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Abstract: Drug treatment strategies to reduce dose-related hazards is a tried-and-true method for preventing drug 

resistance and enhancing the efficiency of the monotherapy. Except when certain drugs pile up. Most adverse 

medication effects are induced by antagonistic drug-drug interactions. New medications and monitoring patients' use 

of more effective medication combination therapies require precise Drug-Drug Interaction (DDI) prediction. Several 

machine learning-based DDI prediction methods exist. This wide range of strategies uses drug-related and substance-

related traits covertly. Graph embeddings and deep learning are applied to benchmark datasets to overcome this. The 

Simplified Molecular Input Line Entry System (SMILE) method is introduced for preprocessing, and the GCNet is 

applied for DDI prediction. Moreover, the graph is also constructed based on that the similarity is identified using link 

prediction. The proposed method provides an accuracy range of 0.934, Mean Squared Error (MSE) of 0.082, and Root 

Mean Squared Error (RMSE) of 0.352, which assists in more effectively reducing adverse drug reactions. 
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1. Introduction 

Patients are increasingly using various 

pharmacological medications to address their 

ailments. Drug interactions can diminish the efficacy 

of one or more medications, as well as cause negative 

impacts. The danger of side effects is increased in 

groups, such as elderly, who frequently yield many 

drugs at once. On the other hand, some drug 

interactions create synergistic action that allows the 

drug to treat diseases such as cancer [1]. Even though 

many technologies are available to predict cancer in 

humans, developing an anti-cancer treatment remains 

a difficult task [2]. Cancer patients require an 

effective combination of multiple medications known 

as drug-drug interaction (DDI) [3]. The DDI is the 

change in the effect of a drug on the body when taken 

together with other drugs [4]. It has the potential to 

raise, postpone, reduce, or produce undesirable 

effects with either medicine.  However, predicting an 

efficient drug combination remains a difficult task [5]. 

The rapid accumulation of high-precision and large-

scale biological data has resulted in an establishment 

of the research discipline known as computational 

pharmacology. Thus, this data enables systematic 

study of diverse datasets. Analysing this data can help 

enhance drug development and reduce risk.  

Bonds within a chemical substance are 

commonly used in biological processes. As a result, 

biological data is typically represented using 

networks. The establishment of this biological 

network necessitates the development of new 

analytical computing techniques. New research has 

attempted to solve this problem. Detecting the 

presence of DDIs is an initial step toward avoiding 

potential negative consequences. DDIs is classified 

as pharmacokinetic (PK), pharmaceutical, or the 

pharmacodynamic (PD) [6]. In addition, DDIs 

predominantly produce the modification in PK 

results in the secondary change in their PD. Therefore, 

dividing the DDIs types is another task, usually 

through multiple tests in medical research [7], which 
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helps the manufacturers and scientific community to 

decreasing toxicity and maximizing the risk of these 

interactions [8]. However, there are also direct costs 

that occur during clinical studies. In addition, DDI is 

closely related to drugs. Due to the large number of 

different chemical compounds, it is difficult to 

explore the compound area by high-resolution 

analysis. These problems highlight the importance of 

developing new computational schemes for DDI 

prediction. 

Several machine-learning DDI prediction 

methods are identified and classified into similarity, 

network, matrix synthesis, and learning-based. 

Similar schemes are a broad part of these techniques 

and refer to similar drugs that act on similar drugs. 

[9] identified new DDIs by structural features and 

fingertip interaction characteristics. The field has 

explored network approaches in which drug networks 

are built by known drug DDIs. Most of the graph-

based techniques consider pairwise relationships 

among drugs. It works on the simple graphs in which 

every vertex is the vertex and every edge represents 

the connection among two vertices. Though, some of 

the techniques consider interactions among drugs and 

other biological entities to produce alternative 

designs. Network topology information is extracted 

to predict previously undiscovered drug interactions 

(i.e interactions). With recent improvements in graph 

neural networks (GNN), various GNN models have 

been introduced for DDI prediction problems, but 

some of them generate different graphs from multiple 

sources, others develop biological knowledge graphs 

by extracting duplicates from raw data, such as 

DrugBank [10]. 

The primary aim of this paper is to create a 

mechanism for DDI prediction. The DDI prediction 

is performed using GCNet, which has the benefits of 

the Squeeze-Excitation Networks (SENet) and Non-

Local Networks (NLNet). GCNet gives the simple, 

rapid, and the effective approach to predictions. 

Furthermore, the Simple Molecule Intake Line Entry 

System (SMILE) algorithm is employed for pre-

processing, which minimizes complexity and 

produces higher-quality pre-processed results. The 

graph is then created to determine the shortest path 

between two points. Graphs are extremely visual, 

making it simple to express complicated data and 

relationships in an understandable and concise 

manner. Following the building of graphs, similarity 

is determined using link prediction. Similarity-based 

approaches are efficient, because they use common 

neighbours among two nodes as the primary criterion 

to identify the structural similarity. Increase in the 

structural similarity may indicate the relationship 

among two nodes is likely to form. Finally, the DDI 

is predicted by GCNet. 

The key contributions of this work include: 

GCNet is the algorithm used to forecast DDI. The 

GCNet is trained on test data to predict drug 

interactions. The output represents a likelihood of 

interaction among input pairs. Two drugs produce the 

likelihood that is greater than threshold, termed as 

potential interacting drugs.The research article is 

ordered as follows: Section 2 discusses the literature 

on several DDI predictions. Section 3 provides a brief 

elucidation of suggested approach; Section 4 presents 

the architecture of GCNet; and Section 5 presents 

project findings and details. Section 6 summarizes 

paper. 

2. Related works 

Some of the recent studies relevant to the 

presented work are reviewed below.  

Currently in the medical industry, multiple drugs 

are combined together to create an optimal medicine 

for eliminating pathologic processes. However, the 

collaboration of multiple drugs may create adverse 

impacts on patient health because of DDIs. The 

evolution of artificial intelligence (AI) in the pharma 

field provided a way to determine DDIs, and evaluate 

the side effects between the drugs. Thanh Hoa Vo et 

al. [11] presented an innovative algorithm named 

Ensemble Deep Neural Network (EDNN) for 

enhancing the DDI prediction performances. This 

methodology was trained and tested to predict 86 

types of DDIs on a benchmark database, and it 

achieved an accuracy of 90.80%. Although this 

approach obtained moderate accuracy in predicting 

DDIs, it faced issues like limited generalization to 

new drug interactions.  

On the other hand, Mei Ma, and Xiujuan Le [12] 

proposed a dual graph neural network DGNN for 

predicting DDIs. This study aimed at forecasting the 

DDIs and molecular representations in drugs. Firstly, 

a substructure attention module with directed 

message passing neural network (SA-DMPNN) was 

developed to extract substructures adaptively. Then, 

the DDIs are segregated into pairwise interactions, 

enabling it to predict molecular representations and 

DDIs more effectively. This methodology was 

validated using the real-world database, and it 

obtained accuracy of 89.65%. However, 

computational complexity is the biggest concern of 

this approach.  

DDI prediction is significant for preventing the 

adverse effect of drugs in the human body. However, 

predicting DDIs is more complex particularly in case 

of new drugs where all the information is not 
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available. Hence, Khaled Mohammed Saifuddin et al. 

[13] proposed a distinct algorithm named 

Hypergraph Neural Network (HyGNN) based on 

SMILES for precise DDI forecasting. To extract the 

structure similarities of drug chemicals, a hypergraph 

was created from the SMILES strings. Further, an 

innovative attention-assisted hypergraph edge 

encoder was developed to illustrate the drug 

representation and to detect the interaction between 

the drug pairs. The implementation results of the 

study highlighted that this approach earned a f1-score 

of 92.61%. However, this strategy demands more 

computational resources and a high quality database 

for reliable DDI predictions. Shichao Liu et al. [14] 

presented a  

DDI detection mechanism using Deep Attention 

Neural Network (DANN). Firstly, a multiple drug 

attribute network was created and then using a graph 

embedding approach the drug representations are 

learned from the constructed network. Further, drug-

drug pairs are learned from the attention module, and 

DNN was employed for detecting the DDIs from the 

learned representations. This methodology incurred 

accuracy of 89.77%. However, training this approach 

is complex and consumes more time.  

Shanchen Pang et al. [15] introduced an 

innovative DDI prediction framework using attention 

mechanism-assisted multidimensional feature 

encoder (AMDE). In this approach, the drug 

attributes are encoded from multiple dimensions, 

enabling the system to predict DDIs more effectively. 

This framework was validated using the publicly 

accessible DrugBank dataset, and it gained accuracy 

of 91.24%. However, this algorithm offers limited 

scalability and reliability across diverse drug cases. 

Consequently, the study conducted by Chengcheng 

Zhang et al. [16] used Convolutional Neural 

Networks for precisely learning and predicting DDIs. 

This research aimed at providing a reliable solution 

to the developing medical industry to reduce the 

adverse impacts of diverse drug combinations. 

However, this methodology is ineffective in handling 

drugs with unknown or limited information.  

Hui Yu et al. [17] presented a DDI forecasting 

mechanism using a hybrid algorithm named 

Relation-Aware Neural Embedding (RANE) 

approach. This study aimed to resolve the challenges 

faced by the conventional embedding methods in 

DDI predictions. This approach not only analyzes 

multirelational data between drugs, but also hybrid 

relation-aware network architecture to determine 

drug embedding. The experimental results depict that 

this strategy earned better F1-score and accuracy. 

However, multidimensional data analysis introduces 

additional computational overhead. Shenggeng Lin et 

al. [18] presented a study to address the issues with 

the hybrid utilization of multiple drugs in the medical 

field for decelerating pathogenic diseases. This study 

employed a transformer self-attention mechanism 

(TSAM) for the accurate detection of DDIs. Firstly, 

the two drugs are combined in four distinct ways 

using the Siamese Network. Then, the drug pairs and 

their interactions are examined using TSAM. The 

implementation outcomes suggest that this strategy 

earned 0.889% f-measure in DDI prediction. 

However, this strategy lacks interpretability and it is 

highly data dependent. Xiaorui Su et al. [19] 

presented an Attention-assisted Knowledge Graph 

Representation learning for enhancing the 

performance of DDI prediction. Firstly, the drug 

representations are initialized with their embedding 

obtained from drug features. Then, the interactions 

between the drugs are learned recursively using the 

proposed technique. This strategy was experimented 

and validated using two distinct datasets with varying 

sizes, and it demonstrated this methodology offers 

improved scalability and accuracy in DDI predictions. 

However, understanding the reason behind DDI 

prediction is difficult, making it complex for medical 

experts.  

The research survey highlights the challenges 

imposed by AI-based DDI models. Although the AI-

based models including the utilization of deep 

learning, machine learning, etc., offered better DDI 

predictions than the conventional models, they face 

significant limitations such as moderate accuracy, 

lack of generalizability, high computational 

complexity, etc. These drawbacks hinder their 

applicability in real-world scenarios, demanding a 

technique which offers higher accuracy with less 

computational demand. Also, few techniques face 

difficulty in analyzing the new drugs whose 

information is limited or not available, making them 

ineffective in real-world scenarios where the new 

drugs are introduced frequently. Moreover, some 

techniques face issues like data dependency, lack of 

interpretability, reduced scalability, and often 

demands more computational resources. These 

challenges make those techniques reduce their 

applicability in DDI predictions. To resolve the 

issues faced by the existing techniques, a novel DDI 

prediction algorithm was proposed by leveraging the 

efficiency of GCNet. The motivation behind this 

research is to tackle the problem of unanticipated 

DDIs harming the patient's health. The GCNet model 

leverages its heterogeneous network architecture for 

addressing this issue. This unique architecture 

enables the system to integrate diverse sources of 

drug information, making it to capture complex and 

intricate interactions between drugs more effectively  
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Figure. 1 Schematic view of GCNet for Drug-Drug 

interaction prediction 

 

 

with less computational time. Also, examining the 

drug similarities obtained from undirected and 

unweighted networks pre-processed using the 

SMILES approach helps the proposed system to 

reduce the risk of unexpected adverse reactions. 

Furthermore, the reason behind the prediction of 

DDIs is transparent in the proposed approach; 

thereby enhancing its interpretability and 

applicability in real-world scenarios. This also helps 

in better decision-making and ensures patient safety.  

3. Proposed Methodology 

Combining numerous medications for complex 

disorders is becoming increasingly common due to 

the synergistic effects of DDIs. However, 

unanticipated DDI can cause side effects, unpleasant 

responses, and even severe toxicity, putting patients 

in the danger. As a demand for the multi-drug therapy 

grows, the identification of DDIs becomes 

increasingly critical. Nevertheless, detecting DDIs 

among the large amount of medication pairings, both 

in vivo and in vitro, is expensive and time-consuming. 

As a result, in this study, the GCNet is introduced to 

forecast DDI. The undirected and unweighted 

networks are first pre-processed using the SMILES 

approach, before the graph is formed. After the graph 

has been created, the similarity is determined using 

link prediction. Finally, the DDI is predicted using a 

heterogeneous network, specifically the GCNet. Fig. 

1 displays GCNet's block structure for DDI 

prediction. 

3.1 Datasets 

DrugBank: It is an encyclopedic Web library 

that contains all pharmacological and biochemical 

data about medications, which includes biological 

schemes and target data. The majority of content in 

the DrugBank is carefully chosen from scholarly 

publications. In current, the DrugBank contains 

10376 medication entries and 577712 directed 

interactions between them. In this investigation, 

DrugBank version 5.0 is used that is downloaded 

from DrugBank Webpage 

(https://www.drugbank.ca) in April 2024. In addition, 

DDI information is analyzed from XML file to create 

edge list of drug identifier combinations. 

KEGG: Kyoto Encyclopaedia of Genes and 

Genomes (KEGG) is the most comprehensive 

biomedical resources, containing metabolic pathways 

from numerous species. In addition, the KEGG 

DRUG is a thorough list of licensed pharmaceuticals 

in the Europe, the United States, and the Japan, 

unified based on the chemical structures. KEGG 

DRUG graphically represents chemical structural 

pattern groups, therapeutic categories, their 

interactions, and drug development history. The 

dataset is taken from, 

ftp://ftp.genome.jp/pub/kegg/medicus/drug, accessed 

on April 2024. The KEGG DRUG contains 10,340 

drug entries and the 500,254 directed interactions. 

Moreover, the mapping to DrugBank identifiers 

yields 1194 distinct drugs and 52609 directed 

interactions. 

PubMed: Provides authorised source that seeks 

to enhance global and individual health by facilitating 

the retrieval of information about published research 

in the fields of biomedicine and the biosciences. 

There are numerous references and descriptions of 

scientific publications that exceed 2 billion. 

3.2 Technique 

In this segment, data acquisition, preprocessing, 

graph construction, similarity identification using 

link prediction are discussed. 

3.2.1. Data acquisition 

The DDI requires the construction of a two-class 

classifier that, given the characteristics of two 

medications as input, generates the output indicating 

the medicines interact is present. In addition, the 

SMILES strings are accessible types of medication 

characteristics, despite the fact that numerous other 

types of characteristics can be used for medications. 

Therefore, in the proposed methodology, 

SMILES characters are employed to establish a 

network of pharmaceuticals and generate more 

comprehensive drug characteristics. The information 

is extracted from the benchmark datasets. Fig.2 

consists of the detailed information about the datasets 

used in the proposed architecture. 

ftp://ftp.genome.jp/pub/kegg/medicus/drug
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Figure. 2 Extraction of Drug-Drug interaction 

 

 

Figure. 3 SMILES pretreatment scheme 

 

3.2.2. Preprocessing 

The raw data obtained from the data sets must be 

cleansed to remove unwanted information. 

Preprocessing assists in enhancing accuracy and 

reducing redundant data. The data set for the drug 

bank comprises the name, weight, structure, 

description, and categories. For further classification, 

it is possible to acquire the necessary data of weight 

and structure.  

The SMILES algorithm (B. Bumgardner et al., 

2021) can be extracted from the PubMed dataset. 

Molecular editing software may import SMILES and 

convert them to two or three-dimensional molecules. 

The SMILES used Seq2seq technology on a SMILES 

string. During preprocessing, SMILES eliminates 

some of large (more than 250 letters) SMILES and 

performs one-hot coding on the remainder, 

transforming each SMILES into a vector of length 26. 

Fig. 3 depicts chemical structure of medication that is 

pretreated using this method. All SMILES saved in 

DrugBank are transformed into a word bag of 251 

elements. After, one-hot encoding is employed to 

transform them into 251 dimensional vectors, which 

are then reduced to a specified dimension. As a result, 

a lower-dimensional vector is gained that can be 

utilized to represent a drug's structural feature. 

3.2.3. Graph construction 

The graph construction in this proposed work is 

founded on the substances. New varieties of 

components are used to produce the edges, which 

must be compared. Drugs are the vertices, and the 

edges are the connections between them. Assume an 

unweighted and undirected network that is 

represented by simple graph 𝐻(𝑈, 𝐶)consisting set of 

nodes. 

𝑈 refers to pharmaceuticals and set of edges 𝐶 

indicating drug interactions. Let {.  indicate 

cardinality of set. The following equation is used for 

the comparison analysis. 

 

𝐻(𝑈, 𝐶) = {
1, 𝑖𝑓 𝑖𝑛𝑡𝑒𝑟𝑎𝑐𝑡𝑖𝑜𝑛 𝑒𝑥𝑖𝑠𝑡𝑠
0, 𝑂𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

   (1) 

 

3.2.4. Similarity identification using link prediction 

Each substance has a distinct molecular bond. 

Using drug similarity metrics, the link between a drug 

and another biological entity can be determined. 

Typically, drugs possess a number of characteristics 

that define their biological or chemical properties. 

Each element of the binary feature vector 

representing presence or absence of feature 

descriptor can be utilized to encode a single drug. The 

similarity between the drugs can be identified using 

the Jaccard similarity indexing techniques as follows: 

 

𝑆𝐼 =  
|𝑦1 ⋂ 𝑦2|

|𝑦1 ⋃ 𝑦2|
          (2) 

 

SI denotes the similarity index where 𝑦1  and 

𝑦2are the drugs taken for calculating the similarity 

index. Heterogeneous graph will be created using the 

similarity index values.  

Definition1:  

 A graph can be represented by the equation 𝑋 =
(A,B,D,𝜀), where 𝐴 is 𝑁 nodes (a1,a2,...,a𝑛)  and 𝐵 

is collection of edges connecting the various nodes. 

The letters 𝐷 and 𝜀 denote the collection of different 

sorts of nodes and edges, in that order. When 𝐴 + 𝐵's 

sum is greater than 2, the graph 𝑋  is said to be 

heterogeneous.  

Definition 2:  
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Node wrapping in heterogeneous graphs. The 

goal of the node embedding algorithm, when applied 

to a heterogeneous network 𝑋 , is to discover a 

function 𝑌that assigns a value to each node in 𝑋 low-

dimensional space with the coordinates  

 

𝑅𝑍: 𝑌: 𝐴 → 𝑅𝑍 where 𝑍 << |𝐴|.   (3) 

 

4. Architecture 

Heterogeneous Network: 

A heterogeneous graph is the specialized type of 

the information network containing either distinct 

classes of entities or a large number of distinct classes 

of interconnections. Fig.4 provides the overall system 

architecture of the system and how the nodes 

embedded and the complete process has been 

depicted. It is a potent graph database application that 

provides precise results. The triples, which include 

the semantic relationship between nodes and edges, 

create a heterogeneous network. In the embedding 

space, network node and/or edge representations may 

take the form of compact yet informative vectors. 

Consequently, standard non-network machine 

learning techniques like Support Vector Machine 

(SVM), linear regression, and the decision forest, 

applied to vectors. All of these techniques have been 

demonstrated to be effective and cutting-edge. 

Resulting from their efficacy and potential in network 

analysis, network embedding techniques have 

spawned new research areas in biological data 

science. There are ongoing and forthcoming efforts 

to improve biomedical data analysis using network 

embedding. Numerous biological networks are 

composed of clinical text and other domain-specific 

data, and these networks are by nature scarce, chaotic, 

incomplete, and heterogeneous. It makes embedding 

duties more difficult compared to other application 

domains. To determine this objective, it is essential 

to analyze and compare existing network embedding 

models and investigate their applications to 

biomedical data. As a consequence, it can provide 

valuable information for future planning purposes. 

GCNet:   

GCNet is an advanced tool deployed for learning 

graph-structured data. This model functions by 

updating node attributes iteratively in accordance 

with the attributes of neighboring nodes using 

weighted average approach. The utilization of this 

approach enables this system to give importance to 

nodes with less connections, providing effective 

training and learning. Also, by deploying direct 

connections between the graphs and reconstructing 

embeddings as inputs for further layers, this model 

efficiently captures the interconnections and 

relationships within the constructed heterogeneous 

graph.  

A procedure is used to predict the relationship 

between the two medications, which increases 

accuracy and reduces adverse effects. The primary 

benefit of GCNet is that it does not share weights 

between concealed layers. GCNet employs graph 

convolutional network to assist in the creation of the 

heterogeneous graph model. 

 

 
Figure. 4 GCNet architecture 
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Learning low dimensional representations of 

graph-structured nodes from architectures of 

multilayered, interconnected neural networks. In 

each layer of GCNet, direct connections between 

graphs collect neighbouring data to reconstruct 

embeddings as inputs for the subsequent layer. In 

semi-supervised graph learning, Convolutional 

Networks are utilized. The central principle of the 

GCN is to compute a weighted average of the 

characteristics of each node's neighbours, including 

itself, which is mathematically expressed in Eq. (3). 

 

𝑁𝑓(𝑙 + 1) = 𝜎 (𝐷̃1 2⁄ 𝐴̃𝐷̃1 2⁄ 𝑁𝑓(𝑙)𝑊(𝑙))             (4) 

 

Where 𝑁𝑓(𝑙 + 1) defines the node features at 

layer(𝑙 + 1) , 𝐴̃ indicates the normalized adjacency 

matrix, 𝐷̃represents the degree matrix, 𝜎denotes the 

activation function, and 𝑊(𝑙) indicates the weight 

matrix at layer l. 

Nodes with a lesser degree has greater weights. 

Using the resulting feature vectors, a neural network 

is then trained. 

KG (Knowledge Graph) Embedding:  

Based on the information acquired, the 

knowledge graph is embedded, hypotheses is formed 

about the interactions between various medications. 

In contrast, Machine Learning classifiers frequently 

demand input vectors of fixed length. Encoding the 

graph's information into dense vectors, where the 

densely vector is generated by the KG embedding 

technique. KG embedding includes the steps of 

modelling objects and the relations, devising the 

scoring function, and the learning entity and 

relational representations. Knowledge graphs not 

only provide a precise framework for delineating the 

data, but also enable significant information 

extraction via the graph's underlying structure. 

Constructing Network using GCNet:  

After embedding the drug information, the 

convolution technique is used to construct the 

network. Create a graph convolution network. The 

path is determined using the conv LSTM technique. 

The input layer, the concealed layer, and the output 

layer are the layers present in a network. As input, 

embedded data will be provided. In previous 

experiments, negative samples from unknown 

interactions were chosen at random because all 

classifiers require them for the link estimation 

problem [20], [21].  

When all unknown interactions are assigned to 

negative samples, there is the data imbalance. 

However, metrics, like AUPR and the F1-score are 

affected. To circumvent this problem, unsupervised 

clustering analysis or sampling from the unidentified 

interaction at a ratio equal to the optimistic set has 

been utilised.   

Considering (1), (2), (3) and (4) are the four 

different localized computation graphs. The primary 

node in (1) is the drug d1, and its neighbors are all 

other drugs in (2), the central node is the drug d3, and 

its neighbors are all either other drugs or targets.  

A target node can be found in the middle of (3) 

and (4). During the graph convolution, every drug 

interaction with its neighboring drugs by comparing 

the molecules, and then combining the interaction it 

received. The GCN is then trained with an activation 

function that improves its distribution-fitting skills. 

Each row of the adjacency matrices has been 

preprocessed with a softmax function to standardize 

the input data. More information will be incorporated 

into the forecast as the receptive field expands along 

with the GCN's depth. 

To get an embedded representation of a drug node, 

the characteristics determined in steps 1 and 2 are 

added together. To a similar degree, the feature set of 

the targeted nodes can be derived in accordance with 

Eq. (5) and (6). The embedding of node is computed 

by:  

 

ℎ𝑑 =  ℎ𝑑
1 + ℎ𝑑

2        (5) 

 

ℎ𝑡 = ℎ𝑡
3 + ℎ𝑡

4     (6) 

 

where, ℎ𝑑signifies embedding illustration of the 

drug node 𝑑 ; the terms ℎ𝑑
1

 and ℎ𝑑
2

 signify the 

concealed positions of the node d in local design 

graphs (1) and (2); ℎ𝑡 denotes embedding depiction of 

target node 𝑡and the ℎ𝑡
3
, ℎ𝑡

4
 signify hidden states of 

node 𝑡  in local calculation graphs (3) and (4), 

correspondingly. The classifiers effort better with the 

generated features. The primary layer is called the 

embedding layer, and its job is to convert a ‘sequence' 

representing a drug sample into an actual vector 

domain. The embed model, which has a form of 

100x200, is then sent into a one-dimensional 

convolutional layer that has 100 filters and the kernel 

size of 3. 

5. Results and discussion 

The findings and analyses of a GCNet for DDI 

interaction prediction are discussed in this section. 

5.1 Experimental setup 

GCNet is executed in Python on Windows 10. 

Here, ideal layers and neurons in each layer are 

simulated. The GCNet performance is measured by 

accuracy and loss, and the expression is as follows. 
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Accuracy: It measures how closely expected and 

predicted values match. Furthermore, the equation 

used for the accuracy test is given below: 

 

𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =  
𝑁𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑝𝑟𝑒𝑑𝑖𝑐𝑡𝑒𝑑 𝑑𝑟𝑢𝑔𝑠

𝑇𝑜𝑡𝑎𝑙 𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑔𝑖𝑣𝑒𝑛 𝑑𝑟𝑢𝑔𝑠
  (7) 

 

MSE: The fitness function computes the optimal 

solution using an error function, as seen in the 

equation below:  

 

𝑀𝑆𝐸 =
1

𝐽
∑ [𝐻 − 𝛾𝑢]𝐽

𝑘=1

2
    (8) 

 

where, 𝐷is GCNet output, 𝛾is target output, and 

𝐽is training samples. 

RMSE: The square root of MSE is designated as 

the RMSE, and is shown as, 

 

𝑅𝑀𝑆𝐸 = √
1

𝐽
∑ [𝐻 − 𝛾𝑢]𝐽

𝑘=1     (9) 

 

5.2 Sample outcome 

The accuracy and loss functions for training and 

validation for data sets are given in the Fig. 5 a) and 

Fig. 5 b). When comparing GCNet and its 

improvements to confGCN, GCNet comes out on top 

every time. The use of cross-entropy SoftMax V2 

function is identified for best performance, rather 

than just plain cross-entropy, which resulted in a 

significant reduction in computing cost while 

performing hyper-parameter optimization. Therefore, 

loss function is employed in all following tests. 

GCNet is the fastest running discovered interactions. 

5.3 Similarity measures evaluation 

Topological and the semantic similarity scores 

are averaged across the drug-drug combinations. 

Prior to averaging, all similarities were scaled. 

Moreover, using the similarity method, the average 

similarity of the positive DDI pairings is considerably 

higher than that of the negative drug pairs and the 

random drug pairs for entire networks. The rank sum 

test is conducted to identify statistical significance, 

and all values were p < 0.001.  

Fig. 6.i, ii, iii) visually depicts the differences 

between positive, negative, and random drug 

combinations for DrugBank, KEGG, and PubMed 

datasets. This finding verifies our main premise that 

related chemicals have a high potential for DDIs. 

5.4 Comparative methods 

In this module, we compare the performances 

obtained by the proposed framework with the state-

of-the-art techniques. The metrics used for 

performance evaluation include accuracy, RMSE, 

and MSE. The techniques used in comparative 

evaluation include EDNN [11], DGNN [12], SA-

DMPNN [13], HyGNN [14], DANN [15], and 

AMDE [16].  

The Accuracy metric measures the overall 

correctness of the models in predicting DDIs. The 

accuracy of the model was determined by increasing 

the number of drugs. 

The state-of-the-art techniques including EDNN, 

DGNN, SA-DMPNN, HyGNN, DANN and AMDE 

incurred accuracy rates of 0.89%, 0.84%, 0.86%, 

0.924%, 0.89%, and 0.91%, respectively for four 

drugs. On the other hand, the developed strategy 

achieved comparatively higher accuracy of 0.934%, 

demonstrating its effectiveness in predicting DDIs. 

Moreover, it is observed that the proposed algorithm 

maintained consistent accuracy rates over increasing 

numbers of drugs, which highlights its scalability and 

reliability in processing numerous drugs with greater 

accuracy. Fig. 7 (i) presents the comparative 

 

 
(a) (b) 

Figure. 5 Estimated output: (a) Accuracy and (b) Loss 
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Figure. 6 Distribution of the average similarity among positive, negative, and the random drug-drug pairs: 

 (a) DrugBank, (b) KEGG, and (c) PubMed 

 

 

evaluation of prediction accuracy with existing 

techniques. Consequently, the MSE metric is 

determined and compared with the above-stated 

state-of-the-art techniques. The MSE metric 

measures the deviation between the actual and 

predicted DDIs in the input dataset. The lower MSE 

manifests greater precision in identifying DDIs. The 

above-mentioned approaches incurred MSE of 

0.142%, 0.146%, 0.149%, 0.152%, 0.124%, and 

0.155%, respectively for four drugs. 

But the developed approach earned a minimum 

MSE of 0.082%, which illustrates that the error in 

DDI prediction is minimum and negligible. This 

significant reduction of MSE manifests the proposed 

model’s effectiveness in accurately identifying DDIs. 

Also, the developed algorithm maintained a 

consistent MSE rate over increasing drug count, 

demonstrating its scalability and effectiveness in 

processing the drug features. Fig. 7 (ii) provides the 

comparative assessment of MSE.  

 

 

(a) (b) 

 
 

                 
(c) 
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Furthermore, the RMSE rate was compared and 

evaluated with the conventional models. Fig. 7 (iii) 

provides the comparison of RMSE. The RMSE 

metric determines the squared difference of the 

deviation between the real and the predicted results. 

The existing techniques including EDNN, DGNN, 

SA-DMPNN, HyGNN, DANN and AMDE obtained 

RMSE of 0.60%, 0.450%, 0.560%, 0.590%, 0.490%, 

and 0.530%, respectively, while the developed 

algorithm attained minimum RMSE of 0.352%. The 

reduction of RMSE in the developed strategy 

highlights its effectiveness and reliability in 

predicting DDIs. From this analysis, it is clear that the 

proposed algorithm achieved higher accuracy than 

the conventional models. Also, the developed 

algorithm obtained minimum MSE and RMSE than 

the state-of-the-art techniques. This illustrates that 

the designed methodology is effective and reliable in 

identifying DDIs. 

 

 

  

(a) (b) 

 
 

 
(c) 

Figure. 7 Performance comparison: (a) Accuracy, (b) MSE, and (c) RMSE 
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Table 1. Comparative analysis with state-of-the-art 

techniques 

Algorithms  Accuracy  MSE  RMSE 

EDNN 0.89 0.142 0.60 

DGNN 0.84 0.146 0.450 

SA-DMPNN 0.86 0.149 0.560 

HyGNN 0.92 0.152 0.590 

DANN 0.89 0.124 0.490 

AMDE 0.91 0.155 0.530 

Proposed  0.934 0.082 0.352 

 

5.5 Discussion 

This study presented a unique approach for 

predicting DDIs using the GCNet algorithm. The 

major objective of this study is to address the issues 

faced by the existing techniques such as higher 

computational time, limited scalability, reduced 

generalization, etc., in DDI prediction. The proposed 

framework uses three different databases namely 

DrugBank, KEGG, and PubMed, which provides 

important medication information needed for 

analysis. Also, we use SMILES strings for 

preprocessing, ensuring data standardization and 

consistency for subsequent analysis. Furthermore, a 

heterogeneous network was used in the proposed 

work to establish connections between drugs, 

enabling the system to capture and examine intricate 

relations and patterns within the drug features. The 

GCNet model leverages its efficiency in analyzing 

underlying mechanisms of drug interactions, offering 

improved accuracy in DDIs.  

By leveraging the efficiency of embedding 

algorithms and convolutional networks, the proposed 

algorithm offers a reliable and promising solution for 

DDI prediction. The proposed strategy was modeled 

and implemented in a Python tool, and the results are 

determined using metrics such as accuracy, MSE, and 

RMSE. The proposed algorithm achieved an 

enhanced accuracy of 0.934, minimum MSE of 0.082, 

and lower RMSE of 0.352. Furthermore, a 

comprehensive comparative study was conducted 

with the state-of-the-art techniques including EDNN, 

DGNN, SA-DMPNN, HyGNN, DANN and AMDE 

to validate the effectiveness of the developed 

mechanism in predicting DDIs. The comparative 

evaluation manifests that the proposed strategy 

outperformed these techniques in terms of accuracy 

by 0.024%, and the metrics like MSE and RMSE are 

reduced by 0.042%, and 0.092%. Table 1 presents the 

comparative evaluation of proposed model 

performance with the conventional techniques. These 

performances make the developed strategy more 

effective and reliable for DDI prediction. Also, the 

designed technique maintained a consistent 

performance over increasing numbers of drugs, 

highlighting its scalability in processing large drug 

features. 

6. Conclusion 

This study proposed a novel DDI prediction 

strategy leveraging the efficiency of graph 

embeddings and deep learning approaches. The 

objective of this research is to analyze the interactions 

between the drugs to prevent its adverse impact on 

the human body. The proposed approach utilizes 

three different databases namely DrugBank, KEGG, 

and PubMed, which act as the foundation providing 

extensive medical information for drug feature 

analysis. Furthermore, the proposed framework uses 

the SMILE method for preprocessing, converting the 

dataset into an appropriate format for subsequent 

analysis. In addition, it uses heterogeneous graphs for 

capturing the intricate attributes in drug interaction 

analysis. The GCNet approach learns the interactions 

between the drugs through link prediction, offering 

optimal DDI prediction. The experimental results 

achieved notable accuracy of 0.934, MSE of 0.082, 

and RMSE of 0.370, offering a valuable tool for 

reducing adverse drug reactions more effectively. 

Furthermore, an intensive comparative analysis with 

the state-of-the-art techniques highlighted the 

proposed model’s effectiveness and scalability across 

real-world scenarios. The comparative assessment 

depicts that compared to the existing models, the 

accuracy metric was improved by 0.024%, MSE was 

reduced by 0.042%, and RMSE was minimized by 

0.092% in the developed approach.  

 

Notations: 

U Pharmaceuticals 

C Set of edges 

SI  Similarity Index 

{ Cardinality of set 

y1, y2 Drugs taken to calculate SI 

𝜀 Edges 

X Heterogeneous graph 
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A Number of nodes 

B Connectivity edges 

R Wrapping node 

hd Embedding illustration of the drug 

node d 

t  Target node 

ht Hidden states of node 

𝛾 Target output 

J Training Samples 

𝜎 Activation Function 
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