
Received: April 27, 2024. Revised: June 1, 2024. 761

International Journal of Intelligent Engineering and Systems, Vol.17, No.4, 2024 DOI: 10.22266/ijies2024.0831.58

Orchestration Framework Based on Revocable Dynamic Hash Table for

Dynamic Access of Data in Multi-Cloud Environments

Zameer Ahmed Adhoni1* Dayanand Lal Narayan1

1Department of Computer Science and Engineering, GITAM School of Technology,

GITAM University, Bengaluru, Karnataka, India
* Corresponding author’s Email: zadhoni@gitam.edu

Abstract: The primary aim of this article is to propose a novel orchestration framework based on Revocable Dynamic

Hash Table (RDHT) for dynamic and secure access of Electronic Health Records (EHRs) in multi-cloud environments.

The proposed orchestration framework includes four processes namely, Function-Level Rewriting (FLR), Optional

Function Generator (OFG), Entry Recognition (ER), and Optional File Elimination (OFE) for effectively managing

the storage of EHRs. This proposed orchestration framework’s performance is analysed using a web application related

to hospital management systems. Once the orchestration layer authenticates the health professionals, the RDHT

effectively routes the request and distributes EHRs across different cloud providers. The orchestration layer enforces

access control after identifying the designated cloud providers. This process confirms that the health professionals

have appropriate permission for the specifically requested operation. In comparison to the conventional methods like

Quick-Functions as a Service (FaaS), Fast Healthcare Interoperability Resources (FHIR), ElGamal encryption, and

Deletable Consortium Blockchain (DS-Chain), the RDHT method consumes minimal memory and running time. More

precisely, the RDHT method demands a minimum response time of 1070.52 milliseconds with a memory usage of

89.68 megabyte, access time of 1187.12 milliseconds, and computation overhead of 124.56 megabyte on the Medical

Information Mart for Intensive Care (MIMIC-III) dataset, especially for 300 patient records.

Keywords: Dynamic hash table, Electronic health records, Multi-cloud environment, Orchestration framework, Web

application.

1. Introduction

In the recent contemporary healthcare

environment, paper-based health records are

gradually replaced with EHRs. The EHRs provide a

centralized digital storage system of patient

information such as for test results, allergies,

medications, diagnoses, and medical history [1-3].

The EHRs use a standard terminology and format that

enhances the interoperability between dissimilar

healthcare systems. It is impractical for data owners

to manage a vast amount of EHRs [4, 5]. Thus, the

cloud based EHR system is an emerging solution as

it automatically stores and uploads EHRs on cloud

servers. The cloud based EHR system improves

confidentiality and integrity of the outsourced EHRs

[6]. Furthermore, the cloud based EHR system

ensures data security, provides scalability for

accommodating growing data volumes, and includes

numerous features for cost-efficiency, automatic

updates, and interoperability [7]. The cloud based

EHR system contributes to improved accessibility to

health records, streamlined workflows, and enhanced

patient care [8]. The patients are not given the scope

for generating EHRs in the traditional cloud based

EHR systems [9]. The doctors generate patient’s

EHRs and outsource it for reducing the

computational overhead and communication cost at

the patient’s end [10,11]. In this circumstance, it is

hard to assure the flexibility and integrity of the

outsourced EHRs. The semi-trusted doctors modify

or forge the outsourced EHRs for hiding medical

malpractices [12].

To avoid this challenge, the blockchain

technology is integrated with the cloud based EHR

Received: April 27, 2024. Revised: June 1, 2024. 762

International Journal of Intelligent Engineering and Systems, Vol.17, No.4, 2024 DOI: 10.22266/ijies2024.0831.58

system for addressing the availability, confidentiality,

and integrity issues [13,14]. Still, in blockchain based

healthcare management system, the computational

infeasibility of EHRs depends on the cloud server’s

unforgeability and reliability [15,16], where these

systems lead to a single point of failure [17,18]. In

order to address the aforementioned concerns, an

efficient orchestration framework with the RDHT

method is proposed in this article for securing and

improving the storage and access control of EHRs in

cloud based EHR systems. Generally, the

orchestration framework facilitates the management

and coordination of multiple services or tasks in

computing environments. The orchestration

framework plays a vital role to automate and

streamline several processes that ensures effective

synchronization and communication between

dissimilar components of an application or system.

The important contributions of this study are pointed

as follows:

• Implemented a new orchestration framework

by incorporating four processes which are:

FLR, OFG, ER, and OFE. These four processes

improve the user experience on a web

application related to the hospital management

system. In the present decade, the healthcare

industry is more dynamic where this proposed

orchestration framework provides flexibility

alongside easily adapting to technological

advancements and regulation changes.

• The proposed orchestration framework

automates the repetitive and routine tasks such

as inventory management, billing processes,

and appointment scheduling that leads to cost

and time saving. Furthermore, this framework

automatically coordinates and manages several

processes in the hospital management system

such as resource allocation, patient admissions,

etc.

• Integrated RDHT method in this orchestration

framework to ensure secure storage and access

of EHRs. Four evaluation metrics including

memory usage, response time, computation

overhead, and access time are utilized for

investigating the performance of the RDHT

method on MIMIC-III dataset, while the

obtained results are compared with four

existing methods.

This further article is structured as follows; a

literature survey of the existing articles is presented

in section 2. The methodology details, simulation

results, and conclusion are represented in sections 3,

4, and 5, correspondingly.

2. Literature survey

Shen [19] introduced a novel framework for

distributing different replicas of EHRs in multi-cloud

environments. This process allowed users to recover

corrupted EHRs and resisted the EHRs from copy

summation attacks. In the designed framework,

EHRs were stored in the form of ciphertext; here,

only authorized users were allowed to decrypt the

data and access sensitive information. In this

framework, a Map Version Marker Table (MVMT)

was utilized for data traceability. According to the

system model, the MVMT allowed only the

authorized doctors to access patient’s EHRs for

decision-making and disease diagnosis. Security

analysis showed the superiority of the developed

framework in cloud-based healthcare applications.

However, the MVMT allowed only the authorized

doctors to access patient’s EHRs for decision-making

and disease diagnosis. Furthermore, Kanna and

Vasudevan [20] initially employed a normalization

technique for isolating normal and sensitive attributes

in the collected dataset. Next, the normalized data

stored on the cloud platform were encrypted utilizing

the ElGamal algorithm. In this particular system, a

rule based statistical disclosure approach was applied

for isolating sensitive data and further, the data

security was assured by designing an effective access

control policy. The efficacy of the presented system

was evaluated using dissimilar measures including

execution time, policy generation time, and

encryption time. Even though, the suggested

ElGamal was time-consuming while assesses with

supplementary encryption methods, particularly

when utilizing long keys.

Mishra [21] developed a model named DS-Chain

for securing EHRs in multi-cloud environments. The

DS-Chain model not only ensured the correctness and

integrity of the outsourced EHRs but also guaranteed

the confidentiality and privacy of sensitive EHRs.

Furthermore, a collaborative multi-cloud storage

model was employed within the cloud paradigm

which provided a reasonable availability and

durability for the outsourced EHRs. Based on the

patient’s EHRs, all the transactions were arranged on

the blockchain network to facilitate block deletion.

However, due to the computationally infeasibility of

Ethereum blockchain, it has been computationally

intractable to perform the hard-fork on Ethereum

based DS-Chain by any adversary with limited power.

Extensive empirical analysis demonstrated the

practicability and feasibility of the presented DS-

Chain model. Gohar [22] presented a robust and

secure Patient Centric Healthcare (PCH) framework

based on Internet of Things (IoT), cloud, and

Received: April 27, 2024. Revised: June 1, 2024. 763

International Journal of Intelligent Engineering and Systems, Vol.17, No.4, 2024 DOI: 10.22266/ijies2024.0831.58

blockchain technology. In this literature, a five-tier

architecture was incorporated with the PCH

framework for improving its interoperability. Real-

time patient’s EHRs were utilized for validating the

efficacy of this PCH framework. The high latency in

various applications due to the extension of

middleware using cloud infrastructure services.

Ouchaou [23] incorporated a service publication

algorithm, a cloud federation architecture, and a

service based management system for effective

management of Software as a Service (SaaS) services

in multi-cloud environments. The primary objectives

of this literature were to increase profit, automate the

process of data management, and guarantee user

experience. The developed model needs to enhance

the context-aware and learning ability of agents in the

interoperability framework. Furthermore, Rodrigues

[24] deployed three cloud agnostic models for

improving interoperability and portability between

FaaS platforms which is known as QuickFaaS. These

cloud agnostic models assisted the developers in

reusing server-less functions across dissimilar cloud

providers without installing extra software and

changing code. In this literature, the robustness and

superiority of these cloud agnostic models was

analysed through six evaluation measures. The

highest latency was frequently experienced

throughout the research of implementation setting.

El-Kassabi [25] introduced a self-adapting model

for cloud workflow monitoring, adaptation, and

orchestration. This model relied on trust analysis for

guaranteeing Quality of Services (QoS) of the

workflow. The adaptation and monitoring models

triggered various adaptation actions namely, resource

scaling, migration and reconfiguration of workflow,

and repair time errors. The orchestration of cloud

resources was formalized by employing a state

machine which extracted the dynamic characteristics

within cloud execution environments. A model

checker was utilized in this literature for validating

the effectiveness of the presented model by means of

liveness, security, and reachability. This health

monitoring workflow was evaluated on MIMIC III

dataset, and the obtained results proved that this

workflow orchestration was self-configuring and

self-adapting with a higher level of QoS. Here, the

data privacy metrics were not considered. Further, the

model enables authorized doctors only to access

patient’s EHRs for decision-making.

Iqbal [26] presented a healthcare monitoring

system utilizing orchestration architecture. This

monitoring system executed an optimized scheduling

process for effectively monitoring a patient’s vital

signs. The presented monitoring system comprised

two phases: (i) an IoT based orchestration

architecture was used for optimizing healthcare

services, and (ii) performed an optimized scheduling

process for task scheduling. Additionally, an e-

Health tool-kit was used for monitoring the patient

data, where the procured experimental outcomes

revealed that this monitoring system superiorly

reduced task failures in comparison to other

healthcare monitoring systems. The interrelated

environment of IoT devices increases substantial

security issues. The model enhanced the

computational overhead and access time which affect

the performance.

Moreno-Vozmediano [27] introduced a nuanced

orchestration model for automating the management

and deployment of higher availability services in

multi-cloud and multi-zone scenarios. In this study,

the presented orchestration model deployed the

affinity mechanisms (anti-affinity and affinity rules).

The automation process of managing and deploying

higher availability services encompassed two major

concerns of an inadequate management of cross-

cloud private networks, and the incorporation of fail-

over and global load balancing processes. The

developed model unable to find the optimal

granularity levels in micro-services.

Okwuibe [28] developed a novel orchestration

model for optimal resource allocation in Industrial

IoT (IIoT) systems. Based on predetermined

constraints, the resources were dynamically allocated

by the orchestration model that ensured Service Level

Agreement (SLA). The orchestration model used a

software-defined scheme for centralized resource

management; here, the resources represented edge-

cloud resources, bandwidth, power, and memory.

This resource management approach effectively

accelerated resource orchestration through edge-

cloud resource usage and dynamic workload

balancing. The robustness of the presented

orchestration model was investigated through its task

success rate, network utilization, and Central

Processing Unit (CPU) utilization. However, as

number of edge devices continue increasing, the

cloud and edge scenarios displayed substantial drop

in tasks leading to lower success rate. Qin [29]

developed a dynamic orchestration framework for

resource management in Platform as a Service (PaaS)

based on Auto-Regressive Integrated Moving

Average (ARIMA) model. The simulation outcomes

demonstrated that this orchestration framework

significantly improved the memory usage and

reduced the response time. However, the suggested

model does not consider external factors and requires

multiple iterations to achieve stationarity.

Kazim [30] employed a cloud-on-demand model

for securing IoT services in multi-cloud

Received: April 27, 2024. Revised: June 1, 2024. 764

International Journal of Intelligent Engineering and Systems, Vol.17, No.4, 2024 DOI: 10.22266/ijies2024.0831.58

environments. In this study, effective protocols were

implemented and developed within cloud paradigms

for facilitating multi-cloud collaboration. This

framework included three stages (service

matchmaking, authentication, and SLA management),

alongside allowing users to access IoT services

within multi-clouds. Specifically, the SLA

management ensured service execution in external

clouds. The developed protocols were executed on

two cloud platforms which are Amazon AWS and

OpenStack. The high delay in different applications

because of the extension of middleware using cloud

infrastructure services.

By reviewing the existing literatures, the below

three problems are resolved in this present article: (i)

high latency in various applications due to the

extension of middleware using cloud infrastructure

services, (ii) need to enhance the context-aware and

learning ability of agents in the interoperability

framework, and (iii) need to find the optimal

granularity levels in micro-services. In this article,

the suggested orchestration framework based on

RDHT properly employs applications and services in

cloud infrastructure services for solving the latency

problems. In this framework, the multi-cloud models

are deployed on a single platform for improving

learning ability in the cloud. Moreover, the micro-

services enable individual cloud services to be scaled

independently in order to meet the demand for

supporting the application features.

3. Methods

The suggested orchestration framework’s

performance is analysed on a web application related

to hospital management systems. This web

application uses My Structured Query Language

(MySQL), Hypertext Preprocessor (PHP) database,

and this application includes three main modules

(admin, user, and doctor). Python was chosen for

implementation due to its widespread use and

availability of libraries. MySQL was selected for

(a)

(b)

Figure. 1: (a) View from doctor end (b) View from patient end

Received: April 27, 2024. Revised: June 1, 2024. 765

International Journal of Intelligent Engineering and Systems, Vol.17, No.4, 2024 DOI: 10.22266/ijies2024.0831.58

the database as it is a popular relational database

management system suitable for storing structured

EHR data. The RDHT method was developed to

provide a secure and efficient way to manage EHR

data across multiple cloud providers. The details

about admin, user (patient), and doctor modules are

presented as follows;

Admin module:

Dashboard: Admin view details about new queries,

appointment history, logout and login time of doctors,

patients and users, patient reports, and patient details

like name and mobile number.

Patients: Admin view details about patients.

Doctors: Admin add and update the specialization of

doctors.

Users: Admin view details about users and have

authorization in deleting irrelevant users and adding

relevant users.

User (patient) module:

Dashboard: Users view details about his/her

appointment history, medical history, and this

module assists users in booking appointments.

Doctor module:

Dashboard: Doctors view details about online

appointments, patients’ details (name and mobile

number), and patients’ medical history. In this

module, it is possible for doctors to update and add

patients. The sample screenshots of the web

application related to the hospital management

system are represented in Fig. 1.

3.1 Orchestration framework

The orchestration framework is a crucial part of

modern software systems. It serves as a central point

for controlling a multitude of software programs, data

processing operations, and the interdependencies

between them. The suggested orchestration

framework includes four important processes: FLR,

OFG, ER, and OFE. These four processes assist users

in effective storage and access of EHRs. At first, FLR

is carried-out for selecting optional functions in the

web application of hospital management systems.

Here, these optimal functions are modified or

rewritten to enforce encryption mechanisms, access

controls, and security policies for ensuring the

integrity and confidentiality of EHRs [31,32].

In this orchestration framework, the FLR

comprises two operations of separation operation and

rewriting operation. In the separation operation, the

selected optional functions are stored in the format of

‘string values’. This process ensures that the empty

codes in the optional functions are interchanged with

other appropriate functions. Furthermore, in the

rewriting operation, the custom codes are used for

replacing the actual codes which have more lines,

thereby making this web application more energy

efficient. During the FLR, the functions are extended

and rewritten based on the user requirements. This

adaptability and flexibility enables healthcare

organizations in customizing EHR systems based on

specific requirements.

Next, the OFE mechanism eliminates the

irrelevant EHRs in a web application related to

hospital management systems. This mechanism

eliminates four files which are the compiled files,

local environmental files, test files present in the

general library, and the information about directories

in the general library present in the web application.

The proper elimination of optional files improves

data privacy and security as the additional

unnecessary files contain sensitive information. The

removal of unnecessary files maintains data

protection, reduces memory usage, processing

service CPU utilization and minimizes the risk of

unauthorized access [33].

Furthermore, the serverless functions are

determined in this web application using three

approaches, namely Developer Defined Interfaces

(DDI), Configuration File Analysis (CFA), and

Source Code Analysis (SCA) through the ER process.

Firstly, the name of the serverless function is

identified via the DDI approach by providing external

permits and interfaces to developers. In the

introduced orchestration framework, the DDI

approach acts as a backup option for identifying entry

points of a serverless function. Secondly, the SCA

approach determines the configurations of

parameters by scanning serverless functions. Thirdly,

the CFA approach is an important approach used in

this orchestration framework for determining

configuration files that are commonly used for

resource allocation and permission settings. The CFA

is an efficient and simple approach used to find the

names of serverless functions in the web application.

The effective identification of serverless functions

namely, server scaling, maintenance, and

provisioning reduce the operational overhead. This

process allows administrators and developers to

concentrate less on handling infrastructure and more

on application development and logic [34]. It results

in faster delivery of updates and features, further

leading to effective development cycles.

Finally, the OFG is administered to further

improve the flexibility and customization of the

orchestration framework by supporting scripting and

custom logic. This enables the framework to define

complex workflows and actions. The OFG helps this

framework to interact with different cloud resources

Received: April 27, 2024. Revised: June 1, 2024. 766

International Journal of Intelligent Engineering and Systems, Vol.17, No.4, 2024 DOI: 10.22266/ijies2024.0831.58

Figure. 2 Workflow of this orchestration framework

such as virtual machines, storage, databases, etc. As

it is known, the use of various policies and rules helps

users in effective management of resources.

Generally, the orchestration framework sets

policies and rules for cost optimization and resource

allocation. The OFG automates the policies and rules

in the framework for managing a vast amount of

events and actions without encountering bottlenecks.

Moreover, the web application with OFG demands

less training for users by focusing only on specific

features. Furthermore, the OFG provides more

flexibility that allows users in choosing or

customizing particular functionalities according to

their needs. This flexibility and adaptability improves

the user-experience, and finally, is orchestrated in a

FaaS application. The workflow of this orchestration

framework is presented in Fig. 2, while its

pseudocode is depicted below:

Pseudocode of this orchestration framework

Function handle EHR Request (user Credentials,

patient ID, operation Type):

 If authenticate User (user Credentials):

 Cloud Provider = determine Cloud Provider

(patient ID)

 Load Balanced Provider = perform Load

Balancing (Cloud Provider)

 If check Access Control (user Credentials,

patient ID, operation Type):

 Update Dynamic Hash Table (user

Credentials, patient ID)

 // Revocable access

 Scale Infrastructure If Needed ()

 EHR Data = perform EHR Request (Load

Balanced Provider, patient ID, operation Type)

 // Process the EHR data or update as needed

 Return EHR Data

 Else:

 Log Access Denied (user Credentials, patient

ID, operation Type)

 Return “Access denied”

 Else:

 Log Authentication Failure (user Credentials)

 Return “Authentication failed”

Hash Table = new Revocable Dynamic Hash Table ()

Add cloud providers to the hash table

Hash Table. Add Cloud Provider (“cloud1”,

{‘credentials’: ‘abc123’, ‘revoked’: False})

Hash Table. Add Cloud Provider (“cloud2”,

{‘credentials’: ‘xyz456’, ‘revoked’: False})

Dynamically update access credentials for a cloud

provider

Hash Table. Update Access Credentials (“cloud1”,

{‘credentials’: ‘new Credentials’, ‘revoked’: False})

Dynamically revoke access for a cloud provider

Hash Table. Revoke Access (“cloud2”)

Check if access is revoked for a specific cloud

provider

If hash Table. Is Access Revoked (“cloud1”):

 Print (“Access to cloud is revoked”)

Else:

 Print (“Access to cloud is granted”)

3.2 RDHT method

One method for dynamically adding and deleting

data buckets on demand is dynamic hashing. In this

hashing process, the hash function helps generate a

large number of values. The RDHT is inspired from

the concept of index hash table which is used to track

the patient’s EHRs for auditing in the orchestration

framework. The RDHT is a two-dimensional data

structure which is graphically illustrated in Fig. 4.

The RDHT comprises two important elements, block

elements and file elements. Every file element

encompasses an index number 𝑁𝑂𝑖 of a given file 𝐹𝑖.

The pointer and the file identifier 𝐼𝐷𝑖 represent the

first block element and are stored in the format of an

Received: April 27, 2024. Revised: June 1, 2024. 767

International Journal of Intelligent Engineering and Systems, Vol.17, No.4, 2024 DOI: 10.22266/ijies2024.0831.58

Figure. 3 Architecture of RDHT based Orchestration Framework

Figure. 4 Graphical presentations of the RDHT method

array-like structure. A linked list is utilized to

organize every file with the respective file element as

a header node. Every block element (for instance: 𝑗𝑡ℎ

block of the 𝑖𝑡ℎ file 𝑚𝑖,𝑗) contains a time stamp 𝑡𝑖,𝑗, a

pointer representing the next node, and a given

block 𝑣𝑖,𝑗 . Additionally, the operations that are

carried out in the RDHT are divided into two types,

block operations and file operations. Both operations

include modification, deletion, insertion, and search

[35,36].

In the block operation, an appropriate block is

searched for locating elements by visiting all nodes.

Correspondingly, during the file operation, an

appropriate file is searched for locating file elements

based on their index values [37-39]. The file insertion

step involves two processes: (i) insert file elements

into a file array and (ii) construct a linked list. In the

constructed linked list, the file modification option is

used to update the related block elements and file

elements, whereas the file deletion option is used to

delete the given file and its file elements in the linked

list. By taking the benefits of a linked list, the RDHT

significantly outperforms the index hash table in the

deletion and insertion of blocks and files. In

comparison to the index hash table, the introduced

RDHT has limited communication overhead in the

updating process and limited computational costs of

the cloud service providers [40,41]. The architecture

of RDTH based Orchestration framework is

presented in Fig. 3.

The pseudocode of the RDHT method is depicted

below:

Received: April 27, 2024. Revised: June 1, 2024. 768

International Journal of Intelligent Engineering and Systems, Vol.17, No.4, 2024 DOI: 10.22266/ijies2024.0831.58

Pseudocode of the RDHT method

Class Revocable Dynamic Hash Table:

 Data = {} # Hash table to store cloud provider

information

 Def add Cloud Provider (provider ID, provider

Details):

 Data [provider ID] = provider Details

 Def remove Cloud Provider (provider ID):

 If provider ID in data:

 Del data [provider ID]

 Def update Access Credentials (provider ID, new

Credentials):

 If provider ID in data:

 Data [provider ID] [‘credentials’] = new

Credentials

 Def revoke Access (provider ID):

 If provider ID in data:

 # Optionally, perform additional revocation

actions (e.g., update access keys, tokens)

 Data [provider ID] [‘revoked’] = True

 Def is Access Revoked (provider ID):

 Return provider ID in data and data [provider

ID] [‘revoked’]

Example Usage:

Assume cloud providers are identified by unique

IDs (e.g., "cloud1", "cloud2", etc.)

Hash Table = new Revocable Dynamic Hash Table ()

Add cloud providers to the hash table

Hash Table. Add Cloud Provider (“cloud1”,

{‘credentials’: ‘abc123’, ‘revoked’: False})

Hash Table. Add Cloud Provider (“cloud2”,

{‘credentials’: ‘xyz456’, ‘revoked’: False})

Dynamically update access credentials for a cloud

provider

Hash Table. Update Access Credentials (“cloud1”,

{‘credentials’: ‘new Credentials’, ‘revoked’: False})

Dynamically revoke access for a cloud provider

Hash Table. Revoke Access (“cloud2”)

Check if access is revoked for a specific cloud

provider

If hash Table. Is Access Revoked (“cloud1”):

 Print (“Access to cloud is revoked”)

Else:

 Print (“Access to cloud is granted”)

The multi-cloud environment developed with the

introduced orchestration framework based on the

RDHT method ensures secure storage and access of

EHRs. The orchestration layer plays a vital role to

manage the whole process carried out in the multi-

cloud environment. The orchestration layer

authenticates the health professionals while he/she

initiates a request for retrieving and updating patient

records, where the verification of whether or not there

is a match of credentials with the required

permissions is involved. In addition, the orchestration

layer routes the health professional’s request based

on the RDHT method.

The implemented RDHT method effectively

distributes EHRs across different cloud providers. In

this stage, the load balancing processes are also

applied to analyse the load on every cloud provider.

The orchestration layer enforces access control

policies after finding the designated cloud provider.

This action ensures that the health professional has

proper and authorized permissions to carry out the

requested operation. The revocable nature of the

RDHT method assists this orchestration layer to

generate reports on resource usage, continuously

monitors system’s health, and provides potential

security incidents. This revocable nature ensures a

secure, scalable, and resilient EHR system in a

dynamic landscape of a multi-cloud environment.

The graphical representation of the function handle

EHR request is presented in Fig. 5. The empirical

analysis of the orchestration framework with RDHT

method is specified in section 4.

4. Results

In this research study, the orchestration

framework based on RDHT is implemented utilizing

Python 3.10 software tool with Pycharm 2022.1. This

orchestration framework is executed on a personal

computer equipped with 16GB Random Access

Memory (RAM), Windows 10 (64-bit) operating

system, and 4TB hard-drive. In this context, the

minimum/maximum instance count ranges from 0 to

300, and 256MB of memory is allocated. The

performance of the implemented orchestration

framework with RDHT is analysed based on four

evaluation metrics: memory usage, response time,

computation overhead, and access time. The

performance is evaluated by varying the size of

patients, hospitals, and doctors. The evaluation

metric, memory usage is defined as the amount of

memory (RAM) consumed by the implemented

orchestration framework for executing and managing

tasks. Furthermore, response time is the time taken

for providing meaningful results and processing a

task or request. The response time is measured in

terms of milliseconds (ms).

In this context, the computation overhead is

defined as the extra computational resources

(processing power) needed by the introduced

orchestration framework for managing and executing

tasks. The computation overhead is measured by

means of Mega-Byte (MB). Additionally, the access

time is the time taken by the introduced orchestration

framework for accessing and retrieving resources or

information from various components in the system.

Received: April 27, 2024. Revised: June 1, 2024. 769

International Journal of Intelligent Engineering and Systems, Vol.17, No.4, 2024 DOI: 10.22266/ijies2024.0831.58

Figure. 5 Graphical representation of function handle EHR request

Received: April 27, 2024. Revised: June 1, 2024. 770

International Journal of Intelligent Engineering and Systems, Vol.17, No.4, 2024 DOI: 10.22266/ijies2024.0831.58

4.1 Description of dataset

In this article, the MIMIC-III dataset is utilized

for validating the performance of the suggested

orchestration framework. This dataset comprises

records of 60,000 patients admitted in medical

centers, specifically in critical care units during the

period of 2001 to 2012. This MIMIC-III dataset is

accessible through a web based data resource

(Physio-Net) and contains several physiological

records [39,40]. The MIMIC-III dataset contains

several information of hospital admissions,

medications, hospital mortality rate, measurements of

vital signs, fluid intake records, laboratory tests, and

patient demographics. In this particular context, this

dataset is chosen because of its higher velocity,

volume, and veracity.

MIMIC-III dataset:

https://www.kaggle.com/datasets/asjad99/mimiciii

4.2 Quantitative analysis

As illustrated in Table 1, the efficacy of the

proposed framework is validated by varying the

patient size between 50, 100, 150, 200, 250, and 300,

as it is analysed using four evaluation metrics:

memory usage, response time, computation overhead,

and access time. The paper does not provide a

detailed functional evaluation of the proposed system

in terms of practicality. However, it mentions that the

orchestration framework's performance was analyzed

using a web application related to hospital

management systems, suggesting a practical

implementation and evaluation. By investigating Fig.

6, it is seen that the orchestration framework based on

RDHT consumes minimal memory usage and

computation overhead, alongside requiring minimal

response time and access time. In the orchestration

layer, the RDHT effectively organizes data into key-

value pairs for secure storage and access. This

effective data organization optimizes memory usage

and reduces redundant storage. Further, the health

data is distributed across the hash table with the usage

of an efficient hash function. This process reduces

excessive collisions and results in better memory

usage. The RDHT provides constant and fast data

retrieval, especially in the context of healthcare

management, where the patients’ health information

is quickly accessed, thereby contributing to

responsive and significant healthcare services. As

stated in Table 1, the suggested orchestration

framework consumes minimal memory usage of

89.68MB, response time of 1070.52ms, computation

overhead of 124.56MB, and access time of

Table 1. Achieved results of the proposed framework on

varying the patient size

Patie

nts

Memor

y usage

(MB)

Response

time (ms)

Computatio

n overhead

(MB)

Access

time

(ms)

50 110 1393.32 164.38 1408.25

100 118.01 1413.52 135.34 1456.54

150 148.43 1333.85 136.64 1353.18

200 169.12 1373.95 144.43 1318.94

250 178.22 1428.26 145.10 1279.86

300 89.68 1070.52 124.56 1187.12

Figure. 6 Visual representation of the proposed

framework results on varying the patient size

Table 2. Achieved results of the proposed framework on

varying the hospital size

Hospit

als

Memory

usage

(MB)

Response

time

(ms)

Computation

overhead

(MB)

Access

time

(ms)

1 138.78 1285.45 130.10 1294.14

2 114.38 1365.80 138.78 1324.33

3 125.34 1371.26 166.90 1494.24

4 140.10 1413.48 181.69 1510.74

5 151.60 1456.98 214.42 1559.81

Figure. 7 Visual representation of the proposed

framework results on varying the hospital size

Received: April 27, 2024. Revised: June 1, 2024. 771

International Journal of Intelligent Engineering and Systems, Vol.17, No.4, 2024 DOI: 10.22266/ijies2024.0831.58

1187.12ms, even after increasing the size of the

patient to 300. The visual representation of the

recommended framework’s results when the patient

sizes are varied are illustrated in Fig. 6.

The experimental results of the recommended

orchestration framework when the hospital sizes are

varied are represented in Table 2. By examining the

obtained results, the recommended orchestration

framework is seen to consume more memory usage

and computation overhead, and takes maximal

response time and access time in the scenario of

increasing the hospital size. In this case, the RDHT

effectively accommodates updates and alternations in

patient health records and variations in data structures

without any performance degradation. In a

distributed healthcare system, this adaptability nature

is more advantageous when the health information

about patients is continuously evolving. Therefore,

the RDHT is recommended for supporting the

distribution of EHRs across several servers and nodes.

This process facilitates the effective management of

EHRs in distributed healthcare environments. The

RDHT provides predictable, consistent, and secure

data retrieval performance even when the size of the

dataset is higher. In real-time healthcare applications,

this consistent nature of RDHT maintains a higher-

level of service. The visual representation in Fig. 7

depicts the suggested framework’s outcomes when

the hospital size is varied.

Correspondingly, the experimental results of the

recommended orchestration framework when

varying the doctor size is presented in Table 3, while

its performance is validated utilizing four evaluation

metrics. By examining the obtained results, it is seen

that the memory usage, response time, computation

overhead, and access time are significantly increased

by increasing the size of doctors (5, 10, 15, 20, and

25). The visual representation of the outcomes of the

presented framework on varying the doctor size is

illustrated in Fig. 8. The response time and access

time of the orchestration framework is significantly

reduced because of the consistent time retrieval

property of RDHT. In the orchestration layer, the

RDHT is employed for managing the relationship

among dissimilar healthcare entities like combining

EHRs for the test results, prescriptions, and medical

history. It additionally contributes in generating a

comprehensive health profile for a patient.

In this healthcare framework, the presented

RDHT method’s performance is compared with four

existing methods namely, Quick-FaaS, FHIR,

ElGamal encryption, and DS-Chain for 300 patient

records, where the obtained results are depicted in

Table 4 and Fig. 9. In this orchestration framework,

Table 3. Achieved results of the proposed framework on

varying the doctor size

Doctors

Memory

usage

(MB)

Response

time (ms)

Computation

overhead (MB)

Access

time (ms)

5 123.50 1267.06 199.18 1283.24

10 139.48 1231.38 225.25 1322.21

15 212.41 1323.50 248.81 1394.33

20 248.88 1360.35 272.60 1428.12

25 298.72 2419.60 332.92 1427.09

Figure. 8 Visual representation of the proposed

framework results on varying the doctor siz

Table 4. Results of state-of-the-art methods

Methods

Memory

usage

(MB)

Response

time (ms)

Computation

overhead

(MB)

Access

time

(ms)

Quick-FaaS 378 1458.78 1251.88 1638.77

FHIR 464 2423.98 1803.22 2407.83

ElGamal

encryption
389 1257.83 1531.12 1468.03

DS-Chain 278 1435.84 1362.68 1335.91

RDHT 89.68 1070.52 124.56 1187.12

Figure. 9 Visual presentation of the comparative and

proposed method’s results

Received: April 27, 2024. Revised: June 1, 2024. 772

International Journal of Intelligent Engineering and Systems, Vol.17, No.4, 2024 DOI: 10.22266/ijies2024.0831.58

the presented RDHT method is recorded to exhibit a

minimal memory usage of 89.68MB, response time

of 1070.52ms, computation overhead of 124.56MB,

and access time of 1187.12ms. On the contrary, the

existing methods: Quick-FaaS, FHIR, ElGamal

encryption, and DS-Chain, respectively exhibit a

memory usage of 378MB, 464MB, 389MB and

278MB, response time of 1458.78ms, 2423.98ms,

1257.83ms and 1435.84ms, computation overhead of

1251.88MB, 1803.22MB, 1531.12MB and

1362.68MB, and access time of 1638.77ms,

2407.83ms, 1468.03ms and 1335.91ms. These

outcomes clearly represent that the presented RDHT

method exhibits minimal memory usage, response

time, computation overhead and access time in

comparison to the existing methods (Quick-FaaS,

FHIR, ElGamal encryption, and DS-Chain).

4.3 Comparative analysis with discussion

In this analysis, the efficacy of the presented

orchestration framework with RDHT is contrasted by

comparing its performance with the health

monitoring workflow developed by El-Kassabi [25].

As discussed in the literature section, El-Kassabi [25]

developed a workflow adaptation, monitoring, and

orchestration model for performing automatic

reconfiguration and for detecting performance

degradation in order to ensure the workflow’s QoS.

In this technique, the adaptation and monitoring

approaches were utilized for repairing and detecting

errors, aside from triggering various adaptation

actions such as resource scaling, migration, and

workflow reconfiguration. Additionally, a model

checker was used in the study for validating this

presented workflow’s outcomes by means of safety

properties, liveness, and reachability. The extensive

experimental evaluation carried out on the MIMIC-

III dataset confirms the superiority of this health

monitoring workflow. This workflow deploys on a

Docker-swarm cluster and is examined by means of

data service (CPU utilization and memory usage) and

processing service (CPU utilization and memory

usage).

As specified in tables 5 and 6, and Figs. 10 and

11, the developed orchestration framework with

RDHT demands low CPU utilization and memory

usage for both processing and data services related to

the existing health monitoring workflow on the

MIMIC-III dataset. In tables 5 and 6, the outcomes of

the developed orchestration framework are validated

with and without using RDHT.

Tables 5 and 6 clearly demonstrate the

effectiveness of using RDHT in the orchestration

framework for secure storage and access of EHRs.

The RDHT provides a fine-grained access control in

the orchestration framework that allows different

entities and users for accessing specific patient’s

EHRs. This is vital in the healthcare management

system because in few cases, the sensitive

information about the patient needs to be limited as

per the permissions and roles. While the increasing

number of EHRs, the RDHT significantly manages

data distribution and accesses user’s requests in a

scalable way that guarantees the orchestration

framework’s responsiveness and performance.

Table 5. Obtained results of the proposed framework by

means of data service CPU utilization and memory usage

Patient

records

Orchestration

framework without

RDHT

Orchestration

framework with

RDHT

Data

service

CPU

utilization

Data

service

memory

usage (GB)

Data

service

CPU

utilization

Data

service

memory

usage (GB)

3000 65.26 482.24 48.31 361.04

6000 85.51 467.71 68.99 277.31

7000 75.63 356.27 78.79 316.18

9000 87.36 321.06 85.34 232.16

10000 86.19 318.98 76.64 228.52

(a)

(b)

Figure. 10 Data service (CPU utilization and memory

usage): (a) Orchestration framework without RDHT and

(b) Orchestration framework with RDHT

Received: April 27, 2024. Revised: June 1, 2024. 773

International Journal of Intelligent Engineering and Systems, Vol.17, No.4, 2024 DOI: 10.22266/ijies2024.0831.58

Table 6. Obtained results of the proposed framework by

means of processing service CPU utilization and memory

usage

Patient

records

Orchestration

framework without

RDHT

Orchestration

framework with

RDHT

Processing

service

CPU

utilization

Processing

service

memory

usage (GB)

Processing

service

CPU

utilization

Processing

service

memory

usage (GB)

3000 48.49 397.67 32.42 287.68

6000 87.24 385.79 71.67 265.79

7000 95.78 394.81 93.57 284.44

9000 76.77 266.57 69.84 166.76

10000 93.87 282.42 91.81 112.32

(a)

(b)

Figure. 11 Processing service (CPU utilization and

memory usage): (a) Orchestration framework without

RDHT and (b) Orchestration framework with RDHT

5. Conclusion

In this research study, a novel orchestration

framework is developed based on the RDHT method

for secure data storage and access in a multi-cloud

environment. The presented orchestration framework

comprises four important processes namely, FLR,

OFG, ER, and OFE, as these processes generate a

simplified user interface with reduced complexity

and clutter. These four processes avoid unnecessary

overhead and create a user-friendly experience. The

performance of the suggested orchestration

framework is validated using EHRs which are

acquired from the web application related to hospital

management system. In addition, a RDHT method is

incorporated with the recommended orchestration

framework for secure data storage and access by

effectively distributing EHRs across different cloud

providers. In this context, the efficacy of the RDHT

method is investigated based on four evaluation

metrics namely, memory usage, response time,

computation overhead, and access time. The

empirical analysis evidences that the RDHT method

consumes a limited access time of 1187.12ms,

response time of 1070.52ms, memory usage of

89.68MB, and computation overhead of 124.56MB

than the existing methods like Quick-FaaS, FHIR,

ElGamal encryption, and DS-Chain on the MIMIC-

III dataset for 300 patient records. Additionally, the

future work concentrates on enhancing the

compatibility of cross-platform for ensuring that the

recommended orchestration framework operates in

different environments such as edge devices, on-

premises infrastructures, and with various cloud

providers.

Conflicts of Interest

The authors declare no conflict of interest.

Author Contributions

Conceptualization, ZAA and DLN; methodology,

ZAA; software, DLN; validation, DLN; formal

analysis, DLN; investigation, ZAA; resources, DLN;

data curation, ZAA; writing—original draft

preparation, ZAA; writing—review and editing,

DLN; visualization, ZAA; supervision, DLN; project

administration, DLN

References

[1] C. Ramalingam, and P. Mohan, “Addressing

Semantics Standards for Cloud Portability and

Interoperability in Multi Cloud Environment”,

Symmetry, Vol. 13, No. 2, p. 317, 2021.

[2] O. Tomarchio, D. Calcaterra, and G. D. Modica,

“Cloud resource orchestration in the multi-cloud

landscape: a systematic review of existing

frameworks”, Journal of Cloud Computing:

Advances, Systems and Applications, Vol. 9, p.

49, 2020.

[3] K. Benhssayen, and A. Ettalbi, “Semantic

interoperability framework for IAAS resources

in multi-cloud environment”, International

Received: April 27, 2024. Revised: June 1, 2024. 774

International Journal of Intelligent Engineering and Systems, Vol.17, No.4, 2024 DOI: 10.22266/ijies2024.0831.58

Journal of Computer Science & Network

Security, Vol. 21, No. 2, 2021.

[4] K. Benhssayen, and A. Ettalbi, “An Extended

Framework for Semantic Interoperability in

PaaS and IaaS Multi-cloud”, In: Proc. of

International Conf on Digital Technologies and

Applications, pp. 415-424, 2022.

[5] T. Kaur, and K. Kaur, “TensorFlow-based

semantic techniques for multi-cloud application

portability and interoperability”, In: Proc. of G.

Ranganathan, J. Chen, A. Rocha, (Eds.)

Inventive Communication and Computational

Technologies: Proceedings of ICICCT. 2019, pp.

13-21, 2020.

[6] G. Cordasco, M. D. Auria, A. Negro, V. Scarano,

and C. Spagnuolo, “Toward a domain‐specific

language for scientific workflow‐based

applications on multicloud system”,

Concurrency and Computation: Practice and

Experience, Vol. 33, No. 18, p. e5802, 2021.

[7] G. Fatouros, Y. Poulakis, A. Polyviou, S.

Tsarsitalidis, G. Makridis, J. Soldatos, G.

Kousiouris, M. Filippakis, and D. Kyriazis,

“Knowledge Graphs and interoperability

techniques for hybrid-cloud deployment of FaaS

applications”, In: Proc. of 2022 IEEE

International Conf on Cloud Computing

Technology and Science. (CloudCom), pp. 91-

96, 2022.

[8] C. K. Dehury, P. Jakovits, S. N. Srirama, G.

Giotis, and G. Garg, “TOSCAdata: Modeling

data pipeline applications in TOSCA”, Journal

of Systems and Software, Vol. 186, p. 111164,

2022.

[9] A. Mujezinović, and V. Ljubović, “Serverless

architecture for workflow scheduling with

unconstrained execution environment”, In: Proc.

of 2019 42nd International Convention on

Information and Communication Technology,

Electronics and Microelectronics (MIPRO),

Opatija, Croatia, pp. 242-246, 2019.

[10] N. Ravi, and M. Thangarathinam, “Emergence

of Middleware to Mitigate the Challenges of

Multi-Cloud Solutions onto Mobile Devices”,

International Journal of Cooperative

Information Systems, Vol. 28, No. 04, p.

1950012, 2019.

[11] M. A. Serhani, H. T. E. Kassabi, K. Shuaib, A.

N. Navaz, B. Benatallah, and A. Beheshti, “Self-

adapting cloud services orchestration for

fulfilling intensive sensory data-driven IoT

workflows”, Future Generation Computer

Systems, Vol. 108, pp. 583-597, 2020.

[12] B. Shirazi, “Super‐process interoperability

optimization architecture in healthcare ultra‐

large‐scale systems: A graph‐based multi‐

objective approach”, Concurrency and

Computation: Practice and Experience, Vol. 34,

No. 3, p. e6595, 2022.

[13] J. Han, S. Park, and J. Kim, “Dynamic

OverCloud: Realizing Microservices-Based

IoT-Cloud Service Composition over Multiple

Clouds”, Electronics, Vol. 9, p. 969, 2020.

[14] E. Zeydan, J. Baranda, and J. M. Bafalluy,

“Post-Quantum Blockchain-Based Secure

Service Orchestration in Multi-Cloud

Networks”, IEEE Access, Vol. 10, p. 129520-

129530, 2022.

[15] D. Kim, H. Muhammad, E. Kim, S. Helal, and

C. Lee, “TOSCA-Based and Federation-Aware

Cloud Orchestration for Kubernetes Container

Platform”, Applied Sciences, Vol. 9, p. 191,

2019.

[16] D. Calcaterra, and O. Tomarchio, “Multi-

faceted cloud portability with a TOSCA-based

orchestrator”, In: Proc. of 2021 8th

International Conf on Future Internet of Things

and Cloud (FiCloud), Rome, Italy, pp. 326-333,

2021.

[17] J. Li, Y. Deng, W. Sun, W. Li, R. Li, Q. Li, and

Z. Liu, “Resource orchestration of cloud-edge–

based smart grid fault detection”, ACM

Transactions on Sensor Networks (TOSN), Vol.

18, No. 3, p. 46, 2022.

[18] Q. Qi, J. Wang, Y. Cao, J. Wang, H. Sun, and J.

Liao, “Cluster-PSO based resource

orchestration for multi-task applications in

vehicular cloud”, Wireless Personal

Communications, Vol. 102, No. 3, pp. 2133-

2155, 2018.

[19] J. Shen, P. Zeng, K. K. R. Choo, and C. Li, “A

Certificateless Provable Data Possession

Scheme for Cloud-Based EHRs”, IEEE

Transactions on Information Forensics and

Security, Vol. 18, pp. 1156-1168, 2023.

[20] G. P. Kanna, and V. Vasudevan, “An improved

privacy aware secure multi-cloud model with

proliferate ElGamal encryption for big data

storage”, International Journal of Information

and Computer Security, Vol. 17, No. 1-2, pp. 1-

20, 2022.

[21] R. Mishra, D. Ramesh, D. R. Edla, and L. Qi,

“DS-Chain: A secure and auditable multi-cloud

assisted EHR storage model on efficient

deletable blockchain”, Journal of Industrial

Information Integration, Vol. 26, p. 100315,

2022.

[22] A. N. Gohar, S. A. Abdelmawgoud, and M. S.

Farhan, “A Patient-Centric Healthcare

Framework Reference Architecture for Better

Received: April 27, 2024. Revised: June 1, 2024. 775

International Journal of Intelligent Engineering and Systems, Vol.17, No.4, 2024 DOI: 10.22266/ijies2024.0831.58

Semantic Interoperability Based on Blockchain,

Cloud, and IoT”, IEEE Access, Vol. 10, pp.

92137-92157, 2022.

[23] L. Ouchaou, H. Nacer, and C. Labba, “Towards

a distributed saas management system in a

multi-cloud environment”, Cluster Computing,

Vol. 25, No. 6, pp. 4051-4071, 2022.

[24] P. Rodrigues, F. Freitas, and J. Simão,

“QuickFaaS: Providing Portability and

Interoperability between FaaS Platforms”,

Future Internet, Vol. 14, p. 360, 2022.

[25] H. T. E. Kassabi, M. A. Serhani, R. Dssouli, and

A. N. Navaz, “Trust enforcement through self-

adapting cloud workflow orchestration”, Future

Generation Computer Systems, Vol. 97, pp.

462-481, 2019.

[26] N. Iqbal, S. I. Ahmad, R. Ahmad, and D. H. Kim,

“A Scheduling Mechanism Based on

Optimization Using IoT-Tasks Orchestration

for Efficient Patient Health Monitoring”,

Sensors, Vol. 21, p. 5430, 2021.

[27] R. M. Vozmediano, R. S. Montero, E. Huedo,

and I. M. Llorente, “Orchestrating the

deployment of high availability services on

multi-zone and multi-cloud scenarios”, Journal

of Grid Computing, Vol. 16, pp. 39-53, 2018.

[28] J. Okwuibe, J. Haavisto, I. Kovacevic, E.

Harjula, I. Ahmad, J. Islam, and M. Ylianttila,

“SDN-enabled resource orchestration for

industrial iot in collaborative edge-cloud

networks”, IEEE Access, Vol. 9, pp. 115839-

115854, 2021.

[29] H. Qin, M. Yu, Y. Lai, Z. Liu, and J. Liu, “Cloud

resource orchestration optimisation based on

ARIMA”, International Journal of Simulation

and Process Modelling, Vol. 14, No. 5, pp. 420-

430, 2019.

[30] M. Kazim, L. Liu, and S. Y. Zhu, “A framework

for orchestrating secure and dynamic access of

IoT services in multi-cloud environments”,

IEEE Access, Vol. 6, pp. 58619-58633, 2018.

[31] R. Mishra, I. Kaur, S. Sahu, S. Saxena, N. Malsa,

and M. Narwaria, “Establishing three layer

architecture to improve interoperability in

Medicare using smart and strategic API led

integration”, SoftwareX, Vol. 22, p. 101376,

2023.

[32] H. Ghayvat, S. Pandya, P. Bhattacharya, M.

Zuhair, M. Rashid, S. Hakak, and K. Dev, “CP-

BDHCA: Blockchain-based Confidentiality-

Privacy preserving Big Data scheme for

healthcare clouds and applications”, IEEE

Journal of Biomedical and Health Informatics,

Vol. 26, No. 5, pp. 1937-1948, 2022.

[33] S. Bebortta, S. S. Tripathy, S. Basheer, and C. L.

Chowdhary, “FedEHR: A Federated Learning

Approach towards the Prediction of Heart

Diseases in IoT-Based Electronic Health

Records”, Diagnostics, Vol. 13, p. 3166, 2023.

[34] R. Oruche, E. Milman, M. L. Alarcon, X. Cheng,

A. Pandey, S. Wang, P. Calyam, and K. Kee,

“Science gateway adoption using plug‐in

middleware for evidence‐based healthcare data

management”, Concurrency and Computation:

Practice and Experience, Vol. 35, No. 18, p.

e7195, 2023.

[35] R. Hossen, M. Whaiduzzaman, M. N. Uddin, M.

J. Islam, N. Faruqui, A. Barros, M. Sookhak,

and M. J. N. Mahi, “BDPS: An Efficient Spark-

Based Big Data Processing Scheme for Cloud

Fog-IoT Orchestration”, Information, Vol. 12, p.

517, 2021.

[36] E. Zeljković, T. D. Schepper, P. Bosch, I.

Vermeulen, J. Haxhibeqiri, J. Hoebeke, J.

Famaey, and S. Latré, “ORCHESTRA:

Virtualized and programmable orchestration of

heterogeneous WLANs”, In: Proc. of 2017 13th

International Conf on Network and Service

Management (CNSM), Tokyo, Japan, pp. 1-9,

2018.

[37] P. Ren, L. Liu, X. Qiao, and J. Chen,

“Distributed Edge System Orchestration for

Web-Based Mobile Augmented Reality

Services”, IEEE Transactions on Services

Computing, Vol. 16, No. 3, pp. 1778-1792, 2023.

[38] H. Tian, Y. Chen, C. C. Chang, H. Jiang, Y.

Huang, Y. Chen, and J. Liu, “Dynamic-hash-

table based public auditing for secure cloud

storage”, IEEE Transactions on Services

Computing, Vol. 10, No. 5, pp. 701-714, 2017.

[39] J. Wang, D. Liu, X. Fu, F. Xiao, and C. Tian,

“DHash: Dynamic Hash Tables with Non-

blocking Regular Operations”, IEEE

Transactions on Parallel and Distributed

Systems, Vol. 33, No. 12, pp. 3274-3290, 2022.

[40] X. Wang, and L. Liu, “Image encryption based

on hash table scrambling and DNA substitution”,

IEEE Access, Vol. 8, pp. 68533-68547, 2020.

[41] P. Kumar, M. Rahman, S. Namasudra, and N.R.

Moparthi, “Enhancing security of medical

images using deep learning, chaotic map, and

hash table”, Mobile Networks and Applications,

2023.

[42] M. Scherpf, F. Gräßer, H. Malberg, and S.

Zaunseder, “Predicting sepsis with a recurrent

neural network using the MIMIC III database”,

Computers in Biology and Medicine, Vol. 113,

p. 103395, 2019.

Received: April 27, 2024. Revised: June 1, 2024. 776

International Journal of Intelligent Engineering and Systems, Vol.17, No.4, 2024 DOI: 10.22266/ijies2024.0831.58

[43] S.R. Khope, and S. Elias, “Critical correlation of

predictors for an efficient risk prediction

framework of ICU patient using correlation and

transformation of MIMIC-III dataset”, Data

Science and Engineering, Vol. 7, No. 1, pp. 71-

86, 2022.

[44] Y. Zhu, J. Zhang, G. Wang, R. Yao, C. Ren, G.

Chen, X. Jin, J. Guo, S. Liu, H. Zheng, and Y.

Chen, “Machine learning prediction models for

mechanically ventilated patients: analyses of the

MIMIC-III database”, Frontiers in Medicine,

Vol. 8, p. 662340, 2021.

[45] A. Budrionis, M. Miara, P. Miara, S. Wilk, and

J.G. Bellika, “Benchmarking pysyft federated

learning framework on mimic-iii dataset”, IEEE

Access, Vol. 9, pp. 116869-116878, 2021.

