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Abstract: 6G(Sixth-generation) technology is the next generation of mobile wireless communication networks, 

designed to deliver more inclusive and long-lasting wireless connectivity. Great security, secrecy, and privacy should 

be the fundamental qualities of 6G. However, 6G faces challenges in overcoming limitations like congested networks 

that lead to poor Quality of experience (QoE) and high energy consumption for continuous operation. In this work, a 

novel 6G Resource Allocation Detection USing Deep Learning (6G-RADIUS) technique has been proposed to allocate 

resources and enhance QoE efficiency and energy efficiency in a 6G network. Data from the user's equipment is sent 

to the base station to begin the procedure. The Golden Tortoise Beetle Optimizer (GTBO) assigns subbands, potentially 

choosing those with the most important information or strongest signals. The resource allocation method is carried out 

using a Multi-Head Attention-based Bidirectional Gated Recurrent Unit (MHA-BiGRU) model. The output of the 
MHA-BiGRU model is supplied into the BaseBand Unit (BBU) pool, which regulates and distributes resources among 

many BBU. The proposed techniques' performance is assessed using QoE, resource utilization, energy efficiency, 

Mean Square Error (MSE), Cumulative Distribution Function (CDF), and spectral efficiency. The proposed method 

has a higher resource utilization factor of 8.16%, 6.12%, and 3.06% compared to existing QJEEO, EKF and SDWN 

techniques, respectively. 

Keywords: Resource allocation, Quality of experience, Energy efficiency, Golden tortoise beetle optimizer. 

 

 

1. Introduction  

Sixth-generation mobile communication systems 

will serve as the cornerstone for digitization in 

society going forward, and it will significantly impact 

how services are created, provided, and used. [1, 2]. 

6G will offer a wide range of services with 

exceptional performance: near-zero latency, 

seemingly endless capacity, and 100% dependability 

as well as accessibility will render the 

communication infrastructure completely transparent 

to applications [3, 4].  

With portable devices, 6G networks hope to 

enable smart automation systems by delivering 

excellent energy efficiency and QoE during 

multimedia communication [5, 6]. To improve the 

user experience, QoE is vital to achieve overall 

satisfaction with the DT service on 6G networks. [7, 

8]. There are various metrics and scales available for 

measuring QoE. Both qualitative and quantitative 

measurements are possible [11, 12]. For instance, an 

ordered scale with ratings between 1 to 5 is employed 

for computing the QoE metric "user satisfaction." [13, 

14] On this scale, 1 implies poor quality while 5 

represents exceptional attributes [15-17].  

Energy efficiency refers to minimizing the 

overall consumption of energy by reducing the 

volume of data entering the data centre [18, 19]. 6G 

introduces a new service class called Massive Ultra-

Reliable Low-Latency Communications, which 

allows for quantitative design and evaluation of QoS 
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performance [20, 21]. The explosive growth of novel 

technologies that involve virtual reality, artificial 

intelligence, three-dimensional media, and the 

Internet of Everything has resulted in a tremendous 

load.  

This paper proposes a 6G Resource Allocation 

Detection Using the Deep Learning technique to 

allocate resources and enhance QoE efficiency and 

energy efficiency in 6G. The major contributions of 

the proposed 6G-RADIUS technique are as follows. 

• The process begins with user equipment (UE) 

data being transmitted to the base station. 

• In the subband allocation process the GTBO 

assigns subbands, potentially picking those with 

the most important information or strongest 

signals. 

• The allocated Subband is sent into the Multi-

Head Attention-based BiGRU model to allocate 

resources. 

• The output of the BiGRU model is fed into the 

BBU pool, which is most likely used to regulate 

and allocate resources across several baseband 

units. 

The remaining components of the suggested 

approach are described below. Section 2 summarizes 

the literature review in full. Section 3 explains the 

recommended technique [9, 10]. Part 4 explores the 

results as well as the discussion. Section 5 explains 

the conclusion. 

2. Literature survey  

Several research have used various approaches to 

improve QoE efficiency and energy efficiency in 

recent years. The next part highlights a few of the 

current evaluation methodologies and their 

shortcomings, which are as follows: 

In 2020, Sodhro, A.H., et al [22] suggested A 

QoS-based joint energy and entropy optimisation 

(QJEEO) approach. Experimental findings illustrate 

that QoE is modelled & estimated with acquisition 

time and coupled with quality-of-service 

characteristics such as packet loss ratio and average 

transfer latency throughout energy-efficient 

multimedia transmission in 6G-based systems to 

enhance client endorsement. Heterogeneity, 

scalability, integration, interoperability, capacity of 

networks, congestion in networks, and battery 

lifetime are some of the challenges that 6G massive 

IoT will face. 

In 2020, Mao, B., et al. [23], suggested an AI-

driven adaptive security approach for 6G IoT 

networks, accommodating devices linked via 

Terahertz (THz) and millimeter wave (mmWave) 

bands. Our method integrates anticipated energy 

harvesting features of 6G IoT devices, leveraging 

Extended Kalman Filtering (EKF) for future 

harvesting power prediction. The result demonstrates 

that this concept not only offers effective security 

protection across various functions but also adjusts 

security measures to mitigate energy fatigue, 

resulting in significant enhancements in throughput 

and operational efficiency. 

In 2023, Purba Daru Kusuma and Ashri 

Dinimaharawati [24] suggested a new metaheuristic 

called the extended stochastic coati optimizer 

(ESCO), which is an enhancement of the existing 

coati optimization algorithm (COA). ESCO expands 

on COA by increasing the number of searches and 

references used, incorporating a stochastic process 

for selecting search strategies, and implementing 

three sequential phases in each iteration with multiple 

options for selection. The results highlight ESCO's 

superiority over the GPA, POA, GSO, ASBO, and 

COA in solving 13, 21, 23, 16, and 13 functions, 

respectively. This suggests that utilizing a multiple 

search approach is more effective than a single search 

approach. 

In 2024, P. D. Kusuma and A. Dinimaharawati 

[25] introduces the swarm bipolar algorithm (SBA), 

a novel metaheuristic based on the non-free-lunch 

(NFL) doctrine. SBA divides the swarm into two sub-

swarms to enhance search diversity and 

intensification, aiming to overcome the limitations of 

universal optimizers by balancing exploration and 

exploitation effectively. The result presents the 

superiority of SBA among its contenders by being 

better than NGO, LEO, COA, FISA, and TIA in 21, 

16, 16, 21, and 18 functions. The single search 

assessment is performed to evaluate each strategy 

involved in SBA. The result shows that the search 

toward the middle between the two finest sub-swarm 

members is the best among the four searches in SBA. 

In 2024, Purba Daru Kusuma and Meta Kallista 

[26] introduces the Migration-Crossover Algorithm 

(MCA), a novel swarm-based metaheuristic 

incorporating crossover techniques and unbalanced 

local search space. MCA outperforms TIA, OOA, 

MA, COA, and WaOA in 20, 19, 17, 20, and 17 

functions, respectively. 

In 2021, Nabeel, M., et al [27] suggested a new 

cellular architecture called SpiderNet: Data-Aided 

Demand Driven Elastic Architecture for 6G Wireless 

Networks that is both spectrally and energy efficient. 

The results show that SpiderNet can significantly 

improve both SE and Energy Efficiency while 

maintaining QoE when compared to the present BS-

centric cellular design. The main issues that must be 

resolved to implement the SpiderNet design in 

practice, as well as possible fixes. 
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In 2023, Priya, B., et al [28] suggested an 

intelligent QoE-aware RAT selection architecture 

based on SDWN and edge computing towards 5G-

enabled healthcare networks. The analytical 

measurement confirms that the suggested strategy 

beats other current schemes to improve customized 

user experience while maximizing resource use. 

Context-aware RAT selection is challenging when 

utilizing 5G HetNets efficiently because RATs have 

a wide range of radio bands, protocols, and physical 

and media access control layers with several access 

mechanisms. 

In 2024, P. D. Kusuma and M. Kallista [29] 

introduces the Swarm Space Hopping Algorithm 

(SSHA), a novel metaheuristic that improves swarm-

based methods by incorporating directed searches 

towards high-quality solutions, adaptive adjustments 

based on agent performance, and arithmetic 

crossover with randomized solutions. SSHA 

demonstrates superior performance compared to 

NGO, ZOA, CLO, OOA, and TIA in various 

functions, with the second search proving most 

effective and the third search showing significant 

contribution in select cases. 

Using Golden Tortoise Beetle Optimization 

(GTBO) for subband allocation offers several 

advantages. GTBO efficiently prioritizes crucial data 

or strong signals, optimizing resource utilization and 

enhancing system performance. Its adaptive nature 

enables continuous optimization in dynamic network 

conditions, ensuring reliable subband allocations. 

GTBO's strategy allows the effective selection of 

critical data while being robust against noise and 

interference. It scales well for large-scale network 

scenarios and can optimize based on multiple 

objectives, improving overall system efficiency. 

GTBO is not only used for the application, we have 

also explored the GTBO for subband allocation in a 

6g network. Overall, GTBO is a promising solution 

for enhancing wireless communication systems 

through optimized subband allocation. Comparison 

of existing methods with merits and demerits is 

shown in Table 1. 

 

 
Table 1. Comparison of existing methods with merits and demerits 

S/No Author Proposed Advantages Disadvantages 

1 Sodhro, A.H., et al 

[22] 

QJEEO Focus on Energy Efficiency, 

Integration of IoT and 

Automation, Academic Rigor 

Limited Practical Validation, Scope 

Limitations, Dependency on 

Technological Assumptions 

2 Mao, B., et al [23] EKF Integration of AI for 

Optimization, Addressing 

Emerging Challenges, 

Innovative Approach 

Complex Implementation, Security-

Performance Trade-offs, Empirical 

Validation, Resource Intensiveness 

3 Purba Daru Kusuma 

and Ashri 

Dinimaharawati [24] 

ESCO Potential Performance Benefits, 

Novel Approach 

Limited Scope or Applicability, 

Lack of Comparative Analysis, 

Complexity or Practical 

Implementation Challenges 

4 P. D. Kusuma and A. 

Dinimaharawati [25] 

SBA Innovative Metaheuristic, 

Potential Performance 

Improvements 

Limited Evaluation or Validation, 

Complexity and Practical 

Implementation, Scope and 

Generalizability 

5 Purba Daru Kusuma 

and Meta Kallista 

[26] 

MCA Innovative Metaheuristic, 

Enhanced Optimization 

Performance, Experimental 

Validation 

Applicability and Generalizability, 

Limited Evaluation Scope, 

Complexity of Implementation 

6 Nabeel, M., et al 

[27] 

SpiderNet Innovative Architecture, 

Spectral Efficiency, Energy 

Efficiency, Demand-Driven 

Elasticity 

Complexity of Architecture, 

Empirical Validation, Adoption and 

Standardization 

7 Priya, B., et al [28] SDWN QoE Optimization, Intelligent 

RAT Selection, 

Complexity of Framework, 

Integration Challenges, Scalability 

and Adaptability 

8 P. D. Kusuma and 

M. Kallista [29] 

SSHA Innovative Algorithm, Potential 

Performance Gains 

Scope and Applicability, 

Complexity and Implementation 

Challenges, Limited Evaluation 
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Figure.1 6G-RADIUS Framework 

 

 

3. Proposed method  

This section presented a 6G-RADIUS strategy for 

allocating resources. The process begins with user 

equipment data flowing to the base station. The 

GTBO allocates subbands, possibly selecting those 

with the most vital information or strongest signals. 

Following the Subband allocation procedure, an 

MHA-BiGRU model receives the assigned subbands 

as input and decides how to allocate resources. The 

MHA-BiGRU model's output is fed into the BBU 

pool, which most likely controls and distributes 

resources across various BBUs. Figure 1 shows the 

6G-RADIUS. 

3.1 Subband allocation 

In the subband allocation process, a Golden 

Tortoise Beetle Optimizer is used to select the most 

vital data or strongest signals. 

3.2 Golden tortoise beetle 

We developed an optimization method based on 

golden tortoise beetles' colour-switching behaviour 

for pairing and reproduction, as well as their survival 

strategy against hunters. In the present research, 

every beetle symbolizes either a solution or a person. 

This GTBO employs the reproduction idea for 

developing Results and ensuring mechanisms for 

survival to choose which ones carry forward to a 

subsequent generation. The remaining parts will 

provide the two primary operators, followed by the 

algorithm for optimization. 

Inspired Operators: The Color-Switching 

Operators reflects the behaviour of golden tortoise 

beetles, which change colour during mating and 

disturbance. The shifting colour process is based on 

the reflecting index and wavelength in thin-layer 

interference. Assume u and v are stackable elements.  
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Table 2. Symbols and notations 

Notation Abbreviation 

du and dv Layer thicknesses 

mu and mv Reflecting indexes 

ω Wavelength 

φ̅ Reflective index 

β Layers thickness 

a × b Position matrix 

Tbeetle Fitness value 

t Objective value 

Randn () Normal randomized function 

σ Sigmoid function 

pr Input vector 

Zb, Zd, and Zq Current input weights 

Sb, Sd, and Sq. Cyclic input weights 

 

 

The optical dimension of every layer is 1/4 

wavelength. In other terms, du. mu = dv.mv,  where 

du and dv are layer thicknesses and mu and mv are 

reflecting indexes. Equation 1 indicates the 

considered reflected colour. 

 

l. ω = (du.mu. cos(θu) + dv.mv. cos(θv))   (1) 

 

Where l represents the constant number 

ω  indicates the wavelength of light that is 

reflected 

θuand θv were normal angles. 

 

ω =
2β√φ̅2−sin2(θq)

d
      (2) 

 

Where, ω represents wavelength 

φ̅ denotes the mean reflective index 

β represents layers thickness 

d constant number 

θq indicates normal angle  

Generating Initial Solutions: The ability of a 

beetle to attract another gender and protect its larvae 

against hunters significantly affects the following 

generations reproductive. To answer an optimization 

issue, the variables must be expressed in a matrix, 

known as a "position" in GTBO. As a female beetle 

attracts a golden male beetle, each approach 

eventually converges toward an optimal value 

through evolution. In an n-dimensional optimization 

issue, the factors could be expressed as an a × b 

position matrix, as shown below:   

 

Gbeetle = (

s1,1 s1,2
s2,1 s2,2

⋯
⋯

s1,b
s2,b

⋮     ⋮ ⋱ ⋮
sa,1 sa,2 ⋯ sa,b

)    (3) 

 

In this equation, si,j represents the jth variable of 

the ith  beetle, where a denotes the total amount of 

insects and b indicates the count of elements. The 

specified matrices contain floating values. The 

measure of fitness for every GTBO is established by 

assessing its economic functionality. The profitable 

function for the recommended approach is stated 

below: 

 

Tbeetle =

(

 

t([s1,1 s1,2
t([s2,1 s2,2

…
…

s1,b])

s2,b])

⋮          ⋮ ⋱ ⋮
t([sa,1 sa,2 ⋯ sa,b]))

   (4) 

 

Tbeetle  represents the fitness value of 

an individual beetle, t represents the objective value. 

The function of profit can be specified as either 

minimizing or maximizing. 

The program uses the randomized function to 

create the initial beetle. Randomly establish real-

valued quantities within the lower and higher 

boundaries of dimensions [Ymini, Ymaxi] , where 

Ymini= Y1mini, · · ·, Y
R
mini and  Ymaxi = Y1maxi, · · ·, 

YRmaxi function. 

Equation (5) determines the initial value for the 

dth component in the eth beetle during production P 

= l for an R-dimensional problems. 

 

xe,1
d = xmini

d + ran(0,1). (xmaxi
d − xmini

c ), 

d = 1,2,… . , R.   (5) 

 

Switching Color Operator: To calculate the 

number of mature beetles, use the following 

equations: (4) … (8). 

 

Fe
P = Ye

P + Gcolor. (Yw1
P − Ybest

P )    (6) 

 

In generation P, the present female beetle (Ye
P) 

travels towards the golden male beetle (Yw1
P ), whose 

color is determined by the color switching operator 

( Gcolor ). Specifically, w1  represents a randomly 

generated integer in [1, N P], omitting e, where N P 

the amount of beetle populations, and Ybest
P   denotes 

a response having the highest fitness at production. P. 

The female beetle switches posture to pair up with 

the golden beetle, which has a beautiful 

golden colour and reproduces to the next generation. 
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The best result from every generation is retained by 

subtracting it from other generated solutions. 

Equations 7 and 8 mathematically model the value of 

Gcolor. 
 

Gcolor = 

(du.mu. cos(θu) + dv.mv. cos(θv))+( l. ω)   (7) 

 

were, 

{
 
 
 
 
 
 

 
 
 
 
 
 
du. mu = Randn()

  
dv.mv = Randn(). α

   
φ̅ = Cauch(μ, σ)

  
θu, θv = α

  
β, d, l = rand( )

  
  

θq = 2. π. rand()
  

   (8) 

 

Randn () represents normal randomized function 

that yields values in the range of [l, b], α is an even 

randomized function that generates numbers between 

[0.1, 0.9], whereas rand( )  creates random values 

from 0 to l, and Cauchy represents the standard 

Cauchy distributions with starting values of 0.5 and 

0.2 for location and scaling parameters. The 

algorithm initializes Cauchy distribution values to 0.5 

when they fall beyond the lower and upper bounds of 

zero and one, respectively. Equations 1 and 2 specify 

the variables l, ω , φ̅ , α, d, and θq. 

Survival Operator: Tortoise beetle eggs may 

survive due to effective predator-deterrent measures, 

as described above. The survival function is 

represented by equation 9 and 10. 

 

{
Beet1 = β. yw1 + (1 − β). (yw2 − σ1)

  
Beet2 = β. yw2 + (1 − β). (yw1 − σ2)

        (9) 

 

where yw1  and yw2  represents two randomly 

generated values within the range of [l, N P]. N P is 

the sum of populations, and β  denotes a uniform 

random value within [0, 1]. Equation 10 defines the 

variables σ1 and σ2. 

 

{
 
 

 
 
σ1 = (1 − h). (ybest − yw1)

  
σ2 = (1 − h). (ybest − yw2)

  

k =
β−μ

|g|α

                  (10) 

 

where ybest  represents th most appropriate 

response so far, μ and g are regular integers 

connected to the dimension of outcome  yw1 , α 

represents a continuous uniform random integer 

formed within [0.1, 0.5], and k is an element that 

determines the values of α, β, μ, and g. 

3.3 Resource allocation 

In the resource allocation process, the MHA-

BiGRU model is used for allocating resources. The 

allocated Subband are given to the input of MHA-

BiGRU model for resource allocation. Then the 

output of the BiGRU model is given to the BBU pool 

3.4 Multi head attention based BiGRU 

BiGRU Layer: GRU neural systems are a subset 

of the recurrent neural network (RNNs). To address 

the issue that typical RNNs rewrite their memory in 

unit steps and suffer from gradient dispersion, based 

on RNN. GRU represents a simple LSTM neural 

network that may be determined much easier while 

retaining the effectiveness of LSTM neural networks. 

LSTM neural systems require input, forget, and 

output gates. 

In Figure 2, pr  indicates the input vector, 

qr−1represents the concealed state at time r−1, and qr 
supplies the present GRU's output vector. At time r, 

pr and qr−1 are inputs into GRU networks, yielding 

output qr . Formulas 11, 12, 13, 14 express qr  as 

follows: 

 

br = σ(Zbpr + Sbqr−1 + fb)              (11) 

 

dr = σ(Zdpr + Sdqr−1 + fd)                 (12) 

 

q̃r = tanh (Zqpr + Sq(qr−1⊗br) + fr)        (13) 

 

qr = (1 − dr) ⊗ qr−1 + dr⊗ q̃r              (14) 

 

 

 
Figure. 2 GRU Structure 
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The symbol σ represents the Sigmoid function, 

used to help GRU neural networks store or forget 

information. The elementwise production is ⊗, and 

the update and reset gates are dr and br, respectively. 

Additionally, q̃r  represents the candidate's assumed 

state at time r. The current input weights are Zb, Zd, 

and Zq, whereas the cyclic input weights are Sb, Sd, 

and Sq . Furthermore,  fb , fd , and fr  represent the 

offset vectors for Zb, Zd, Zq, Sb, Sd, Sq. 

The BiGRU structure consists of two hidden 

layers: one forward and one backward. Each data 

pattern is fed into both the forward and reverse GRU 

network, this produces two symmetric hidden layer 

state vectors. After symmetrically merging Using 

both of those state vectors, we may obtain an overall 

coded representation of the input text, as seen below: 

Qr = [Qr⃗⃗ ⃗⃗ ⊕ Qr⃖⃗ ⃗⃗⃗]               (15) 

Multi Head Attention Layer: Initially, the 

mechanism of attention was employed in eyesight 

and processing images. Google Mind also applied it 

to picture classification using a recurrent neural 

network model. The attention function maps a query 

(U) to a set of key & value pairs. The evaluation for 

the attention mechanism is broken down into three 

stages. First, a similarity function c(U, Li) is created 

to determine the similarity between U and each L. As 

demonstrated in equation (12), dot, general, and 

concat have several functions of similarity that obtain 

a comparable attention score c: 

 

c(U, Li) =

{
 
 

 
 

UDLi          Dot
  

UDVLi               General
  

V[U; Li]            Concat

                   (16) 

 

After that, use a softmax function to obtain the 

weighed vector, β. At last, the weighted sum of β and 

E yields the context vector r: 

 

βi = softm(ci)                            (17) 

 

r = ∑ βiWi
m
d=1                 (18) 

 

The dimensions of queries (U) and keys (L) are 

xl , whereas the dimension of value (E) is xe . The 

scaled dot-product attention method calculates 

attention scores utilizing the equation: 

 

Atten(U, L, E) = Softm (
ULD

√xl
)E              (19) 

 

Multi-head attention is made up of multiple 

attention layers that work in tandem, allowing the 

structure to simultaneously attend to information 

from distinct appearance subspaces across various 

locations. The multi-head attention system translates 

queries, keys, and value vectors with various linear 

projections before calculating their significance using 

scaled dot-product attention. After q repetitions, each 

such operation is referred to as a "head," and the 

vectors generated by parallel heads are concatenated 

to form a single vector. 

 

heai = Atten(UVi
U, LVi

L, EVi
E)              (20) 

 

MultiHea(U, L, E) = 

Conca(hea1,⋯ , heaq)V              (21) 

 

3.5 BBU pool 

The output of the MHA-BiGRU model is fed into 

the BBU pool, which is most likely used to regulate 

and allocate resources across several baseband units. 

The resource allocation procedure takes place at a 

specialized controller that is interconnected with the 

BBU pool. The BBU pool performs all baseband 

processing functionalities. 

4. Result and discussion  

The 6G Resource Allocation DetectIon USing 

Deep Learning method’s experimental results are 

analyzed in this section. Performance is discussed in 

terms of various metrics. The 6G-RADIUS approach 

utilizes the Discrete-Event Simulation and Modelling 

in Java package (DESMO-J). The suggested model's 

efficacy is contrasted with that of the QJEEO [22], 

EKF [23] and SDWN [28] regarding energy 

efficiency, spectral efficiency, QoE, resource 

utilization, CDF and MSE. Simulation Parameter is 

shown in Table 3. 

Figure 3 displays a comparison of the CDF with 

the proposed and existing methods. The CDF is used 

to calculate the probability of allocating average  

 

 
Table 3. Simulation Parameter 

Parameter Value 

Bandwidth 2GHz 

Path Loss 8dB 

Simulation Duration 100s 

Mobility Support Up to 100 km/h 

Spectral Efficiency 100 bps/Hz 

Time Step 1000 

SNR 20dB 

Modulation 64QAM 

MIMO 3 sector, 4 lambda spacing 
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Figure. 3 Comparison of CDF of user Throughput 

 

throughput for users. The proposed strategy 

outperforms the existing QJEEO [22], EKF [23] and 

SDWN [28] methods in terms of resource flexibility 

and ensuring ordered QoE. 

Figure 4, contrasts the QoE of the suggested 6G-

RADIUS with existing techniques such as QJEEO 

22], EKF [23] and SDWN [28]. The proposed 6G-

RADIUS approach has a greater QoE performance 

than the other existing methods. 

Figure 5, illustrates about resource utilisation, the 

suggested technique outperforms the existing QJEEO 

[22], EKF [23] and SDWN [28] techniques. In terms 

of resource utilisation, the suggested scheme 

achieves more precise estimations of value than the 

SDWN [28]-based method, ensuring an efficient and 

personalized user experience through improved 

network resource management. 

Figure 6, compares the error of the suggested 6G-

RADIUS approach with the existing techniques. The 

proposed approach error is 0.002% which is lesser 

than the existing QJEEO [22], EKF [23] and SDWN 

[28] techniques which are 0.013%, 0.008% and 

0.004% respectively. 

Figure 7 shows that the suggested 6G-RADIUS 

technique achieves faster convergence and has a 

higher spectral efficiency than existing QJEEO [22], 

EKF [23] and SDWN [28] schemes. 

Figure 8, demonstrates that the proposed 6G-

RADIUS approach achieves superior performance in 

energy efficiency compared to existing techniques 

such as QJEEO [22], EKF [23], and SDWN [28], 

reaching convergence within 300 rounds. This 

comparison highlights the effectiveness of the 6G-

RADIUS approach in optimizing energy 

consumption while maintaining performance, 

showcasing its potential for enhancing sustainability 

and resource utilization in 6G networks. 

 
Figure. 4 QoE-based Performance Comparison 

 

 
Figure. 5 Comparison of Resource Utilisation 

 

 
Figure. 6 Error Comparison 



Received:  April 8, 2024.     Revised: June 1, 2024.                                                                                                          785 

International Journal of Intelligent Engineering and Systems, Vol.17, No.4, 2024           DOI: 10.22266/ijies2024.0831.59 

 

 
Figure. 7 Spectral efficiency convergence 

 

 

 
Figure. 8 Energy Efficiency Convergence 

 

 

5. Conclusion  

This paper proposed a 6G-RADIUS technique to 

allocate resources and enhance QoE efficiency and 

energy efficiency in 6G. The procedure begins with 

user equipment data being transmitted to the base 

station. Following that the subbands are allocated 

using a GTBO. An MHA-BiGRU model accepts the 

assigned subbands as input and determines how to 

allocate resources. The output of the MHA-BiGRU 

model is fed into the BBU pool, which is most likely 

used to regulate and allocate resources across several 

BBUs. The 6G-RADIUS technique allocates 

resources efficiently and improves the QoE and 

energy efficiency performance. The 6G-RADIUS 

approach utilizes the Discrete-Event Simulation and 

Modelling in Java (DESMO-J) package. The 

suggested technique's performance is evaluated using 

QoE, resource utilisation, energy efficiency, MSE, 

CDF and spectral efficiency. The proposed method 

has a higher resource utilization factor of 8.16%, 

6.12%, and 3.06% compared to existing QJEEO, 

EKF and SDWN techniques, respectively. In future 

research, to enhance the suggested technique with AI 

technology to increase QoE and reduce energy usage 

in 6G networks. 
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