontal scaling. The study compares

SQL and NoSQL databases, evaluating data

organization and performance through analyses of

loading, response, and retrieval times to discern

efficiency and efficacy [28].

All these migration approaches offer solutions for

transitioning from a relational database to a

document-oriented database. These approaches

primarily focus on how to establish and execute

migrations because Big Data imposes fewer

constraints on data modeling. They do not

concentrate on the physical structure of the target

database or improvements in data storage efficiency.

MongoDB stands out for its ability to efficiently

handle unstructured and semi-structured data, Thanks

to its schema flexibility, horizontal scalability, and

high read and write performance. Its document-

oriented data model facilitates seamless integration

with modern applications and provides increased

agility in data development and management.

MongoDB's embedded documents enable the

storage of complex data structures hierarchically and

flexibly using nested JSON documents. This

approach simplifies modeling relationships between

data without requiring complex joins, as in relational

databases. Grouping related data enhances the

efficiency of read and write operations, leading to

more effective horizontal scalability by diminishing

join costs during data distribution across multiple

nodes.

None of the other techniques or approaches have

so far addressed the transition from the relational

physical schema to a schema adaptable to the

document-oriented model. All works have favored

the relational transformation to MongoDB, whether

manually or automatically, due to the inherent

flexibility of MongoDB's schema. However, despite

the establishment of the migration, the full

exploitation of the potential offered by MongoDB's

document-oriented paradigm remains largely

underutilized, thus highlighting a major challenge in

maximizing the benefits of this technological

transition.

Our migration approach focuses on how

relational data will be stored in our new ODDB

(Object-Oriented Document Database). This distinct

approach influences the number of queries and

updates needed to successfully perform operations

and meet user needs. Our approach also reduces the

number of records and time required for insertion,

deletion, and selection (see section 5.2). The

automation of our approach significantly shortens the

design phase and allows for faster responses to user

needs. In a broader context, companies can fully

harness the benefits of Big Data, such as agility and

responsiveness, by employing a robust analytical data

mining approach.

3. Development of the enrichment semantic

via the relational database

3.1 Semantic enrichment

Semantic enrichment is an enhanced

representation of a Relational Database (RDB) that

expands upon the traditional relational concept by

introducing a new object-oriented concept.

Enhancing data, information, or texts involves

supplementing them with additional content or

context to improve their comprehension, significance,

and usefulness. This process may encompass the

inclusion of metadata, semantic connections, tags, or

annotations, thereby enriching the structure and

streamlining analysis, searchability, and

interpretation for both machines and users. It

achieves this through the use of metadata, a col-

lection of processing elements, and various

components that enable the retrieval of information

about the database. This information includes details

about the extraction procedure, utilization of result

set metadata, and the information extraction process

pertaining to the parameters used for querying objects.

For a more comprehensive understanding of the

implementation of semantic enrichment and the

algorithms responsible for its creation, please consult

the referenced article [29,30].

In the context of semantic enrichment, a database

takes on a flattened structure that defines the diverse

relationships between tables. It is defined as a

collection of classes, denoted as C, where each class

is represented as C := (cn, degree, cls, a, contributor)

[31, 32].

Here's a breakdown of the components within a

class definition:

• Cn: This represents the name of the class.

• Degree: It can be categorized as the first degree

(referring to tables containing the Primary Key

(PK)) or the second degree (referring to tables

containing Foreign Key (FK) without PK).

• Cls: This encompasses aggregation, association,

inheritance, and simple class (classes that do not

belong to the other classifications).

• Contributor: This represents a list of classes.

Received: April 29, 2024. Revised: May 24, 2024. 638

International Journal of Intelligent Engineering and Systems, Vol.17, No.4, 2024 DOI: 10.22266/ijies2024.0831.48

Table 1. Graphical representation of the semantic enrichment

Cn Degre Classification

Attribut

DatabaseMetaDatadmd = connection.getMetaData();

ResultSet tables=

dmd.getTables(catalog,schemaPattern,tableNamePattern,types);
Contributor

Tables An Type Tag l N D

T
A

B
L

E
_

N
A

M
E

In
tern

 T
raitm

en
t

p
aram

eterizab
le

p
art

in
teg

ratin
g

th

e
co

n
cep

t

o
f o

b
ject m

o
d

elin
g

N
ex

t()

 C
O

L
U

M
N

_
N

A
M

E

D
A

T
A

_
T

Y
P

E

R
esu

ltS
et

clefs
=

d
m

d
.g

etP
rim

ary
K

ey
s

(catalo
g

, sch
em

a, tab
le)

d
m

d
.g

etE
x

p
o
rted

K
ey

s

(catalo
g

, sch
em

a, tab
le)

C
O

L
U

M
N

_
S

IZ
E

IS
_

N
U

L
L

A
B

L
E

C
O

L
U

M
N

_
D

E
F

In
tern

 T
raitm

en
t

• A: It refers to an attribute and is defined as a set

of attributes, where each attribute is denoted as

a := (an, t, tag, l, n, d).

Here's what each attribute component represents:

o an: Name of the attribute.

o t: Type of the attribute.

o tag: Indicates whether the attribute is a primary

key (PK) or a foreign key (FK).

o l: Length of the attribute.

o n: Indicates whether the attribute can take a null

parameter.

o d: Specifies the default value of the attribute.

Table1. provides a schematic representation of

the development of semantic enrichment:

3.2 Modeling techniques for transforming a RDB

towards NoSql (Mongodb)

In contrast to the RDB, which relies on a rigid

physical schema, NoSQL offers a flexible physical

schema that doesn't impose a predefined document

structure. This flexibility enables the establishment of

data relationships through references and embedded

documents [33].

* References function similarly to foreign keys in

the relational model. They are used to prevent data

redundancy and represent relationships and sets using

OBJECTID.

• Used in the case of the relationship (x, n) (x, n),

where x can be 1 or 0, especially in the context of

associations when connecting two tables during

the key migration when transitioning from the

conceptual model to the logical model.

• Used in the case of the relationship (x, n) (x, 1),

including scenarios involving ternary

relationships.

• Used in the case of reflexive relations when a table

is related to itself.

• Used in the case of a one-to-one (1-1) relationship,

applicable in both simple relationships and

inheritance relationships.

* Embedded documents offer a technical

representation for relationships within a document,

enhancing data readability and facilitating atomic

updates.

Syntax used for creation:

{

 "_id": { "$oid": "ObjectId" },

 "Attribute1": "value_1",

 "Attribute2": {

 "attr1": "val1",

 "attr2": "val2"

 }

}

This syntax is employed for:

• Representing composition relationships.

• Visualizing data within the context of other data,

particularly in cases involving composite

attributes that combine values from elementary

attributes.

4. Migrating a relational database to NoSQL

When migrating from a relational database to a

document-oriented database with no predetermined

schema, storage takes the form of BSON documents,

and data is organized into collections with shared

indexes. Each collection corresponds to a table

extracted from the semantic enrichment process, and

this organization incorporates the concepts of

references and embedded documents [34]. This

integration of new concepts helps eliminate the need

Received: April 29, 2024. Revised: May 24, 2024. 639

International Journal of Intelligent Engineering and Systems, Vol.17, No.4, 2024 DOI: 10.22266/ijies2024.0831.48

Figure. 1 The method responsible for selecting data from the relational database

for joins commonly used in the relational model,

which are often not scalable.

The selection of data from the Relational

Database (RDB) is based on the parameter C.Cn from

the semantic enrichment process, which is passed as

a parameter to the selection method, as depicted in

Fig. 1 [35].

The function selectAllO is used to query a

database and extract all the data stored in a specific

table. The function establishes a connection to the

specified MySQL database, constructs an SQL

statement to retrieve all rows from the specified table,

executes the SQL query, and iterates through the

result set to display the values of each column. This

method retrieves all the columns and rows of the

relevant table, providing a comprehensive view of its

contents without excluding any information.

The ResultSet object provides valuable

information about the data, including table names,

column names, and column properties. The following

methods are used:

getColumnCount: This method returns the

number of columns contained in the ResultSet.

Statement objects are employed to execute basic

SQL queries and retrieve results through the

ResultSet class. To create a Statement instance, the

createStatement method is called on the Connection

object obtained using one of the DataSource

getConnection methods.

executeQuery: This method returns a ResultSet

object.

To obtain metadata from the data source, the

getMetaData method is called using the Connection

object created earlier.

{"_id":{"$oid":"_id field that stores ObjectId"},

"RDB.Table1.Attribut_1)":"RDB.Table1.Attribut_1(

value_1)",

"RDB.Table1.Attribut_2)":"RDB.Table1.Attribut_2(

value_1)",...,"RDB.Table1.Attribut_n)":"RDB.Table

1.Attribut_n(value_1)"}

{"_id":{}}

{"_id":{}}

{"_id":{}}...

{"_id":{}}

{"_id":{"$oid":"_id field that stores ObjectId"},

"RDB.Table1.Attribut_1)":"RDB.Table1.Attribut_1(

value_n)",

"RDB.Table1.Attribut_2)":"RDB.Table1.Attribut_1(

value_n)",...,"RDB.Table1.Attribut_n)":"RDB.Table

1.Attribut_1(value_n)"}

The syntax for migrating from our approach of a

RDB to NoSQL is generated through semantic

enrichment, serving as an intermediary between the

RDB and MongoDB. This process involves the

integration of the object-oriented concept into the

new NoSQL database. The syntax varies based on the

classification assigned to the table in the semantic

enrichment and its contribution. Two methods of

creation are chosen: one involving a straightforward

creation that incorporates the reference concept, and

another that integrates the concept of embedded

documents.

For the creation of the NoSQL database using

the referencing concept:

{"_id":{"$oid":"_id field that stores

ObjectId"},"Cn.Attribute.An(element_1)":"Cn.Attri

bute.An(value_1)",

"Cn.Attribute.An(element_2)":"Cn.Attribute.An(val

ue_1)",...,"Cn.Attribute.An(element_n)":"Cn.Attribu

te.An(value_1)"}

{"_id":{}}

{"_id":{}}

{"_id":{}}...

{"_id":{}}

Received: April 29, 2024. Revised: May 24, 2024. 640

International Journal of Intelligent Engineering and Systems, Vol.17, No.4, 2024 DOI: 10.22266/ijies2024.0831.48

Figure. 2 The method responsible for handling the request dedicated to the specific selection

{"_id":{"$oid":"_id field that stores ObjectId"},

"Cn.Attribute.An(element_1)":"Cn.Attribute.An(val

ue_n)",

"Cn.Attribute.An(element_2)":"Cn.Attribute.An(val

ue_n)",...,"Cn.Attribute.An(element_n)":"Cn.Attribu

te.An(value_n)"}

Creation of the NoSQL database using the

concept of embedded documents:

When incorporating the embedded document

concept, we generate documents within another

document.

To facilitate this creation, a specific selection

request is necessary, tailored to the identifier of the

table, which typically serves as a foreign key in the

interacting table. For instance, this selection might be

expressed as Cn.Classification:=composition &&

Cn.Attribute.tag:=PK.

The select function allows querying a database

and extracting specific data that meets defined

criteria. It enables the selection of particular columns

from a table or computed data based on these

columns, depending on conditions specified in the

WHERE clause. This capability enables users to

retrieve precise and relevant information by filtering

data according to defined parameters, thus providing

increased flexibility in retrieving and analyzing data

stored in the database. This selection criteria will be

included as a parameter in the request, as shown in

Fig. 2. The creation process follows the syntax below.

{"_id":{"$oid":"_id field that stores

ObjectId"},"Cn.Attribute.An(element_1)":"Cn.Attri

bute.An(value_1)",

"Cn.Attribute.An(elements_2)":{"element_2_1":{"C

n.Attribute.An(elements_2_1_1)":"Cn.Attribute.An(

value_1)","Cn.Attribute.An(elements_2_1_2)":"Cn.

Attribute.An(value_1)",...,"Cn.Attribute.An(element

s_2_1_n)":"Cn.Attribute.An(value_1)"},...,

"element_2_n":{"Cn.Attribute.An(elements_2_n_1)

":"Cn.Attribute.An(value_1)","Cn.Attribute.An(ele

ments_2_n_2)":"Cn.Attribute.An(value_1)",...,"Cn.

Attribute.An(elements_2_n_n)":"Cn.Attribute.An(v

alue_1)"}},...,

"Cn.Attribute.An(element_n)":"Cn.Attribute.An(val

ue_1)"}

{"_id":{}}

{"_id":{}}

{"_id":{}}...

{"_id":{}}

{"_id":{"$oid":"_id field that stores ObjectId"},

"Cn.Attribute.An(element_1)":"Cn.Attribute.An(val

ue_n)",

"Cn.Attribute.An(elements_2)":{"element_2_1":{"C

n.Attribute.An(elements_2_1_1)":"Cn.Attribute.An(

value_1)","Cn.Attribute.An(elements_2_1_2)":"Cn.

Attribute.An(value_1)",...,"Cn.Attribute.An(element

s_2_1_n)":"Cn.Attribute.An(value_1)"},...,

"element_2_n":{"Cn.Attribute.An(elements_2_n_1)

":"Cn.Attribute.An(value_1)","Cn.Attribute.An(ele

ments_2_n_2)":"Cn.Attribute.An(value_1)",...,"Cn.

Attribute.An(elements_2_n_n)":"Cn.Attribute.An(v

alue_1)"}},...,

"Cn.Attribute.An(element_n)":"Cn.Attribute.An(

value_n)"}

For each class extracted from semantic

enrichment, such as C.Classification:=(simple ||

association || inherBy || Inherts || agregation), a

collection is created with a name defined in the

semantic enrichment, denoted as C.Cn. This

collection is populated with elements associated with

the C.Attribute.An element, along with their

corresponding data. This approach eliminates issues

related to joins when integrating the reference

concept.

In the case of compositions, where the

classification is 'composition' and C.Contributor

equals C1.Cn, a collection is created alongside it.

This results in a collection containing elements

composed of sets of collections that model the

semantics expressed by 'component' and 'compound.'

However, it should be noted that the contents are

destroyed when the container is destroyed [36].

Below is the algorithm responsible for migrating

an RDB to NoSQL:

Algorithm 1: Algorithm for the migration of a RDB

to a NoSQL databases

1 Begin

2 Create the semantic enrichment

Received: April 29, 2024. Revised: May 24, 2024. 641

International Journal of Intelligent Engineering and Systems, Vol.17, No.4, 2024 DOI: 10.22266/ijies2024.0831.48

3 If ((C.Classification == (simple || association ||

inherBy || inherts || aggregation)) &&

((C.Contributor = C1.Cn) &&

(C1.Classification != composition)))

4 Create C.Cn collection with DBCollection

5 Execute the selectQuery(C.Cn)

6 Instantiate C.Cn with a BasicDBObject for each

row

7 For (i = 1; i <= selectQuery.nbrElement; i++)

8 For (j = 0; j <attribut.nbrElement; j++)

9 CnElement(i).put("data[0][j]","data[i][j]")

10 End for

11 DBCollection.insert(CnElement(i))

12 End for

13 Else if ((C.Classification == (simple ||

association || inherBy || inherts || aggregation)) &&

((C.Contributor = C1.Cn) && (C1.Classification

== composition)))

14 Create C.Cn collection with DBCollection

15 Execute the selectQuery(C.Cn)

16 Instantiate C.Cn with a BasicDBObject for each

row

17 For (i = 1; i <= selectQuery.nbrElement; i++)

18 For (j = 0; j < attribut.nbrElement; j++)

19 CnElement(i).put("data[0][j]","data[i][j]")

20 If C.Attribut.tag == pk

21 Instantiate C1.Cn with a BasicDBObject to store

related pieces with Embedded Documents for each

row

22 Execute the selectSpecifiqueQuery(C1.Cn,

data[0][j], data[i][j])

23 For (a = 1; a <=

selectSpecifiqueQuery.nbrElement; a++)

24 For (b = 0; b < attribut.nbrElement; b++)

25 CnElement(a).put("data[0][b]","data[a][b]")

26 End for

27 DBObjectEmbedded.put(Cn.element(a))

28 End for

29 CnElement(i).put("data[0][j]",

DBObjectEmbedded)

30 End if

31 End for

32 DBCollection.insert(CnElement(i))

33 End for

34 End

The migration algorithm relies on a complex

process that begins with acquiring information from

our flattened model, which has been semantically

enriched. This initial phase is crucial as it allows

capturing all the nuances and details necessary for

efficient data migration.

Once this information is obtained, the algorithm

proceeds to extract the various object principles

present in the source relational database. These object

principles represent the fundamental entities and

relationships that structure the source database. By

identifying and precisely extracting them, the

algorithm can then manipulate them appropriately to

integrate them into the target system coherently and

completely.The first step of our migration process

involves creating a flattened model enriched

semantically by object concepts. The flattened model

refers to a simplified and linear representation of data,

used to facilitate their manipulation and transfer.

Enriching this model semantically means giving it a

deeper and more contextual meaning. This involves

incorporating additional information about the

meaning and relationships between the data,

facilitating their interpretation by computer systems.

This automatic process is based on previous work we

have conducted and described in the references we

have published. These references provide a

theoretical and methodological basis for our

migration approach, detailing the techniques used

and demonstrating their effectiveness through

thorough experiments and analyses.

The algorithm outlines the steps for migrating an

RDB (Relational Database) to a NoSQL ODDB

(Object Oriented Database) following the procedure

for semantic enrichment. Based on the classification

extracted from the meta-model's semantic enrichment,

we determine whether to create an embedded

document or establish a reference. This determination

applies to all the tables within the RDB.

5. Comparative study: Evaluating our

approach against MySQL and MongoVue

The comparison of approaches centers around

two cornerstones of the open-source world: MySQL

and MongoDB. These platforms have implemented

automatic migration from RDBs to NoSQL oriented

documents and offer a programming interface that

facilitates self-monitoring [37][38].

A RDB is taken as an example in its logical form,

and from it, we perform the extraction of semantic

enrichment.

Logical Data Model of the Relational Database:

Dept (`dno`, `dname`)

Employ (`pno`, `salary`, `grade`)

Kids (`kno`, `kname`, `sexe`, `pno`)

Person (`pno`, `pname`, `bdate`, `adress`, `dno`,

`pnosup`)

Proj (`prno`, `pname`, `description`)

Trainee (`pno`, `levell`, `typee`)

Works_on (`pno`, `prno`)

The semantic enrichment was obtained after the

exploitation of metadata and a series of processing

Received: April 29, 2024. Revised: May 24, 2024. 642

International Journal of Intelligent Engineering and Systems, Vol.17, No.4, 2024 DOI: 10.22266/ijies2024.0831.48

Table 2. The obtained semantic enrichment extracts from MySQL

Cn Degre Classification
Attribut

Contributor
An Type tag l N D

Person 1st inherBy

 Pno Varchar PK N

Kids

Works_on

Trainee

Employ

Pname Varchar N

Bdate Date N

Adress Varchar 255 N

Dno Int FK N Dept

PnoSup Varchar FK Y Person

Trainee 2nd Inherts

Pno Varchar FK N Person

Level Varchar N

Type Varchar N

Employ 2nd Inherts

Pno Varchar FK N Person

Salary Int Y

Grade Varchar N

Works_on 2nd Association
Prno Int FK N Proj

Pno Varchar FK N Person

Dept 1st Simple
Dno Int PK N Person

Dname Varchar N

Proj 1st Simple

Prno Int PK N Works_on

Prname Varchar N

Description Varchar 255 Y

Kids 1st Aggregation

Kno Int PK N

Kname Varchar N

Sex Char N

Pno Varchar FK N Person

steps to extract various object concepts from the RDB.

MySQL was used as the RDBMSS.

This section provides an evaluation that describes

the working methodologies of both

MySQL/mongoVue and our approach. These

methodologies start with the same relational database

as a foundation and result in two distinct NoSQL

databases, each with its unique characteristics.

5.1 Migration result for MySQL and MongoVue

approach

The outcome of the RDB migration approach to

NoSQL (using MySQL and mongoVue) involves

capturing only the first three records and employing

MongoDB as the OODBMS.

{"_id":{"$oid":"565068b23172f67743c24172"},"pn

o":"d543","salary":"9000","grade":"engineer"}

{"_id":{"$oid":"565068b23172f67743c24173"},"pn

o":"g234","salary":"12000","grade":"director"}

{"_id":{"$oid":"565068b23172f67743c24174"},"pn

o":"f552","salary":"7000","grade":"commercial"}

{"_id":{"$oid":"565068b23172f67743c24178"},"kn

o":"34","kname":"badr","sexe":"m","pno":"d543"}

{"_id":{"$oid":"565068b23172f67743c24179"},"kn

o":"23","kname":"sarah","sexe":"f","pno":"d543"}

{"_id":{"$oid":"565068b23172f67743c2417a"},"kn

o":"21","kname":"jeff","sexe":"m","pno":"g234"}

{"_id":{"$oid":"565068b23172f67743c24175"},"pn

o":"g234","pname":"azar","bdate":"1984-04-

24","adress":"lotissement 34 rue des far appt

6","dno":"1","pnosup":null}

{"_id":{"$oid":"565068b23172f67743c24176"},"pn

o":"d543","pname":"alae","bdate":"1987-03-

15","adress":"residence ibn sina imm d4 appt

3","dno":"1","pnosup":"g234"}

{"_id":{"$oid":"565068b23172f67743c24177"},

"pno":"e234","pname":"fouad","bdate":"1987-01-

03","adress":"rayhan imm 4 appt

5","dno":"2","pnosup":"d543"}

Received: April 29, 2024. Revised: May 24, 2024. 643

International Journal of Intelligent Engineering and Systems, Vol.17, No.4, 2024 DOI: 10.22266/ijies2024.0831.48

5.2 Migration result for our approach

The result of the migration from a RDB to

NoSQL (our approach) involves capturing only the

first three records, using MongoDB as the OODBMS.

{"_id":{"$oid":"56506960317209a6d85970fa"},"pn

o":"d543","salary":"9000","grade":"engineer","kids"

:{"kids":{"kno":"34","kname":"badr","sexe":"m","p

no":"d543"},"kids1":{"kno":"23","kname":"sarah","

sexe":"f","pno":"d543"}}}

{"_id":{"$oid":"56506960317209a6d85970fb"},"pn

o":"g234","salary":"12000","grade":"director","kids

":{"kno":"21","kname":"jeff","sexe":"m","pno":"g2

34"}}

{"_id":{"$oid":"56506960317209a6d85970fc"},"pn

o":"f552","salary":"7000","grade":"commercial"}

{"_id":{"$oid":"56506960317209a6d85970fd"},"pn

o":"g234","pname":"azar","bdate":"1984-04-

24","adress":"lotissement 34 rue des far appt

6","dno":"1","pnosup":null}

{"_id":{"$oid":"56506960317209a6d85970fe"},"pn

o":"d543","pname":"alae","bdate":"1987-03-

15","adress":"residence ibn sina imm d4 appt

3","dno":"1","pnosup":"g234"}

{"_id":{"$oid":"56506960317209a6d85970ff"},"pn

o":"e234","pname":"fouad","bdate":"1987-01-

03","adress":"rayhan imm 4 appt

5","dno":"2","pnosup":"d543"}

All tests are conducted on the same relational

database, resulting in the insertion of 3 records, 9

records, and 12 records. We capture the results in

milliseconds to illustrate the differences between the

three migration approaches. It is worth noting that the

blue line represents both the MySQL and MongoVue

approaches, which yield the same migration results.

Figure. 3 The representation of the conceptual

transformation to navigational

The concept addressed in this analysis is the

concept of inheritance with composition. Fig.3

illustrates the conceptual transition to the

navigational approach applied during our RDB

migration towards NoSQL:

The real function (office) of three variables is an

application of R 3 in value in R, we note Df domain

of definition of f such as

f: R^3→R,(x1,x2,x3)→z=f(x1,x2,x3)

The function

f: R^3→R,(x1,x2,x3)→z=f(x1,x2,x3)

The tables x1, x2, and x3 are successive tables in

the relational database, where x1 represents 'person',

x2 represents 'employee', and x3 represents 'children'.

Semantically, the relationship between a person and

an employee is represented, with the employee

inheriting from the 'person' table. Additionally, the

relationship between an employee and a child is

established, where the 'child' table depends on the

'employee' table because deleting the employee

results in the deletion of the child. For instance, x1

represents the number of records in the 'person' table,

x2 represents the number of records in the 'employee'

table, and x3 represents the number of records in the

'child' table. These variables are defined by values x,

y, and z, respectively, as follows:

x+y+z = nbrRecord.

After evaluating the two migration approaches in

terms of data access, we observed that the execution

time is better in our approach, which integrates the

object concept into the NoSQL structure.

Figure. 4 Graph showing the speed of insertion

between the three approaches

Figure 4: Graph Showing the Speed of

Insertion between the Three Approaches

66

74

77

65

70

73

55

60

65

70

75

80

30 6 9

ti
m

e
 i

n
 m

il
li

se
n

cd

The number of records inserted into the
'employee' table per millisecond.

mySQL or mongoVUE our Approch

Received: April 29, 2024. Revised: May 24, 2024. 644

International Journal of Intelligent Engineering and Systems, Vol.17, No.4, 2024 DOI: 10.22266/ijies2024.0831.48

Figure. 5 Graph showing the speed of selection between

the three approaches

Figure. 6 Graph showing the speed of deletion between

the three approaches

Figure. 7 Graph showing the evolution of recording

between the three approaches

The deletion time for a specific query, targeting

the removal of an item from the 'employ' collection

in the approach followed by MySQL and MongoVue,

varies depending on the number of children for each

employee. This is because the query involves

removing both the employee and their children to

maintain the semantics extracted from the RDB. In

contrast, our migration approach stores data in a

manner that preserves the semantics derived from

semantic enrichment, resulting in a consistent

deletion time.

In the previous tests, we assigned a child to each

employee to examine the execution time. In the

upcoming tests, we will add a 'Kid' item to track the

evolution of records in both approaches as the

number of children for each employee increases.

In our approach, the attributes of the composed

class directly include the attributes of the component

class. This allows easy access to the data of the

component class from the composed class. The

composed class will determine the number of records,

as each instance of the composed class will contain a

set of records corresponding to the attributes of the

component class. The number of records is

aEmploy+mPerson.

The approach used by MongoVue and MySQL

stores a reference to the component class instead of

copying its attributes. This makes accessing the data

of the component class more complex and increases

the number of records. The number of records is

obtained through a sequence, such as S_0 = 0 and n

∈N^* if for all n integer we have: Sn =Sn-1 + 2 +

wKids, such as S_(n) is the number of records we

want to calculate.

6. Discussion

Previous research on migrating relational

databases to document-oriented databases primarily

focused on data transfer, neglecting the

transformation of the physical relational schema into

a document-oriented physical schema. These

approaches preserve the relational structure by

organizing data in tables composed of rows and

columns. In contrast, the document-oriented model

stores data in documents, each of which can contain

multiple sub-documents. This approach involves

moving data from one system to another without

necessarily altering the underlying structure or logic

of the data.

The rigidity of the relational structure ensures

data integrity and facilitates complex queries

involving joins. In contrast, our approach proposes a

complete redesign of the data schema to adapt it to

the structure and principles of the new document-

Received: April 29, 2024. Revised: May 24, 2024. 645

International Journal of Intelligent Engineering and Systems, Vol.17, No.4, 2024 DOI: 10.22266/ijies2024.0831.48

oriented system. This involves rethinking data

structuring and access.

The migration focuses on transforming the

physical relational schema into a document-oriented

physical schema to efficiently model different object

concepts. Then, the data is migrated to the new

database according to the target physical schema.

6.1 Extraction and semantic enrichment of object

concepts

The first step is to extract the various object

concepts from the relational database. This involves

semantic enrichment using semantic techniques to

identify and extract the object concepts present in the

relational database. This step may include analyzing

table and column names, relationships between tables,

referential integrity constraints, and developing

specific algorithms to automate the extraction of

object concepts and their organization into a flattened

model. This model then serves as the basis for the

transformation to the document-oriented schema

(Table 1).

6.2 Advantages of schema transformation

The schema transformation approach offers

several advantages over data transfer-based

approaches:

Better Suitability to the Document-Oriented

Model: The schema structure is optimized for the

document-oriented model, allowing full exploitation

of the features of this type of database, such as

flexibility and scalability.

More Efficient Queries: The document-oriented

schema is designed for more efficient queries,

especially for complex queries involving

relationships between object concepts.

Simplified Maintenance: A well-designed

schema is easier to understand, maintain, and evolve

over time.

Better Support for Heterogeneous Data: The

document-oriented model offers better support for

heterogeneous and complex data, making it more

suitable for modern applications.

6.3 Performance criteria

We compared our approach for migrating

relational databases to document-oriented databases

with two solutions available on the market:

MongoVue and MySQL. The results of this

comparison show that our method significantly

outperforms existing approaches in terms of

performance and efficiency.

We conducted a series of tests to compare the

performance of our migration approach with those of

MongoVue and MySQL. The comparison criteria

included selection time, insertion time, and record

minimization in certain migration cases.

6.3.1. Selection time

Our Approach: The selection time is significantly

reduced thanks to the optimized structure of the

documents, allowing faster queries.

MongoVue and MySQL: The selection time is

reasonable but less efficient compared to our

approach, as it can be longer due to the joins

necessary to access data distributed across multiple

tables.

6.3.2. Insertion time

Our Approach: The insertion time is optimized

thanks to the reduction of join operations and the

efficiency of document organization.

MongoVue and MySQL: The insertion time is

acceptable but higher than in our approach due to the

need to respect referential integrity constraints and

the rigid organization of data.

6.3.3. Minimization of records

Our Approach: We observed a significant

reduction in the number of records needed to

represent complex relationships, such as between an

employee and their children, thanks to the use of

nested documents.

MongoVue and MySQL: The traditional

relational structure often results in a multiplication of

records to maintain relationships between entities.

7. Conclusion

This article explores the transition from a

relational database to a new document-oriented

NoSQL database using MongoDB, guided by a

semantic enrichment mechanism. This mechanism

extracts various object concepts from the relational

physical schema and transforms them into a semantic

enrichment that flattens the relational database.

The primary challenge in data modeling lies in

finding a balance between the requirements of the

application. When modeling, it's essential to consider

how the data will be used in the application.

Decisions regarding the design of data models for

MongoDB applications are centered around the

organization of documents and how the application

depicts relationships between data. This flexibility

enables the mapping of documents to entities or

objects. Each document can align with the data fields

Received: April 29, 2024. Revised: May 24, 2024. 646

International Journal of Intelligent Engineering and Systems, Vol.17, No.4, 2024 DOI: 10.22266/ijies2024.0831.48

of the represented entity, even if it varies

substantially from other documents in the collection.

The creation of the new document-oriented

database follows a specific syntax, which

incorporates the object concept by adding the notions

of aggregation, composition, and inheritance via

objectID, using the principles of referencing and

embedded documents. A comparative study was

conducted across various approaches, focusing on

architecture, data manipulation speed, and the

number of records. The migration approach proposed

in this study demonstrates remarkable effectiveness

compared to the methods utilized by MySQL,

MongoVue, and other approaches cited in related

works. The comparative analysis of performance

metrics, including selection, insertion, and deletion

operations, clearly indicates the superiority of the

migration approach.

Firstly, the migration approach showcases

reduced speed for selection, insertion, and deletion

operations. This means that when querying data

(selection), inserting new data, or removing existing

data, the migration approach exhibits faster execution

times compared to the methods employed by MySQL,

MongoVue, and other approaches.

Additionally, the migration approach offers more

efficient storage, resulting in a minimized number of

records. By optimizing the storage mechanism, the

migration approach ensures that the data is stored in

a compact and organized manner, thereby reducing

the overall number of records needed to represent the

same dataset. This not only saves storage space but

also contributes to improved data management and

retrieval efficiency.

Overall, the superior performance of the

migration approach underscores its effectiveness in

achieving faster operation execution and more

efficient data storage, positioning it as a favorable

choice for database management tasks compared to

the alternatives. A prototype was developed,

demonstrating the entire migration process

automatically without human intervention,

showcasing the effectiveness of this approach.

Conflicts of Interest

The authors declare no conflict of interest.

Author Contributions

Conceptualization, A. El Alami and Y. Khourdifi;

methodology, A. El Alami; software, A. El Alami and

Z. Ait El Mouden; validation, A. El Alami and M.

Lahmer; formal analysis, A. El Alami and M. L.

Hasnaoui; investigation, A. El Alami; resources, A.

El Alami; data curation, A. El Alami; writing—

original draft preparation, A. El Alami and Y.

Khourdifi; writing—review and editing, A. El Alami

and Y. Khourdifi; visualization, A. El Alami and Z.

Ait El Mouden; supervision, A. El Alami; project

administration, A. El Alami; funding acquisition, A.

El Alami.

References

[1] N. K. sung, et L. D. sik, “Bigdata Platform

Design and Implementation Model”, Indian J. Sci.

Technol., Vol. 8, No. 18, août 2015.

[2] P. S. Sen, et N. Mukherjee, “An ontology-based

approach to designing a NoSQL database for

semi-structured and unstructured health data”,

Cluster Comput., avr. 2023.

[3] W. Khan, T. Kumar, C. Zhang, K. Raj, A. M. Roy,

and B. Luo, “SQL and NoSQL database software

architecture performance analysis and

assessments—a systematic literature review”,

Big Data Cogn. Comput., Vol. 7, No. 2, 2023.

[4] T. Taipalus, “Database management system

performance comparisons: A systematic

literature review”, J. Syst. Softw., p. 111872, oct.

2023.

[5] A. Meier and M. Kaufmann, SQL & NoSQL

Databases: Models, Languages, Consistency

Options and Architectures for Big Data

Management, Springer Vieweg, 2019.

[6] E. A. Lee, R. Akella, S. Bateni, S. Lin, M.

Lohstroh, and C. Menard, “Consistency vs.

availability in distributed real-time systems”,

Intelligent Computing, Vol. 2, pp. 13, 2023.

[7] S. Zhao, et E. de Angelis, “Performance-based

Generative Architecture Design: A Review on

Design Problem Formulation and Software

Utilization”, J. Integr. Des. Process Sci., Vol. 22,

No. 3, p. 55-76, 2019.

[8] S. M. L. Hahn, I. Chereja, et O. Matei,

“Evaluation of Transformation Tools in the

Context of NoSQL Databases”, Lecture Notes in

Networks and Systems, p. 146-165, 2021.

[9] T. T. Le, and X. L. Pham, “Towards NoSQL

databases: Experiences from actual projects”,In;

Proc. of 2022 3rd International Conf on Big Data

Analytics and Practices (IBDAP), pp. 15-20,

2022.

[10] H. A. Eldrrat, and A. M. Maatuk, “Data

Migration from Conventional Databases into

NoSQL: Methods and Techniques”, In: Proc. of

2023 IEEE 3rd International Maghreb Meeting

of the Conf on Sciences and Techniques of

Automatic Control and Computer Engineering

(MI-STA), pp. 370-375, 2023.

Received: April 29, 2024. Revised: May 24, 2024. 647

International Journal of Intelligent Engineering and Systems, Vol.17, No.4, 2024 DOI: 10.22266/ijies2024.0831.48

[11] Q. Meng, K. Zhang, H. Pan, M. Yuan et B. Ma,

“Design and Implementation of Key-Value

Database for Ship Virtual Test Platform Based on

Distributed System”, Communications in

Computer and Information Science, p. 109-123,

2023

[12] R. H. P. Prakoso, and F. N. Azizah, “The Study

of Data Modeling Methodologies For Column-

Oriented Databases”, In: Proc. of 2023 IEEE

International Conference on Data and Software

Engineering (ICoDSE), Toba, Indonesia, pp.

238-243, 2023.

[13] M. D. Ordoñez, D. S. R. Baena, et B. Y. Casalilla,

“A new approach for the construction of

historical databases—NoSQL Document-

oriented databases: the example of

AtlantoCracies”, Digit. Scholarship Humanities,

avr. 2023.

[14] M. Elsabagh, “NO SQL Database: Graph

database”, Egyptian Journal of Artificial

Intelligence, Vol. 1, No. 1, 2022.

[15] K. Seguin, “The Little MongoDB”. Self-

Published, 2013.

[16] N. Bansal, S. Sachdeva, et L. K. Awasthi,

“Database Migration Tools: From RDB to

NoSQL Database”, Frontiers in Artificial

Intelligence and Applications, 2022.

[17] M. J. V. Cedeño, et H. V. Nolivos, “Methodology

for the migration of NoSQL databases to SQL

databases for their subsequent integration in

servers set in relational data models”, In: vi int.

Scientific conv. Universidad técnica de Manabí :

Advances Basic Sci., Inform. Appl. Eng,

Portoviejo, Ecuador, 2024.

[18] K. Rajaram, P. Sharma, and S. Selvakumar,

“DLoader: Migration of Data from SQL to

NoSQL Databases”, In: Proc. of the International

Conf on Cognitive and Intelligent Computing:

ICCIC 2021, Vol. 2, pp. 193-204, 2023.

[19] Y. Khourdifi, A. Elalami, M. Bahaj, M. Zaydi, et

O. Er-Remyly, “Framework for integrating

healthcare big data using IoMT technology”, In:

Computational Intelligence for Medical Internet

of Things (MIoT) Applications, p. 191-210, 2023.

[20] S. Dwivedi, R. Balaji, P. Ampatt, et S. D.

Sudarsan, “A Survey on Security Threats and

Mitigation Strategies for NoSQL Databases”, In:

Information Systems Security, pp. 57-76, 2023

[21] Y. D. Reddy, et A. P. Sajin, “An Efficient Traffic-

Aware Partition and Aggregation for Big Data

Applications using Map-Reduce”, Indian J. Sci.

Technol, mars, Vol. 9, No. 10 2016.

[22] W. C. Chung, H. P. Lin, S. C. Chen, M. F. Jiang,

and Y. C. Chung, “J ackhare: a framework for sql

to nosql translation using mapreduce”,

Automated Software Engineering, Vol. 21, No. 4,

pp. 489-508, 2014.

[23] A. Karras, C. Karras, A. Pervanas, S. Sioutas, et

C. Zaroliagis, “SQL Query Optimization in

Distributed NoSQL Databases for Cloud-Based

Applications”, Algorithmic Aspects of Cloud

Computing, p. 21-41, 2023.

[24] S. Sicari, A. Rizzardi, and A. C. Porisini,

“Security&privacy issues and challenges in

NoSQL databases”, Comput. Netw, Vol. 206,

2022.

[25] C. J. F. Candel, D. S. Ruiz, et J. J. G. Molina, “A

unified metamodel for NoSQL and relational

databases”, Inf. Syst, p. 101898, 2021.

[26] J. V. L. Cabral, V. E. R. Noguera, R. R. Ciferri,

et D. Lucrédio, “Enabling schema-independent

data retrieval queries in MongoDB”, Inf. Syst., p.

102165, 2023.

[27] A. Erraji, A. Maizate, et M. Ouzzif, “multi-

criteria analysis between nosql databases

categories toward a complete migration from

relational database”, J. Theor. Appl. Inf. Technol.,

Vol. 100, No. 1, p. 9, 2022.

[28] M. Khan, F. Zaman, M. Adnan, A. Imroz, M.

Rauf, and Z. Phul, “Comparative Case Study: An

Evaluation of Performance Computation between

SQL and NoSQL Database”, SJHSE, Vol. 1, No.

2, pp. 14-23, 2023.

[29] A. E. Alami, and M. Bahaj, “The Road to a Full

Migration of Relational Database (RDB) to

Object Relational Database (ORDB): Semantic

Enrichment, Target Schema, Data Mapping”, Int.

J. Adv. Inf. Sci. Technol, Vol. 3, No. 10, p. 8, 2014.

[30] A. E. Alami and M. Bahaj, “Framework for a

complete migration of relational databases to

other types of databases(object oriented OO,

object-relational OR, XML)”, In: Proc. of 2016

IEEE/ACS 13th International Conf of Computer

Systems and Applications (AICCSA), Agadir,

Morocco, pp. 1-7, 2016.

[31] A. E. Alami and M. Bahaj, “Migration of the

Relational Data Base (RDB) to the Object

Relational Data Base (ORDB). World Academy

of Science Engineering and Technology

International Journal of Computer”, Information

Science and Engineering, Vol. 8, No. 1, 2014.

[32] A. E. Alami, and M. Bahaj, “Schema and Data

Migration of a Relational Database RDB to the

Extensible Markup Language XML”, Int. J.

Comput. Inf. Eng., Vol. 9, No. 7, pp. 1756-1761,

2015.

[33] MongoDB, “MongoDB Documentation”,

[Online]. Available:

https://www.mongodb.com/docs/.

Received: April 29, 2024. Revised: May 24, 2024. 648

International Journal of Intelligent Engineering and Systems, Vol.17, No.4, 2024 DOI: 10.22266/ijies2024.0831.48

[34] M. Bahaj, and A. Elalami, “The migration of data

from a relational database (RDB) to an object

relational (ORDB) database”, J. Theor. Appl. Inf.

Technol., Vol. 58, No. 2, 2013.

[35] A. E. Alami, and M. Bahaj, “Migration of a

relational databases to NoSQL: The way

forward”, In: Proc. of 2016 5th International

Conf on Multimedia Computing and Systems

(ICMCS), Marrakech, Morocco, pp. 18-23, 2016.

[36] A. E. Alami, and M. Bahaj, “The migration of a

conceptual object model COM (conceptual data

model CDM, unified modeling language UML

class diagram...) to the Object Relational

Database ORDB”, MAGNT Res. Rep. (ISSN.

1444-8939), Vol. 2, No. 4, pp. 318-332, 2018.

[37] H. Matallah, G. Belalem, and K. Bouamrane,

“Comparative study between the MySQL

relational database and the MongoDB NoSQL

database”, Int. J. Softw. Sci. Comput. Intell, Vol.

13, No. 3, pp. 38-63, 2021.

[38] I. MongoDB, “MySQL To MongoDB Migration

Guide.”

https://www.mongodb.com/basics/mysql-to-

mongodb.

