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Abstract: Task scheduling in a process where the cloud has attained substantial attention because of an enhanced 

demand for computing resources and services. Various load balancing approaches are developed for allocating the 

tasks and Virtual Machines (VMs) according to the task’s priority and execution. However, there are some problems 

faced in the identification of the best tasks for allocation and to classify the relevant tasks based on the load. In this 

research, Fuzzy Logic (FL) and Cosine Similarity based Golden Jackal Optimization (CSGJO) algorithm is proposed 

for solving the problem of load balancing and task scheduling in CC. The FL optimally distributes the tasks based on 

their fuzzy rules, whereas the CSGJO improves fuzzy rule sets and identifies the optimal resource allocation, 

minimizing the response time even when handling large number of tasks. The Longest Job to Fastest Processor (LJFP) 

and Minimum Completion Time (MCT) approaches are the heuristic approaches used to initialize CSGJO. The multi-

objective functions of Makespan, Degree of Imbalance (DOI), Execution Time, Energy Consumption and Resource 

Utilization for validating the proposed method’s effectiveness. The CSGJO consumes a minimum makespan of 1.9s, 

as opposed to Particle Swarm Optimization (PSO) and Enhanced Sunflower Optimization (ESFO). 

Keywords: Cloud computing, Cosine similarity based golden jackal optimization, Fuzzy logic, Load balancing, Task 

scheduling, Virtual machines. 

 

 

1. Introduction  

In this advanced world, Cloud Computing (CC) 

plays a significant role in various applications 

because of its wide usage and the fast development of 

internet technologies [1]. CC is an integration of 

distributed as well as parallel computing which 

provides resources like software, hardware and files 

[2, 3]. The CC processes various services based on 

the service and working platforms which are required 

by the users [4]. The cloud involves three types of 

services: Infrastructure as a Service (IaaS), offers 

services like storage and computational resources. 

Platform as a Service (PaaS), allows users to develop 

their applications on cloud platform, and Software as 

a Service (SaaS) that permits users to utilize software 

directly from a cloud [5, 6]. The cloud providers 

accomplish virtualization technology and provides 

the computational resources in a procedure of Virtual 

Machines (VM). The scheduling approaches play an 

important role in optimizing the performance through 

effectively assigning geographically distributed 

resources to meet the requirements of end-users. 

When a number of users request tasks in a cloud, an 

effective task scheduling is needed to improve system 

performance of CC [7, 8]. 

Virtualization is crucial for cloud computing 

(CC), but there are certain issues that prevent it from 

meeting user requests, such as improper scheduling 

or assigning too many tasks to virtual machines.  

The aim of effective task scheduling is mapping 

tasks to the optimal resources, guaranteeing task 

execution, alongside meeting the Quality of Service 

(QoS) [9]. Although, virtualization plays an 

important role in CC, but there are particular 

problems which prevents it from user request like 

inappropriate scheduling or offering a greater number 

of the tasks to VM [10]. To address this problem, 

scheduling and load balancing among the tasks must 

be calculated to optimize resource utilization in CC 
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[11, 12]. The task scheduling is a Non-deterministic 

Polynomial time (NP)-hard problem, which involves 

determining the order in which jobs must be 

processed to minimize execution time and maximize 

the resource utilization in CC. The meta-heuristic 

algorithms are introduced by various researchers to 

solve the NP-hard problem in CC [13, 14]. The meta-

heuristics are isolated to determine the optimal 

solutions; however, the near-optimal solutions are 

distributed with less complication [15]. The various 

meta-heuristic approaches attain superior results in 

task scheduling, but face lag from local optimal 

problems, as their performance is distant from the 

model state [16]. The Machine Learning (ML) 

approaches are used to enhance the performance of 

task determination according to the search process of 

meta-heuristic approach, and it supports to select the 

effective attributes by examining test sets [17, 18]. 

There are some problems faced in the identification 

of priority tasks for allocation as the pattern sequence 

are generally utilized to classify the relevant tasks 

based on the load. In this research, FL and CSGJO 

algorithm is employed for solving the issue of load 

balancing as well as task scheduling in CC. The 

CSGJO approach continuously improves the 

scheduling process based on the priority of the tasks. 

While FL adjusts the task priorities, it leads to 

enhancing the system performance. The primary 

contributions of this research are listed below: 

• The FL approach is utilized for solving the 

problem of load balancing in CC. The FL has 

optimally distributed the tasks based on the fuzzy 

rules, so it helps to reduce the makespan and 

execution time.  

• The CSGJO based LJFP and MCT is proposed 

for efficient task scheduling in the cloud 

according to the VM. The CSGJO improves 

fuzzy rule sets through refining the rule structure 

and parameter tuning based on their importance 

or reliability. Then, it identifies the optimal 

resource allocation to minimize the response time 

even as handling a large number of tasks. 

• The CSGJO considers the multi-objective 

functions as Makespan, Degree of Imbalance 

(DOI), Execution Time, Energy Consumption 

and Resource Utilization for validating the 

effectiveness of the model. 

This research paper is organized as follows: 

Section 2 describes the literature survey. Section 3 

describes the proposed methodology, while Section 4 

shows the experimental results and the conclusion of 

this research is given in Section 5. 

 

2. Literature survey  

In this section, some of the state-of-the-art 

methods are discussed related to the idea of task 

scheduling in CC. Furthermore, this section 

determines the advantages and limitations of every 

state-of-the-art method according to its features and 

operation functions. 

Alsaidy [19] presented an enhnaced initialization 

of Particle Swarm Optimization (PSO) for solving the 

NP-hard problem in task scheduling. LJFP and MCT 

approaches were utilized to initialize PSO. The 

effectiveness of LJFP-PSO as well as MCT-PSO 

approaches were estimated through makespan, total 

execution time, DOI as well as total energy 

consumption. An introduced approach attained 

effective DOI through initializing the weights in PSO. 

However, the presented approach did not estimate 

resource utilization, thereby leading to resource 

overload, so it leads to node failures. 

Khan and Santhosh [20] developed the hybrid 

approach of PSO and Grey Wolf Optimization called 

(PSGWO) for solving the problem of task scheduling. 

The developed approach effectively scheduled the 

task with a minimum amount of waiting time. 

Furthermore, the parameters like resource utilization, 

efficiency of the model, execution time and 

production time were considered during task 

scheduling. Support Vector Machine (SVM) was 

utilized for the classification of VM. The developed 

approach effectively searched by a large number of 

schedules to identify the solutions. Nonetheless, the 

developed model was not adapted to specific 

characteristics of the task scheduling due to complex 

constraints and dependencies. 

Kruekaew and Kimpan [21] presented the 

Artificial Bee Colony (ABC) with Q-learning 

approach for the multi-objective task scheduling 

called MOABCQ in CC. A Q-learning is a 

Reinforcement Learning (RL) approach that 

supported for the ABC approach to work faster. The 

presented approach targeted to optimize the 

scheduling and resource utilization, enhanced the 

VM throughput as well as developed load balancing 

between the VMs according to makespan, cost and 

resource utilization. An ABC had faster convergence 

speed and efficient search capability, and so 

supported in enhancing the throughput. However, the 

effectiveness of the MOABCQ was not optimized to 

estimate the efficacy of the approach in every test 

case, so it causing a poor performance. 

Emami [22] developed the Enhanced Sunflower 

Optimization (ESFO) approach for the partition of 

tasks on shared resources for the minimization of 

energy consumption and makespan. In ESFO, the 
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new pollination strategy was developed to enhance 

the exploration and exploitation capabilities for 

searching the solution space. The developed 

approach identified the optimal task scheduling 

problem with a polynomial time complexity. 

Nevertheless, the suggested approach was estimated 

only on limited number of parameters, and it does not 

estimate the other parameters to show the model 

efficiency. 

Alghamdi [23] implemented the Binary Particle 

Swarm Optimization (BPSO) for obtaining optimal 

scheduling of user tasks. The BPSO was utilized to 

plan and balance a large number of heterogeneous 

VMs efficiently. The Artificial Neural Network 

(ANN) was utilized with the BPSO for attaining 

effective scheduling in the cloud. The implemented 

approach effectively considered the task priority in 

VM task sequence and utilized ANN with the BPSO. 

Nonetheless, the implemented approach does not 

consider the energy consumption and difficulty in 

handling dynamic environments. 

From this section, the limitations of previous 

methods are: resource utilization and energy 

consumption were not identified, estimation of only 

the minimum number of parameters were carried out. 

These limitations are addressed in this research 

manuscript based on task scheduling approaches in 

the cloud. The CSGJO improves fuzzy rule sets by 

refining the rule structure and parameter tuning. 

Following that, it identifies the optimal resource 

allocation to minimize the response time even when 

handling a large number of tasks. 

3. Proposed methodology  

The aim of this research is to efficiently schedule 

tasks over different VMs in the CC by using the FL 

and CSGJO approaches. The contribution of this 

approach is to efficiently schedule the tasks and 

allocate resources based on the user requirements at 

minimum execution time. Fig. 1 shows the 

architecture of task scheduling. 

3.1 System architecture 

The number of tasks such as tak =
{ta1, ta2, ta3, … , tak} is denoted as k, with n number 

of VM such as vn = {v1, v2, v3, … , vn}, i number of 

physical hosts such as hi = {h1, h2, h3, … , hi}, and j 
number of datacenters such as dj =

{d1, d2, d3, … , di} . These k  number of tasks are 

efficiently scheduled by n  number of VMs, which 

exist in i physical hosts and j datacenters. Mapping 

or scheduling the tasks requires to examine the 

priorities of tasks and VM, while reducing the 

makespan and energy consumption. The makespan as 

well as energy consumption is reduced by running the 

multiple tasks concurrently in the scheduling process. 

The number of tasks determines the number of VMs 

and it should be allocated on physical hosts based on 

the resource requirements. The number of physical 

hosts determines the capacity and scalability of a 

datacenter. Therefore, the efficiency is improved by 

assigning the task priorities based on the factors such 

as deadlines, importance or criticality. 

3.2 Load balancing 

Load balancing [24] is the procedure of allocating 

the load in the network to enhance resource 

utilization with high throughput. It is the network 

device utilized in the distributed systems to improve 

resource utilization and to ignore the single point of 

failure. 

Hence, load balancing supplements the entire 

system as it assures the reliability as well as 

availability. However, if the load balancing is not 

performed in an appropriate way, it leads to 

challenges in the networking. Hence, in this research, 

the FL approach is utilized to efficiently solve load 

balancing. The detailed information about FL is 

provided the subsequent sections. 

3.2.1. Fuzzy logic algorithm 

Fuzzy inference is the procedure of formulating 

the mapping of the provided input to the output by 

utilizing FL, and on the other hand, mapping gives a 

basis from which the decision must be made or 

patterns are to be recognized. FL analyzes the 

historical traffic patterns and predicts the future load 

conditions on the servers or VM. Then, it 

dynamically adjusts load balancing decisions based 

on these predictions. In this research, the fuzzifier 

employs the fuzzification process to convert the two 

types of an input data such as processing speed and 

allocated load of the VM. Additionally, it is assumed 

that the balanced load is the output required in an 

inference system. In this proposed method, the 

execution time and load in VM are considered as the 

two input parameters to develop an efficient value to 

balance the load in cloud by utilizing FL.  

The defuzzification is performed by using the 

Smallest of Minimum (SOM) approach to transform 

the fuzzy outcome set in the individual number. The 

fuzzy set aggregation involves a range of outcome 

values that are defuzzied based on solving the 

individual output value from the fuzzy set. The 

defuzzifier accepts the aggregated linguistic values 

from an indirect fuzzy control action and develops the 

non-fuzzy control output, which determines the
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Figure. 1 Workflow of the task scheduling 

 

 

accepted balanced load to the load conditions. The 

defuzzification approach is performed to implement 

the membership function for an accepted result. 

In membership function, the fuzzy set is 

represented mathematically for assigning to every 

possible individual in the dissertation value by 

denoting its membership grade in a fuzzy set. These 

membership grades are depicted through the actual 

number values ranging between 0 and 1. T  is a 

function of T: [0,1] × [0,1] → [0,1]. With the aid of 

fuzzy set A involves all elements of x, which has a 

non-zero membership grade. Support(A) = {x ∈
X|uA(x) > 0}. Assuming that the queue length and 

fuzzy sets of the CPU represents the linguistics 

concepts system load as low, moderate and high. The 

fuzzification is developed for every input variable to 

express an integrated measurement uncertainty. 

Because of the efficient clustering of the data 

attributes using FL, the scheduling approach has 

effectively balanced the load over the VM as cloud 

server. 

3.3 System architecture 

The scheduling is an equilibrium condition in 

which activities are arranged based on the specific 

criteria and a specific method. The aim of the 

scheduling approach is to minimize an execution time 

of tasks. The CSGJO is performed to schedule the 

tasks according to the optimal fitness value, which 

supports to identify the optimal load system based on 

their server capacity. 

3.3.1. Golden jackal optimization algorithm 

GJO [25] is a meta-heuristic optimization 

apporach which inspired through hunting behavior of 

golden jackals. In GJO, every golden jackal 

determines the search agent or the candidate solution. 

The prey searching, encircling and attacking are the 

general things followed by the GJO. The parameters 

in GJO are control variables such as population size, 

number of iterations end exploration rate that direct 

the search process. In GJO, the search space is 

described by the variables which depict the potential 

solutions to an optimization problem. 

1) Search space design 
GJO is the population-based approach where the 

initial positions are arbitrarily placed in the search 

area, as formulated in Eq. (1). 

 

𝑌0 = 𝑌𝑚𝑖𝑛 + 𝑟𝑎𝑛𝑑 × (𝑢𝑏 − 𝑙𝑏)                (1) 

 

Where, Y0  is the initial randomized population, 

rand is the random number which falling in the range 

of 0 and 1. 𝑌𝑚𝑖𝑛 is the minimum value. ub and lb are 

the upper and lower boundaries of decision variables. 

The initialization process comprises developing the 

prey  matrix with Male Jackals (MJ) as well as 

Female Jackals (FMJ) inhabiting the primary and 

secondary positions, respectively. The prey matrix is 

formulated in Eq. (2). 
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𝑃𝑟𝑒𝑦 =

[
 
 
 
𝑌1,1 𝑌1,2 … 𝑌1,𝑑

𝑌2,1 𝑌2,2 … 𝑌2,𝑑

⋮
𝑌𝑛,1

⋮
𝑌𝑛,2

⋮
…

⋮
𝑌𝑛,𝑑]

 
 
 

              (2) 

 

Where, Yij is the jth element of ith prey, n and d 

is the total number of prey and variables. Here, the 

location determines the optimal solution. In the 

process of optimization, the objective function is 

utilized to identify fitness of every prey. A fitness of 

every prey is calculated using Eq. (3). 

 

𝐹𝑂𝐴 =

[
 
 
 
 
𝑓(𝑌1,1; 𝑌1,2; … ; 𝑌1,𝑑)

𝑓(𝑌2,1; 𝑌2,2; … ; 𝑌2,𝑑)

⋮
𝑓(𝑌𝑛,1; 𝑌𝑛,2; … ; 𝑌𝑛,𝑑)]

 
 
 
 

                    (3) 

 

Where, f is an objective function, and FOA is the 

matrix for storing fitness of every prey. 𝑓(. )  – 

function of multiple variables 𝑌𝑖,𝑗 , where, 𝑖  ranges 

from 1 to 𝑛 and 𝑗 ranges from 1 to 𝑑. 

2) Exploration phase 
The jackals have the ability to detect and track a 

prey, and they track down the prey effortlessly. The 

MJ usually carries the lead, whereas FMJ trains the 

MJ which is formulated in Eqs. (4) and (5). 

 

𝑌1(𝑡) = 𝑌𝑀(𝑡) − 𝐸. |𝑌𝑀(𝑡) − 𝑟𝑙. 𝑃𝑟𝑒𝑦(𝑡)|      (4) 

 

𝑌2(𝑡) = 𝑌𝐹𝑀(𝑡) − 𝐸. |𝑌𝐹𝑀(𝑡) − 𝑟𝑙. 𝑃𝑟𝑒𝑦(𝑡)|   (5) 

 

Where, 𝑡 is the present iterations, 𝑃𝑟𝑒𝑦(𝑡) is the 

position vector, 𝑌𝑀(𝑡) and 𝑌𝐹𝑀(𝑡) are the positions 

of MJ and FMJ in a search space, 𝐸  is the prey’s 

escape energy, 𝑟𝑙 is the random vectors according to 

the Levy Flight (𝐿𝐹) distribution, as formulated in 

Eq. (6) and 𝐿𝐹 is formulated in Eq. (7). 

 

𝑟𝑙 = 0.05 ∗ 𝐿𝐹(𝑦)                            (6) 

 

𝐿𝐹(𝑦) = 0.01 ×
(𝜇 × 𝜎)

(|𝑣
(
1

𝛽
)
|)

; 𝜎 = 

(
𝛤(1+𝛽)×𝑠𝑖𝑛 (

𝜋𝛽

2
)

𝛤(
(1+𝛽)

2
)×𝛽×(2

𝛽−1
2 )

)

1/𝛽

                   (7) 

 

Where, 𝛽  is a constant fixed to 1.5, 𝜇 , 𝜎  is the 

scaling factor between the range of 0 and 1. 𝛤(. ) is 

the gamma function. 𝐿𝐹(𝑦) is the output of LF. |. | is 

the absolute value. 

 Eventually, the updated position is formulated in 

Eq. (8). 

 

𝑌(𝑡 + 1) =
𝑌1(𝑡)+𝑌2(𝑡)

2
                       (8) 

 

Where, 𝑌(𝑡 + 1) is the variable 𝑌 at the next time 

step 𝑡 + 1. 

3) Exploitation phase 
Once the prey’s escaping capability is minimized, 

the jackals encircle the prey identified in the prior 

stage. After encircling, the jackals jump on the prey 

and bother it. The collected pursuing of the jackal’s 

hunting behavior is denoted in Eqs. (9) and (10). 

 

𝑌1(𝑡) = 𝑌𝑀(𝑡) − 𝐸. |𝑟𝑙. 𝑌𝑀(𝑡) − 𝑃𝑟𝑒𝑦(𝑡)|       (9) 

 

𝑌2(𝑡) = 𝑌𝐹𝑀(𝑡) − 𝐸. |𝑟𝑙. 𝑌𝐹𝑀(𝑡) − 𝑃𝑟𝑒𝑦(𝑡)|  (10) 

 

The goal of 𝑟𝑙 is shown in the above Eqs. (9) and 

(10) used to generate the random behavior in an 

exploitation phase, supporting behavior, ignoring the 

local optima problem. 

4) Switching from exploration to exploitation 
In the process of GJO, 𝐸 value is utilized to be 

shifted from exploration to exploitation. The prey’s 

energy is minimized meaningfully during an 

escaping behavior. Once 𝐸0 is reduced from 0 to −1, 

the prey is flagging and while 𝐸0 enhances from 0 to 

1 , the prey’s strength is enhancing. If |𝐸| < 1 , 

jackals attack their prey and move to exploitation. 

3.3.2. Cosine similarity based GJO 

The traditional GJO updates the jackal’s positions 

through Eq. (8) at the training process, similar to 

utilizing the mean as an optimal solution. Though, 

this approach ensures the flatness of the updates of 

the jackal’s positions, but also has limitations. The 

most apparent error is the lack of considering the 

relationship among the various features. When there 

is a relationship among the features, utilizing a mean 

update device leads to few features that are 

exaggerated or eliminated, thus affecting its 

performance. Furthermore, once the data distribution 

is unequal, the utilization of mean update mechanism 

leads to the worst prediction effectiveness for the 

particular data. Hence, the cosine similarity is 

proposed for updating MJ and FMJ’s positions. As 

estimated to mean update mechanism, the benefit of 

utilizing the cosine similarity as update mechanism 

examines the relationship among the various features, 

hence updating the model parameters efficiently. It is 

appropriate for the high-dimensional data and which  
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Figure. 2 Flowchart of the CSGJO 

 

is not influenced through the vector length or data 

distribution. The cosine similarity is displayed in Eq. 

(11). 

 

𝐶𝑜𝑠𝑠𝑖𝑚(𝑌1(𝑡), 𝑌2(𝑡)) =
𝑌1(𝑡).𝑌2(𝑡)

‖𝑌1(𝑡)‖‖𝑌2(𝑡)‖
           (11) 

 

The cosine similarity among the pairs of the 

golden jackal is enhanced through the complete value 

as the position update’s weight, which is expressed in 

Eq. (12). 

 

𝑌(𝑡 + 1) = 

𝑌1(𝑡) × |𝐶𝑜𝑠𝑠𝑖𝑚(𝑌1(𝑡), 𝑌2(𝑡))| + 𝑌2(𝑡) × 

(1 − |𝐶𝑜𝑠𝑠𝑖𝑚(𝑌1(𝑡), 𝑌2(𝑡))|)               (12) 

 

Where, Y1(t)  and Y2(t)  is the MJ and FMJ’s 

position, . is the dot product, ‖Y1(t)‖ and ‖Y2(t)‖ is 

respectively the MJ and FMJ’s lengths. The range 

value of Cossim(Y1(t), Y2(t))  is among −1  and 1 . 

By using CSGJO, the tasks are effectively scheduled, 

and then these tasks are given to the cloud distributor 

to forward data to the task scheduler. The scheduler 

has the responsibility for assigning the tasks to every 

VM over the cloud, through examining its feature 

attributes such as capacity of the storage, execution 

time and weight value. Fig. 2 shows the flowchart of 

the CSGJO. 

3.4 Multi-objective functions 

In this section, the multi-objective function is 

considered as the fitness function to estimate the 

optimal solution. There are five parameters of 

makespan, DOI, execution time, energy consumption 

and resource utilization considered for efficient task 

scheduling and load balancing in the data center. 

When load balancing and task scheduling work 

together effectively, they improve an efficiency and 

performance. The estimated solution of this best 

fitness value is assumed as an optimal solution. The 

mathematical expressions of the multi-objective 

functions are expressed in Eqs. (13) to (17) below. 

 

𝑀𝑎𝑘𝑒𝑠𝑝𝑎𝑛 = 𝑚𝑎𝑥(𝐶𝑡𝑖)𝑡𝑖𝜖𝑇                  (13) 

 

𝐷𝑜𝐼 =
𝑀𝑎𝑥𝑙𝑜𝑎𝑑−𝑚𝑖𝑛𝑙𝑜𝑎𝑑

𝐴𝑣𝑒𝑟𝑎𝑔𝑒𝑙𝑜𝑎𝑑
                       (14) 

 

𝐸𝑥𝑒𝑐𝑢𝑡𝑖𝑜𝑛 𝑡𝑖𝑚𝑒 (𝑇𝑖) =
𝑁𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑖𝑛𝑠𝑡𝑟𝑢𝑐𝑡𝑖𝑜𝑛𝑠 (𝑡𝑎𝑠𝑘(𝑖))

𝑀𝐼𝑃𝑆 𝑟𝑎𝑡𝑖𝑛𝑔 (𝑀𝑎𝑐ℎ𝑖𝑛𝑒 (𝑖))
              (15) 

 

𝐸𝑛𝑒𝑟𝑔𝑦 𝐶𝑜𝑛𝑠𝑢𝑚𝑝𝑡𝑖𝑜𝑛 = 

𝑇𝑜𝑡𝑎𝑙 𝑇𝑒𝑚𝑝𝑒𝑟𝑎𝑡𝑢𝑟𝑒

𝐴𝑣𝑒𝑟𝑎𝑔𝑒 𝑇𝑒𝑚𝑝𝑒𝑟𝑎𝑡𝑢𝑟𝑒
∗ 

𝑇𝑜𝑡𝑎𝑙 𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑟𝑒𝑠𝑜𝑢𝑟𝑐𝑒𝑠 𝑢𝑡𝑖𝑙𝑖𝑧𝑒𝑑            (16) 

 
𝑅𝑒𝑠𝑜𝑢𝑟𝑐𝑒 𝑢𝑡𝑖𝑙𝑖𝑧𝑎𝑡𝑖𝑜𝑛 = 

∑ 𝑁𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑡𝑎𝑠𝑘𝑠(𝐾𝑖)
𝑖=𝑛

𝑖=1
 

𝑒𝑥𝑒𝑐𝑢𝑡𝑒𝑑𝑝𝑒𝑟 𝑟𝑒𝑠𝑜𝑢𝑟𝑐𝑒 (Ri)                                              (17) 

 

All the above-mentioned objectives are 

incompatible with each other. Usually, all the 

objective functions contain different units and values. 

Therefore, the min-max normalization function is 

substituted to every objective function to normalize 

the units into numerical values by using Eq. (18). 

 

𝐹(𝑥) =
𝑓𝑖−𝑓𝑚𝑖𝑛

𝑓𝑚𝑎𝑥−𝑓𝑚𝑖𝑛
                        (18) 

 

 

Table 1. Simulation parameters 

Parameters Values 

Size of tasks (MI) 1000-4000 

VM execution rate (MIPS) 1000-5000 

Power consumption  0.6-0.7 

Power consumption of VMs (Watt) 200-1000 

Number of tasks 100-1000 

Number of VMs 40-200 
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Hence, the weighted sum method is substituted 

and multi-objective function is converted into an 

individual objective function. It is formulated in Eq. 

(19) as: 

 

𝑀𝑖𝑛𝑖𝑚𝑖𝑧𝑒 𝑓𝑖𝑡𝑛𝑒𝑠𝑠 = 𝛼1 × 𝑓1 + 

𝛼2 × 𝑓2 + 𝛼3 × 𝑓3 + 𝛼4 × 𝑓4 + 𝛼5 × 𝑓5        (19) 

 

Where, 𝑚𝑎𝑥(𝐶𝑡𝑖)𝑡𝑖𝜖𝑇  is the maximum 

completion time between all tasks; 𝑚𝑖𝑛𝑙𝑜𝑎𝑑  and 

𝑚𝑎𝑥𝑙𝑜𝑎𝑑  are minimum and maximum load values 

observed in a given period; 𝐴𝑣𝑒𝑟𝑎𝑔𝑒𝑙𝑜𝑎𝑑  is the 

average load value. Cti is an execution time of the 

longest task ti, and T is the number of tasks on an 

application workflow. α1  to α5  are the weights 

applied to all objective functions, fi  is the function 

value, fmin and fmax are the minimum and maximum 

values, F(x) is the normalized value among 0 and 1. 

By utilizing the CSGJO, the tasks are effectively 

scheduled by identifying the optimal resource 

allocation to minimize the response time even when 

handling the large number of tasks. 

4. Author name(s) and affiliation(s)  

In this research, the results and discussion of the 

proposed method based on the task scheduling in 

cloud are presented. The simulation is taken out by 

Cloud Sim simulator based on Java. This research 

utilizes intel core i7 processor system configuration, 

windows 10 OS, and 16GB RAM. To measure the 

effectiveness of the proposed method, different 

performance matrices such as makespan, DOI, 

Execution time, Energy consumption and Resource 

Utilization are considered. Table 1 depicts the 

parameter settings of the CSGJO. 

4.1 Performance analysis 

In this section, the effectiveness of the CSGJO is 

validated for two different scenarios which are 

provided below. The existing meta-heuristic 

approaches like PSO, GWO and Ant Colony 

Optimization (ACO) are compared with the proposed 

CSGJO. As compared to these existing approaches, 

the proposed CSGJO attains better results, because it 

effectively schedules the tasks and balances the load 

based on the task priorities. 

4.1.1. Scenario 1 

The number of tasks is taken from 200 to 1000 

and the total number of VM is set to 100 for 

examining the task scheduling in this scenario. Table 

2 depicts the analysis of CSGJO for scenario 1. In 

Table 2, the comparison of the CSGJO with the 

existing approaches is discussed by using various 

performance metrices. The results from table 2 show 

that the enhancing of the number of tasks leads an 

improvement in the number of resources. The 

CSGJO attains better outcomes as compared to the 

existing methods, even when the number of tasks is 

increased. A CSGJO offers superior scalability than 

the existing approaches for minimum and maximum 

number of tasks.

 
Table 2. Analysis of CSGJO for Number of tasks at VM = 100 

Performance 

Metrics 

Method Number of tasks 

200 400 600 800 1000 

Makespan (s) PSO 3.8 6.7 12.3 17.7 22.3 

GWO 3.2 5.5 11.4 16.9 20.6 

ACO 2.5 4.7 10.6 16.4 19.7 

CSGJO 1.9 3.8 8.3 11.5 16.7 

DOI PSO 0.42 0.45 0.51 0.53 0.57 

GWO 0.31 0.41 0.49 0.52 0.55 

ACO 0.28 0.38 0.44 0.39 0.41 

CSGJO 0.23 0.25 0.31 0.33 0.34 

Execution Time 

(s) 

PSO 179.5 388.9 598.7 791.2 986.1 

GWO 172.6 367.8 577.2 789.3 978.3 

ACO 169.3 345.7 567.8 772.6 971.2 

CSGJO 153.6 312.7 543.1 753.7 954.0 

Energy 

Consumption (J) 

PSO 167 321 563 711 867 

GWO 145 298 523 703 842 

ACO 135 278 498 685 834 

CSGJO 117 236 423 657 806 

Resource 

Utilization (%) 

PSO 92.3 92.1 91.2 90.2 91.3 

GWO 95.2 94.3 93.2 93.1 93.2 

ACO 96.2 97.5 95.6 96.4 96.4 

CSGJO 98.9 99.1 99.2 99.5 99.5 
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4.1.2. Scenario 2 

The number of VM taken from 40 to 200 VMs 

and the number of tasks is fixed to the 500 in this 

scenario. In Table 3, the comparison of the CSGJO 

with the existing approaches are discussed by using 

various performance metrices. 

The results from Table 3 exhibit the enhancing 

number of task origins and improvement in the 

number of resources. The CSGJO attains superior 

outcomes when compared to the existing methods 

even when increasing the number of tasks. The 

CSGJO offers a commendable scalability than the 

existing approaches for minimum and maximum 

number of tasks. Scalability in task scheduling refers 

to the ability of a task scheduling system to handle 

the increasing amount of work or tasks efficiently 

without significantly impacting the performance. 

 

 
Table 3. Analysis of CSGJO for Number of VM at Task =500 

Performance 

Metrics 

Method Number of VM 

200 400 600 800 1000 

Makespan (s) PSO 36.2 18.6 7.3 6.3 5.8 

GWO 35.8 15.7 6.9 5.8 5.3 

ACO 34.6 14.6 6.3 4.5 4.6 

CSGJO 23.7 9.6 4.5 3.3 3.2 

DOI PSO 18.6 3.1 1,7 2.4 3.5 

GWO 15.7 2.6 1.6 1.7 1.4 

ACO 12.5 1.4 1.4 1.6 0.7 

CSGJO 0.9 0.7 0.6 0.5 0.4 

Execution Time (s) PSO 544.7 542.4 446.8 457.8 486.9 

GWO 534.6 534.1 435.6 434.6 479.2 

ACO 512.3 523.6 432.0 421.5 462.1 

CSGJO 475.9 503.2 412.5 403.8 434.5 

Energy 

Consumption (J) 

PSO 389 391 403 412 437 

GWO 384 383 398 399 435 

ACO 375 378 378 346 412 

CSGJO 354 356 302 311 321 

 

 

Table 4. Simulation parameter with the different scenarios 

Parameters Scenarios 

3 4 5 

Number of tasks 200 to 1000 100 to 500 1000 to 5000 

Number of VM 100 50 150 

 

Table 5. Comparison of the proposed CSGJO with MCT-PSO [19] and PSGWO [20] 

Scenario Methods Performance Metrices No. of tasks 

200 400 600 1000 

3 MCT-

PSO [19] 

Makespan (s) 2.2 4.2 8.5 17.6 

DOI 0.9 0.6 1.0 1.2 

Execution Time (s) 155.8 326.7 535.8 972.3 

Energy Consumption (J) 122 242 440 822 

Resource Utilization (%) N/A N/A N/A N/A 

PSGWO 

[20] 

Makespan (s) 75.4 125.6 180.6 375.7 

DOI N/A N/A N/A N/A 

Execution Time (s) N/A N/A N/A N/A 

Energy Consumption (J) N/A N/A N/A N/A 

Resource Utilization (%) 98.5 98.4 98.5 98.4 

Proposed 

CSGJO 

Makespan (s) 1.9 3.8 8.3 16.7 

DOI 0.23 0.25 0.31 0.034 

Execution Time (s) 153.6 312.7 543.1 954.0 

Energy Consumption (J) 117 236 423 806 

Resource Utilization (%) 98.9 99.1 99.2 99.5 
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Table 6. Comparison of the proposed CSGJO with ESFO [22] 

Scenario Methods Performance 

Metrices 

No. of tasks 

100 200 300 400 

4 ESFO [22] Makespan (s) 58 147 188 271 

Proposed 

CSGJO 

Makespan (s) 55 143 183 268 

 
Table 7. Comparison of the proposed CSGJO with ANN-BPSO [23] 

Scenario Methods Performance Metrices No. of tasks 

1000 2000 3000 4000 

5 ANN-

BPSO 

[23] 

Makespan (s) 90 96 100 120 

DOI 0.0365 0.0628 0.8751 0.0911 

Resource Utilization (%) 96.84 95.21 94.54 94.09 

Proposed 

CSGJO 

Makespan (s) 88 94 97 115 

DOI 0.0342 0.0426 0.0643 0.0834 

Resource Utilization (%) 97.34 96.34 95.35 95.04 

 

 
Table 8. Comparative Analysis with different number of VM 

Performance 

metric 

Method Number of Virtual Machines 

40 80 120 160 

Makespan (s) MCT-PSO [19] 25.9 9.7 4.9 3.7 

Proposed CSGJO 23.7 9.6 4.5 3.3 

DOI MCT-PSO [19] 1.0 0.8 0.7 0.7 

Proposed CSGJO 0.9 0.7 0.6 0.5 

Execution Time 

(s)  

MCT-PSO [19] 486.8 518.7 427.0 417.6 

Proposed CSGJO 475.9 503.2 412.5 403.8 

Energy 

Consumption (J) 

MCT-PSO [19] 362 365 311 318 

Proposed CSGJO 354 356 302 311 

 

 

4.2 Comparative analysis 

Table 4 shows the simulation parameters of the 

different scenarios. The scenarios 3 depicted the 

MCT-PSO [19] and PSGWO [20], whereas scenario 

4 and 5 are depicted as the ESFO [22] and ANN-

BPSO [23] respectively. These different scenarios are 

compared with the proposed CSGJO approach for 

estimating the effectiveness of the model. Table 5, 6, 

7 and 8 shows the comparison of the proposed 

CSGJO with MCT-PSO [19], PSGWO [20], ESFO 

[22] and ANN-BPSO [23]. The performance of 

proposed CSGJO is compared with the MCT-PSO 

[19] and PSGWO [20] in scenario 3 using the number 

of tasks of 200, 400, 600 and 1000 respectively. The 

performance of proposed CSGJO is compared with 

the ESFO [22] in scenario 4 using the number of tasks 

of 100, 200, 300 and 400 respectively. The 

performance of proposed CSGJO is compared with 

the ANN-BPSO [23] in scenario 5 using the number 

of tasks of 1000, 2000, 3000 and 4000 respectively. 

Table 8 represents the comparative analysis of the 

proposed CSGJO with MCT-PSO [19] on a number 

of VMs. The number of VMs such as 40, 80, 120 and 

160 respectively. 

4.3 Discussion 

In this section, the achievement of the proposed 

CSGJO approach is discussed along with their 

advantages. The existing works have the limitations 

such as resource utilization and energy consumption 

not being identified, estimating only a minimum 

number of parameters, while also the efficiency not 

being optimized. Hence, in this research, the resource 

utilization and energy consumption are estimated to 

schedule the tasks and to minimize the over and 

underutilization problems. The proposed CSGJO 

effectively estimates the different parameters namely, 

makespan, DOI, execution time, energy consumption 

and resource utilization through continuously 

improving the scheduling process based on the actual 

data. CSGJO leverages the cooperative hunting 

behavior of golden jackals to efficiently allocate tasks 

to resources, also minimizing the makespan. The 

algorithm dynamically adjusts the task assignments 

based on VM load and task requirements. The 

CSGJO effectively refines the fuzzy sets and 

identifies the optimal resource allocation. The 

proposed CSGJO attains minimum makespan, DOI, 
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execution time, energy consumption and resource 

utilization of 1.9s, 0.23, 153.6s, 117J and 98.9%, 

respectively. These results exhibit a commendable 

improvement as compared to the existing approaches. 

5. Conclusion  

In this section, the achievement of the proposed 

CSGJO approach is discussed along with their 

advantages. The existing works have the limitations 

such as resource utilization and energy consumption 

not being identified, estimating only a minimum 

number of parameters, while also the efficiency not 

being optimized. Hence, in this research, the resource 

utilization and energy consumption are estimated to 

schedule the tasks and to minimize the over and 

underutilization problems. The proposed CSGJO 

effectively estimates the different parameters namely, 

makespan, DOI, execution time, energy consumption 

and resource utilization through continuously 

improving the scheduling process based on the actual 

data. CSGJO leverages the cooperative hunting 

behavior of golden jackals to efficiently allocate tasks 

to resources, also minimizing the makespan. The 

algorithm dynamically adjusts the task assignments 

based on VM load and task requirements. The 

CSGJO effectively refines the fuzzy sets and 

identifies the optimal resource allocation. The 

proposed CSGJO attains minimum makespan, DOI, 

execution time, energy consumption and resource 

utilization of 1.9s, 0.23, 153.6s, 117J and 98.9%, 

respectively. These results exhibit a commendable 

improvement as compared to the existing approaches. 

In CC, obtaining an efficient task scheduling 

approach is significant for cloud providers and users. 

In this research, CSGJO approach is proposed for 

efficient task scheduling in a cloud. The CSGJO has 

the capability to handle a large number of tasks and 

resources, furthermore, efficiently optimizing the 

schedules even for complex scenarios with various 

constraints. Commencing the search process with the 

LJFP and MCT approaches based on the selected 

solutions efficiently effect a convergence speed, as 

well as the performance.  The FL approach is utilized 

to solve the problem of load balancing effectively, 

thereby optimally distributing the tasks according to 

the fuzzy rules and supporting to minimize the 

execution time. The proposed CSGJO accomplishes 

a minimum makespan of 1.9s at the number of tasks 

being 200. In the future, different meta-heuristic 

approaches will be used with a greater number of 

parameters to enhance the system performance. 

 

Notation 

Variables Descriptions 

Y0  Initial randomized population 

rand  Random number which falling in 

the range of 0 and 1 

𝑌𝑚𝑖𝑛  Minimum value 

ub and lb  Upper and lower boundaries of 

decision variables 

Yij  jth element of ith prey 

n and d  Total number of prey and 

variables 

f  Objective function 

FOA  Matrix for storing fitness of 

every prey 

𝑓(. )  Function of multiple variables 

𝑌𝑖,𝑗 , where, 𝑖  ranges from 1  to 

𝑛 and 𝑗 ranges from 1 to 𝑑. 

𝑡  Present iterations 

𝑃𝑟𝑒𝑦(𝑡)  Position vector 

𝑌𝑀(𝑡)  and 

𝑌𝐹𝑀(𝑡)  

Positions of MJ and FMJ in the 

search space 

𝐸  Prey’s escape energy 

𝑟𝑙  Random vectors according to the 

Levy Flight (𝐿𝐹) distribution 

𝛽  Constant fixed to 1.5 

𝜇, 𝜎  Scaling factor between the range 

of 0 and 1. 

(. )  Gamma function 

𝐿𝐹(𝑦)  Output of LF 

|. |  Absolute value 

𝑌(𝑡 + 1)  Variable 𝑌 at the next time step 

𝑡 + 1 

Y1(t)  and 

Y2(t)  

MJ and FMJ’s position 

.   Dot product 

‖Y1(t)‖  and 
‖Y2(t)‖  

MJ and FMJ’s lengths 

𝑚𝑎𝑥(𝐶𝑡𝑖)𝑡𝑖𝜖𝑇  Maximum completion time 

between all tasks 

𝑚𝑖𝑛𝑙𝑜𝑎𝑑  and 

𝑚𝑎𝑥𝑙𝑜𝑎𝑑  

Minimum and maximum load 

values observed in a given 

period 

𝐴𝑣𝑒𝑟𝑎𝑔𝑒𝑙𝑜𝑎𝑑  Average load value 

Cti  Execution time of the longest 

task ti 
T  Number of tasks on the 

application workflow 

α1 to α5  Weights applied to all objective 

functions 

fi  function value 

fmin and fmax  Minimum and maximum values 

(x)  Normalized value among 0 and 

1 
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