
Received: April 23, 2024. Revised: June 5, 2024. 832

International Journal of Intelligent Engineering and Systems, Vol.17, No.4, 2024 DOI: 10.22266/ijies2024.0831.63

Cosine Similarity Based Golden Jackal Optimization for Efficient Task

Scheduling in Cloud Computing

Mohammed Ziaur Rahman1* Anandaraj Shanthi Pichandi1

1School of Computer Science and Engineering & Information Science, Presidency University, Bangalore, India

* Corresponding author’s Email: ziyarmn@gmail.com

Abstract: Task scheduling in a process where the cloud has attained substantial attention because of an enhanced

demand for computing resources and services. Various load balancing approaches are developed for allocating the

tasks and Virtual Machines (VMs) according to the task’s priority and execution. However, there are some problems

faced in the identification of the best tasks for allocation and to classify the relevant tasks based on the load. In this

research, Fuzzy Logic (FL) and Cosine Similarity based Golden Jackal Optimization (CSGJO) algorithm is proposed

for solving the problem of load balancing and task scheduling in CC. The FL optimally distributes the tasks based on

their fuzzy rules, whereas the CSGJO improves fuzzy rule sets and identifies the optimal resource allocation,

minimizing the response time even when handling large number of tasks. The Longest Job to Fastest Processor (LJFP)

and Minimum Completion Time (MCT) approaches are the heuristic approaches used to initialize CSGJO. The multi-

objective functions of Makespan, Degree of Imbalance (DOI), Execution Time, Energy Consumption and Resource

Utilization for validating the proposed method’s effectiveness. The CSGJO consumes a minimum makespan of 1.9s,

as opposed to Particle Swarm Optimization (PSO) and Enhanced Sunflower Optimization (ESFO).

Keywords: Cloud computing, Cosine similarity based golden jackal optimization, Fuzzy logic, Load balancing, Task

scheduling, Virtual machines.

1. Introduction

In this advanced world, Cloud Computing (CC)

plays a significant role in various applications

because of its wide usage and the fast development of

internet technologies [1]. CC is an integration of

distributed as well as parallel computing which

provides resources like software, hardware and files

[2, 3]. The CC processes various services based on

the service and working platforms which are required

by the users [4]. The cloud involves three types of

services: Infrastructure as a Service (IaaS), offers

services like storage and computational resources.

Platform as a Service (PaaS), allows users to develop

their applications on cloud platform, and Software as

a Service (SaaS) that permits users to utilize software

directly from a cloud [5, 6]. The cloud providers

accomplish virtualization technology and provides

the computational resources in a procedure of Virtual

Machines (VM). The scheduling approaches play an

important role in optimizing the performance through

effectively assigning geographically distributed

resources to meet the requirements of end-users.

When a number of users request tasks in a cloud, an

effective task scheduling is needed to improve system

performance of CC [7, 8].

Virtualization is crucial for cloud computing

(CC), but there are certain issues that prevent it from

meeting user requests, such as improper scheduling

or assigning too many tasks to virtual machines.

The aim of effective task scheduling is mapping

tasks to the optimal resources, guaranteeing task

execution, alongside meeting the Quality of Service

(QoS) [9]. Although, virtualization plays an

important role in CC, but there are particular

problems which prevents it from user request like

inappropriate scheduling or offering a greater number

of the tasks to VM [10]. To address this problem,

scheduling and load balancing among the tasks must

be calculated to optimize resource utilization in CC

Received: April 23, 2024. Revised: June 5, 2024. 833

International Journal of Intelligent Engineering and Systems, Vol.17, No.4, 2024 DOI: 10.22266/ijies2024.0831.63

[11, 12]. The task scheduling is a Non-deterministic

Polynomial time (NP)-hard problem, which involves

determining the order in which jobs must be

processed to minimize execution time and maximize

the resource utilization in CC. The meta-heuristic

algorithms are introduced by various researchers to

solve the NP-hard problem in CC [13, 14]. The meta-

heuristics are isolated to determine the optimal

solutions; however, the near-optimal solutions are

distributed with less complication [15]. The various

meta-heuristic approaches attain superior results in

task scheduling, but face lag from local optimal

problems, as their performance is distant from the

model state [16]. The Machine Learning (ML)

approaches are used to enhance the performance of

task determination according to the search process of

meta-heuristic approach, and it supports to select the

effective attributes by examining test sets [17, 18].

There are some problems faced in the identification

of priority tasks for allocation as the pattern sequence

are generally utilized to classify the relevant tasks

based on the load. In this research, FL and CSGJO

algorithm is employed for solving the issue of load

balancing as well as task scheduling in CC. The

CSGJO approach continuously improves the

scheduling process based on the priority of the tasks.

While FL adjusts the task priorities, it leads to

enhancing the system performance. The primary

contributions of this research are listed below:

• The FL approach is utilized for solving the

problem of load balancing in CC. The FL has

optimally distributed the tasks based on the fuzzy

rules, so it helps to reduce the makespan and

execution time.

• The CSGJO based LJFP and MCT is proposed

for efficient task scheduling in the cloud

according to the VM. The CSGJO improves

fuzzy rule sets through refining the rule structure

and parameter tuning based on their importance

or reliability. Then, it identifies the optimal

resource allocation to minimize the response time

even as handling a large number of tasks.

• The CSGJO considers the multi-objective

functions as Makespan, Degree of Imbalance

(DOI), Execution Time, Energy Consumption

and Resource Utilization for validating the

effectiveness of the model.

This research paper is organized as follows:

Section 2 describes the literature survey. Section 3

describes the proposed methodology, while Section 4

shows the experimental results and the conclusion of

this research is given in Section 5.

2. Literature survey

In this section, some of the state-of-the-art

methods are discussed related to the idea of task

scheduling in CC. Furthermore, this section

determines the advantages and limitations of every

state-of-the-art method according to its features and

operation functions.

Alsaidy [19] presented an enhnaced initialization

of Particle Swarm Optimization (PSO) for solving the

NP-hard problem in task scheduling. LJFP and MCT

approaches were utilized to initialize PSO. The

effectiveness of LJFP-PSO as well as MCT-PSO

approaches were estimated through makespan, total

execution time, DOI as well as total energy

consumption. An introduced approach attained

effective DOI through initializing the weights in PSO.

However, the presented approach did not estimate

resource utilization, thereby leading to resource

overload, so it leads to node failures.

Khan and Santhosh [20] developed the hybrid

approach of PSO and Grey Wolf Optimization called

(PSGWO) for solving the problem of task scheduling.

The developed approach effectively scheduled the

task with a minimum amount of waiting time.

Furthermore, the parameters like resource utilization,

efficiency of the model, execution time and

production time were considered during task

scheduling. Support Vector Machine (SVM) was

utilized for the classification of VM. The developed

approach effectively searched by a large number of

schedules to identify the solutions. Nonetheless, the

developed model was not adapted to specific

characteristics of the task scheduling due to complex

constraints and dependencies.

Kruekaew and Kimpan [21] presented the

Artificial Bee Colony (ABC) with Q-learning

approach for the multi-objective task scheduling

called MOABCQ in CC. A Q-learning is a

Reinforcement Learning (RL) approach that

supported for the ABC approach to work faster. The

presented approach targeted to optimize the

scheduling and resource utilization, enhanced the

VM throughput as well as developed load balancing

between the VMs according to makespan, cost and

resource utilization. An ABC had faster convergence

speed and efficient search capability, and so

supported in enhancing the throughput. However, the

effectiveness of the MOABCQ was not optimized to

estimate the efficacy of the approach in every test

case, so it causing a poor performance.

Emami [22] developed the Enhanced Sunflower

Optimization (ESFO) approach for the partition of

tasks on shared resources for the minimization of

energy consumption and makespan. In ESFO, the

Received: April 23, 2024. Revised: June 5, 2024. 834

International Journal of Intelligent Engineering and Systems, Vol.17, No.4, 2024 DOI: 10.22266/ijies2024.0831.63

new pollination strategy was developed to enhance

the exploration and exploitation capabilities for

searching the solution space. The developed

approach identified the optimal task scheduling

problem with a polynomial time complexity.

Nevertheless, the suggested approach was estimated

only on limited number of parameters, and it does not

estimate the other parameters to show the model

efficiency.

Alghamdi [23] implemented the Binary Particle

Swarm Optimization (BPSO) for obtaining optimal

scheduling of user tasks. The BPSO was utilized to

plan and balance a large number of heterogeneous

VMs efficiently. The Artificial Neural Network

(ANN) was utilized with the BPSO for attaining

effective scheduling in the cloud. The implemented

approach effectively considered the task priority in

VM task sequence and utilized ANN with the BPSO.

Nonetheless, the implemented approach does not

consider the energy consumption and difficulty in

handling dynamic environments.

From this section, the limitations of previous

methods are: resource utilization and energy

consumption were not identified, estimation of only

the minimum number of parameters were carried out.

These limitations are addressed in this research

manuscript based on task scheduling approaches in

the cloud. The CSGJO improves fuzzy rule sets by

refining the rule structure and parameter tuning.

Following that, it identifies the optimal resource

allocation to minimize the response time even when

handling a large number of tasks.

3. Proposed methodology

The aim of this research is to efficiently schedule

tasks over different VMs in the CC by using the FL

and CSGJO approaches. The contribution of this

approach is to efficiently schedule the tasks and

allocate resources based on the user requirements at

minimum execution time. Fig. 1 shows the

architecture of task scheduling.

3.1 System architecture

The number of tasks such as tak =
{ta1, ta2, ta3, … , tak} is denoted as k, with n number

of VM such as vn = {v1, v2, v3, … , vn}, i number of

physical hosts such as hi = {h1, h2, h3, … , hi}, and j
number of datacenters such as dj =

{d1, d2, d3, … , di} . These k number of tasks are

efficiently scheduled by n number of VMs, which

exist in i physical hosts and j datacenters. Mapping

or scheduling the tasks requires to examine the

priorities of tasks and VM, while reducing the

makespan and energy consumption. The makespan as

well as energy consumption is reduced by running the

multiple tasks concurrently in the scheduling process.

The number of tasks determines the number of VMs

and it should be allocated on physical hosts based on

the resource requirements. The number of physical

hosts determines the capacity and scalability of a

datacenter. Therefore, the efficiency is improved by

assigning the task priorities based on the factors such

as deadlines, importance or criticality.

3.2 Load balancing

Load balancing [24] is the procedure of allocating

the load in the network to enhance resource

utilization with high throughput. It is the network

device utilized in the distributed systems to improve

resource utilization and to ignore the single point of

failure.

Hence, load balancing supplements the entire

system as it assures the reliability as well as

availability. However, if the load balancing is not

performed in an appropriate way, it leads to

challenges in the networking. Hence, in this research,

the FL approach is utilized to efficiently solve load

balancing. The detailed information about FL is

provided the subsequent sections.

3.2.1. Fuzzy logic algorithm

Fuzzy inference is the procedure of formulating

the mapping of the provided input to the output by

utilizing FL, and on the other hand, mapping gives a

basis from which the decision must be made or

patterns are to be recognized. FL analyzes the

historical traffic patterns and predicts the future load

conditions on the servers or VM. Then, it

dynamically adjusts load balancing decisions based

on these predictions. In this research, the fuzzifier

employs the fuzzification process to convert the two

types of an input data such as processing speed and

allocated load of the VM. Additionally, it is assumed

that the balanced load is the output required in an

inference system. In this proposed method, the

execution time and load in VM are considered as the

two input parameters to develop an efficient value to

balance the load in cloud by utilizing FL.

The defuzzification is performed by using the

Smallest of Minimum (SOM) approach to transform

the fuzzy outcome set in the individual number. The

fuzzy set aggregation involves a range of outcome

values that are defuzzied based on solving the

individual output value from the fuzzy set. The

defuzzifier accepts the aggregated linguistic values

from an indirect fuzzy control action and develops the

non-fuzzy control output, which determines the

Received: April 23, 2024. Revised: June 5, 2024. 835

International Journal of Intelligent Engineering and Systems, Vol.17, No.4, 2024 DOI: 10.22266/ijies2024.0831.63

Figure. 1 Workflow of the task scheduling

accepted balanced load to the load conditions. The

defuzzification approach is performed to implement

the membership function for an accepted result.

In membership function, the fuzzy set is

represented mathematically for assigning to every

possible individual in the dissertation value by

denoting its membership grade in a fuzzy set. These

membership grades are depicted through the actual

number values ranging between 0 and 1. T is a

function of T: [0,1] × [0,1] → [0,1]. With the aid of

fuzzy set A involves all elements of x, which has a

non-zero membership grade. Support(A) = {x ∈
X|uA(x) > 0}. Assuming that the queue length and

fuzzy sets of the CPU represents the linguistics

concepts system load as low, moderate and high. The

fuzzification is developed for every input variable to

express an integrated measurement uncertainty.

Because of the efficient clustering of the data

attributes using FL, the scheduling approach has

effectively balanced the load over the VM as cloud

server.

3.3 System architecture

The scheduling is an equilibrium condition in

which activities are arranged based on the specific

criteria and a specific method. The aim of the

scheduling approach is to minimize an execution time

of tasks. The CSGJO is performed to schedule the

tasks according to the optimal fitness value, which

supports to identify the optimal load system based on

their server capacity.

3.3.1. Golden jackal optimization algorithm

GJO [25] is a meta-heuristic optimization

apporach which inspired through hunting behavior of

golden jackals. In GJO, every golden jackal

determines the search agent or the candidate solution.

The prey searching, encircling and attacking are the

general things followed by the GJO. The parameters

in GJO are control variables such as population size,

number of iterations end exploration rate that direct

the search process. In GJO, the search space is

described by the variables which depict the potential

solutions to an optimization problem.

1) Search space design
GJO is the population-based approach where the

initial positions are arbitrarily placed in the search

area, as formulated in Eq. (1).

𝑌0 = 𝑌𝑚𝑖𝑛 + 𝑟𝑎𝑛𝑑 × (𝑢𝑏 − 𝑙𝑏) (1)

Where, Y0 is the initial randomized population,

rand is the random number which falling in the range

of 0 and 1. 𝑌𝑚𝑖𝑛 is the minimum value. ub and lb are

the upper and lower boundaries of decision variables.

The initialization process comprises developing the

prey matrix with Male Jackals (MJ) as well as

Female Jackals (FMJ) inhabiting the primary and

secondary positions, respectively. The prey matrix is

formulated in Eq. (2).

Received: April 23, 2024. Revised: June 5, 2024. 836

International Journal of Intelligent Engineering and Systems, Vol.17, No.4, 2024 DOI: 10.22266/ijies2024.0831.63

𝑃𝑟𝑒𝑦 =

[

𝑌1,1 𝑌1,2 … 𝑌1,𝑑

𝑌2,1 𝑌2,2 … 𝑌2,𝑑

⋮
𝑌𝑛,1

⋮
𝑌𝑛,2

⋮
…

⋮
𝑌𝑛,𝑑]

 (2)

Where, Yij is the jth element of ith prey, n and d

is the total number of prey and variables. Here, the

location determines the optimal solution. In the

process of optimization, the objective function is

utilized to identify fitness of every prey. A fitness of

every prey is calculated using Eq. (3).

𝐹𝑂𝐴 =

[

𝑓(𝑌1,1; 𝑌1,2; … ; 𝑌1,𝑑)

𝑓(𝑌2,1; 𝑌2,2; … ; 𝑌2,𝑑)

⋮
𝑓(𝑌𝑛,1; 𝑌𝑛,2; … ; 𝑌𝑛,𝑑)]

 (3)

Where, f is an objective function, and FOA is the

matrix for storing fitness of every prey. 𝑓(.) –

function of multiple variables 𝑌𝑖,𝑗 , where, 𝑖 ranges

from 1 to 𝑛 and 𝑗 ranges from 1 to 𝑑.

2) Exploration phase
The jackals have the ability to detect and track a

prey, and they track down the prey effortlessly. The

MJ usually carries the lead, whereas FMJ trains the

MJ which is formulated in Eqs. (4) and (5).

𝑌1(𝑡) = 𝑌𝑀(𝑡) − 𝐸. |𝑌𝑀(𝑡) − 𝑟𝑙. 𝑃𝑟𝑒𝑦(𝑡)| (4)

𝑌2(𝑡) = 𝑌𝐹𝑀(𝑡) − 𝐸. |𝑌𝐹𝑀(𝑡) − 𝑟𝑙. 𝑃𝑟𝑒𝑦(𝑡)| (5)

Where, 𝑡 is the present iterations, 𝑃𝑟𝑒𝑦(𝑡) is the

position vector, 𝑌𝑀(𝑡) and 𝑌𝐹𝑀(𝑡) are the positions

of MJ and FMJ in a search space, 𝐸 is the prey’s

escape energy, 𝑟𝑙 is the random vectors according to

the Levy Flight (𝐿𝐹) distribution, as formulated in

Eq. (6) and 𝐿𝐹 is formulated in Eq. (7).

𝑟𝑙 = 0.05 ∗ 𝐿𝐹(𝑦) (6)

𝐿𝐹(𝑦) = 0.01 ×
(𝜇 × 𝜎)

(|𝑣
(
1

𝛽
)
|)

; 𝜎 =

(
𝛤(1+𝛽)×𝑠𝑖𝑛 (

𝜋𝛽

2
)

𝛤(
(1+𝛽)

2
)×𝛽×(2

𝛽−1
2)

)

1/𝛽

 (7)

Where, 𝛽 is a constant fixed to 1.5, 𝜇 , 𝜎 is the

scaling factor between the range of 0 and 1. 𝛤(.) is

the gamma function. 𝐿𝐹(𝑦) is the output of LF. |. | is

the absolute value.

 Eventually, the updated position is formulated in

Eq. (8).

𝑌(𝑡 + 1) =
𝑌1(𝑡)+𝑌2(𝑡)

2
 (8)

Where, 𝑌(𝑡 + 1) is the variable 𝑌 at the next time

step 𝑡 + 1.

3) Exploitation phase
Once the prey’s escaping capability is minimized,

the jackals encircle the prey identified in the prior

stage. After encircling, the jackals jump on the prey

and bother it. The collected pursuing of the jackal’s

hunting behavior is denoted in Eqs. (9) and (10).

𝑌1(𝑡) = 𝑌𝑀(𝑡) − 𝐸. |𝑟𝑙. 𝑌𝑀(𝑡) − 𝑃𝑟𝑒𝑦(𝑡)| (9)

𝑌2(𝑡) = 𝑌𝐹𝑀(𝑡) − 𝐸. |𝑟𝑙. 𝑌𝐹𝑀(𝑡) − 𝑃𝑟𝑒𝑦(𝑡)| (10)

The goal of 𝑟𝑙 is shown in the above Eqs. (9) and

(10) used to generate the random behavior in an

exploitation phase, supporting behavior, ignoring the

local optima problem.

4) Switching from exploration to exploitation
In the process of GJO, 𝐸 value is utilized to be

shifted from exploration to exploitation. The prey’s

energy is minimized meaningfully during an

escaping behavior. Once 𝐸0 is reduced from 0 to −1,

the prey is flagging and while 𝐸0 enhances from 0 to

1 , the prey’s strength is enhancing. If |𝐸| < 1 ,

jackals attack their prey and move to exploitation.

3.3.2. Cosine similarity based GJO

The traditional GJO updates the jackal’s positions

through Eq. (8) at the training process, similar to

utilizing the mean as an optimal solution. Though,

this approach ensures the flatness of the updates of

the jackal’s positions, but also has limitations. The

most apparent error is the lack of considering the

relationship among the various features. When there

is a relationship among the features, utilizing a mean

update device leads to few features that are

exaggerated or eliminated, thus affecting its

performance. Furthermore, once the data distribution

is unequal, the utilization of mean update mechanism

leads to the worst prediction effectiveness for the

particular data. Hence, the cosine similarity is

proposed for updating MJ and FMJ’s positions. As

estimated to mean update mechanism, the benefit of

utilizing the cosine similarity as update mechanism

examines the relationship among the various features,

hence updating the model parameters efficiently. It is

appropriate for the high-dimensional data and which

Received: April 23, 2024. Revised: June 5, 2024. 837

International Journal of Intelligent Engineering and Systems, Vol.17, No.4, 2024 DOI: 10.22266/ijies2024.0831.63

Figure. 2 Flowchart of the CSGJO

is not influenced through the vector length or data

distribution. The cosine similarity is displayed in Eq.

(11).

𝐶𝑜𝑠𝑠𝑖𝑚(𝑌1(𝑡), 𝑌2(𝑡)) =
𝑌1(𝑡).𝑌2(𝑡)

‖𝑌1(𝑡)‖‖𝑌2(𝑡)‖
 (11)

The cosine similarity among the pairs of the

golden jackal is enhanced through the complete value

as the position update’s weight, which is expressed in

Eq. (12).

𝑌(𝑡 + 1) =

𝑌1(𝑡) × |𝐶𝑜𝑠𝑠𝑖𝑚(𝑌1(𝑡), 𝑌2(𝑡))| + 𝑌2(𝑡) ×

(1 − |𝐶𝑜𝑠𝑠𝑖𝑚(𝑌1(𝑡), 𝑌2(𝑡))|) (12)

Where, Y1(t) and Y2(t) is the MJ and FMJ’s

position, . is the dot product, ‖Y1(t)‖ and ‖Y2(t)‖ is

respectively the MJ and FMJ’s lengths. The range

value of Cossim(Y1(t), Y2(t)) is among −1 and 1 .

By using CSGJO, the tasks are effectively scheduled,

and then these tasks are given to the cloud distributor

to forward data to the task scheduler. The scheduler

has the responsibility for assigning the tasks to every

VM over the cloud, through examining its feature

attributes such as capacity of the storage, execution

time and weight value. Fig. 2 shows the flowchart of

the CSGJO.

3.4 Multi-objective functions

In this section, the multi-objective function is

considered as the fitness function to estimate the

optimal solution. There are five parameters of

makespan, DOI, execution time, energy consumption

and resource utilization considered for efficient task

scheduling and load balancing in the data center.

When load balancing and task scheduling work

together effectively, they improve an efficiency and

performance. The estimated solution of this best

fitness value is assumed as an optimal solution. The

mathematical expressions of the multi-objective

functions are expressed in Eqs. (13) to (17) below.

𝑀𝑎𝑘𝑒𝑠𝑝𝑎𝑛 = 𝑚𝑎𝑥(𝐶𝑡𝑖)𝑡𝑖𝜖𝑇 (13)

𝐷𝑜𝐼 =
𝑀𝑎𝑥𝑙𝑜𝑎𝑑−𝑚𝑖𝑛𝑙𝑜𝑎𝑑

𝐴𝑣𝑒𝑟𝑎𝑔𝑒𝑙𝑜𝑎𝑑
 (14)

𝐸𝑥𝑒𝑐𝑢𝑡𝑖𝑜𝑛 𝑡𝑖𝑚𝑒 (𝑇𝑖) =
𝑁𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑖𝑛𝑠𝑡𝑟𝑢𝑐𝑡𝑖𝑜𝑛𝑠 (𝑡𝑎𝑠𝑘(𝑖))

𝑀𝐼𝑃𝑆 𝑟𝑎𝑡𝑖𝑛𝑔 (𝑀𝑎𝑐ℎ𝑖𝑛𝑒 (𝑖))
 (15)

𝐸𝑛𝑒𝑟𝑔𝑦 𝐶𝑜𝑛𝑠𝑢𝑚𝑝𝑡𝑖𝑜𝑛 =

𝑇𝑜𝑡𝑎𝑙 𝑇𝑒𝑚𝑝𝑒𝑟𝑎𝑡𝑢𝑟𝑒

𝐴𝑣𝑒𝑟𝑎𝑔𝑒 𝑇𝑒𝑚𝑝𝑒𝑟𝑎𝑡𝑢𝑟𝑒
∗

𝑇𝑜𝑡𝑎𝑙 𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑟𝑒𝑠𝑜𝑢𝑟𝑐𝑒𝑠 𝑢𝑡𝑖𝑙𝑖𝑧𝑒𝑑 (16)

𝑅𝑒𝑠𝑜𝑢𝑟𝑐𝑒 𝑢𝑡𝑖𝑙𝑖𝑧𝑎𝑡𝑖𝑜𝑛 =

∑ 𝑁𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑡𝑎𝑠𝑘𝑠(𝐾𝑖)
𝑖=𝑛

𝑖=1

𝑒𝑥𝑒𝑐𝑢𝑡𝑒𝑑𝑝𝑒𝑟 𝑟𝑒𝑠𝑜𝑢𝑟𝑐𝑒 (Ri) (17)

All the above-mentioned objectives are

incompatible with each other. Usually, all the

objective functions contain different units and values.

Therefore, the min-max normalization function is

substituted to every objective function to normalize

the units into numerical values by using Eq. (18).

𝐹(𝑥) =
𝑓𝑖−𝑓𝑚𝑖𝑛

𝑓𝑚𝑎𝑥−𝑓𝑚𝑖𝑛
 (18)

Table 1. Simulation parameters

Parameters Values

Size of tasks (MI) 1000-4000

VM execution rate (MIPS) 1000-5000

Power consumption 0.6-0.7

Power consumption of VMs (Watt) 200-1000

Number of tasks 100-1000

Number of VMs 40-200

Received: April 23, 2024. Revised: June 5, 2024. 838

International Journal of Intelligent Engineering and Systems, Vol.17, No.4, 2024 DOI: 10.22266/ijies2024.0831.63

Hence, the weighted sum method is substituted

and multi-objective function is converted into an

individual objective function. It is formulated in Eq.

(19) as:

𝑀𝑖𝑛𝑖𝑚𝑖𝑧𝑒 𝑓𝑖𝑡𝑛𝑒𝑠𝑠 = 𝛼1 × 𝑓1 +

𝛼2 × 𝑓2 + 𝛼3 × 𝑓3 + 𝛼4 × 𝑓4 + 𝛼5 × 𝑓5 (19)

Where, 𝑚𝑎𝑥(𝐶𝑡𝑖)𝑡𝑖𝜖𝑇 is the maximum

completion time between all tasks; 𝑚𝑖𝑛𝑙𝑜𝑎𝑑 and

𝑚𝑎𝑥𝑙𝑜𝑎𝑑 are minimum and maximum load values

observed in a given period; 𝐴𝑣𝑒𝑟𝑎𝑔𝑒𝑙𝑜𝑎𝑑 is the

average load value. Cti is an execution time of the

longest task ti, and T is the number of tasks on an

application workflow. α1 to α5 are the weights

applied to all objective functions, fi is the function

value, fmin and fmax are the minimum and maximum

values, F(x) is the normalized value among 0 and 1.

By utilizing the CSGJO, the tasks are effectively

scheduled by identifying the optimal resource

allocation to minimize the response time even when

handling the large number of tasks.

4. Author name(s) and affiliation(s)

In this research, the results and discussion of the

proposed method based on the task scheduling in

cloud are presented. The simulation is taken out by

Cloud Sim simulator based on Java. This research

utilizes intel core i7 processor system configuration,

windows 10 OS, and 16GB RAM. To measure the

effectiveness of the proposed method, different

performance matrices such as makespan, DOI,

Execution time, Energy consumption and Resource

Utilization are considered. Table 1 depicts the

parameter settings of the CSGJO.

4.1 Performance analysis

In this section, the effectiveness of the CSGJO is

validated for two different scenarios which are

provided below. The existing meta-heuristic

approaches like PSO, GWO and Ant Colony

Optimization (ACO) are compared with the proposed

CSGJO. As compared to these existing approaches,

the proposed CSGJO attains better results, because it

effectively schedules the tasks and balances the load

based on the task priorities.

4.1.1. Scenario 1

The number of tasks is taken from 200 to 1000

and the total number of VM is set to 100 for

examining the task scheduling in this scenario. Table

2 depicts the analysis of CSGJO for scenario 1. In

Table 2, the comparison of the CSGJO with the

existing approaches is discussed by using various

performance metrices. The results from table 2 show

that the enhancing of the number of tasks leads an

improvement in the number of resources. The

CSGJO attains better outcomes as compared to the

existing methods, even when the number of tasks is

increased. A CSGJO offers superior scalability than

the existing approaches for minimum and maximum

number of tasks.

Table 2. Analysis of CSGJO for Number of tasks at VM = 100

Performance

Metrics

Method Number of tasks

200 400 600 800 1000

Makespan (s) PSO 3.8 6.7 12.3 17.7 22.3

GWO 3.2 5.5 11.4 16.9 20.6

ACO 2.5 4.7 10.6 16.4 19.7

CSGJO 1.9 3.8 8.3 11.5 16.7

DOI PSO 0.42 0.45 0.51 0.53 0.57

GWO 0.31 0.41 0.49 0.52 0.55

ACO 0.28 0.38 0.44 0.39 0.41

CSGJO 0.23 0.25 0.31 0.33 0.34

Execution Time

(s)

PSO 179.5 388.9 598.7 791.2 986.1

GWO 172.6 367.8 577.2 789.3 978.3

ACO 169.3 345.7 567.8 772.6 971.2

CSGJO 153.6 312.7 543.1 753.7 954.0

Energy

Consumption (J)

PSO 167 321 563 711 867

GWO 145 298 523 703 842

ACO 135 278 498 685 834

CSGJO 117 236 423 657 806

Resource

Utilization (%)

PSO 92.3 92.1 91.2 90.2 91.3

GWO 95.2 94.3 93.2 93.1 93.2

ACO 96.2 97.5 95.6 96.4 96.4

CSGJO 98.9 99.1 99.2 99.5 99.5

Received: April 23, 2024. Revised: June 5, 2024. 839

International Journal of Intelligent Engineering and Systems, Vol.17, No.4, 2024 DOI: 10.22266/ijies2024.0831.63

4.1.2. Scenario 2

The number of VM taken from 40 to 200 VMs

and the number of tasks is fixed to the 500 in this

scenario. In Table 3, the comparison of the CSGJO

with the existing approaches are discussed by using

various performance metrices.

The results from Table 3 exhibit the enhancing

number of task origins and improvement in the

number of resources. The CSGJO attains superior

outcomes when compared to the existing methods

even when increasing the number of tasks. The

CSGJO offers a commendable scalability than the

existing approaches for minimum and maximum

number of tasks. Scalability in task scheduling refers

to the ability of a task scheduling system to handle

the increasing amount of work or tasks efficiently

without significantly impacting the performance.

Table 3. Analysis of CSGJO for Number of VM at Task =500

Performance

Metrics

Method Number of VM

200 400 600 800 1000

Makespan (s) PSO 36.2 18.6 7.3 6.3 5.8

GWO 35.8 15.7 6.9 5.8 5.3

ACO 34.6 14.6 6.3 4.5 4.6

CSGJO 23.7 9.6 4.5 3.3 3.2

DOI PSO 18.6 3.1 1,7 2.4 3.5

GWO 15.7 2.6 1.6 1.7 1.4

ACO 12.5 1.4 1.4 1.6 0.7

CSGJO 0.9 0.7 0.6 0.5 0.4

Execution Time (s) PSO 544.7 542.4 446.8 457.8 486.9

GWO 534.6 534.1 435.6 434.6 479.2

ACO 512.3 523.6 432.0 421.5 462.1

CSGJO 475.9 503.2 412.5 403.8 434.5

Energy

Consumption (J)

PSO 389 391 403 412 437

GWO 384 383 398 399 435

ACO 375 378 378 346 412

CSGJO 354 356 302 311 321

Table 4. Simulation parameter with the different scenarios

Parameters Scenarios

3 4 5

Number of tasks 200 to 1000 100 to 500 1000 to 5000

Number of VM 100 50 150

Table 5. Comparison of the proposed CSGJO with MCT-PSO [19] and PSGWO [20]

Scenario Methods Performance Metrices No. of tasks

200 400 600 1000

3 MCT-

PSO [19]

Makespan (s) 2.2 4.2 8.5 17.6

DOI 0.9 0.6 1.0 1.2

Execution Time (s) 155.8 326.7 535.8 972.3

Energy Consumption (J) 122 242 440 822

Resource Utilization (%) N/A N/A N/A N/A

PSGWO

[20]

Makespan (s) 75.4 125.6 180.6 375.7

DOI N/A N/A N/A N/A

Execution Time (s) N/A N/A N/A N/A

Energy Consumption (J) N/A N/A N/A N/A

Resource Utilization (%) 98.5 98.4 98.5 98.4

Proposed

CSGJO

Makespan (s) 1.9 3.8 8.3 16.7

DOI 0.23 0.25 0.31 0.034

Execution Time (s) 153.6 312.7 543.1 954.0

Energy Consumption (J) 117 236 423 806

Resource Utilization (%) 98.9 99.1 99.2 99.5

Received: April 23, 2024. Revised: June 5, 2024. 840

International Journal of Intelligent Engineering and Systems, Vol.17, No.4, 2024 DOI: 10.22266/ijies2024.0831.63

Table 6. Comparison of the proposed CSGJO with ESFO [22]

Scenario Methods Performance

Metrices

No. of tasks

100 200 300 400

4 ESFO [22] Makespan (s) 58 147 188 271

Proposed

CSGJO

Makespan (s) 55 143 183 268

Table 7. Comparison of the proposed CSGJO with ANN-BPSO [23]

Scenario Methods Performance Metrices No. of tasks

1000 2000 3000 4000

5 ANN-

BPSO

[23]

Makespan (s) 90 96 100 120

DOI 0.0365 0.0628 0.8751 0.0911

Resource Utilization (%) 96.84 95.21 94.54 94.09

Proposed

CSGJO

Makespan (s) 88 94 97 115

DOI 0.0342 0.0426 0.0643 0.0834

Resource Utilization (%) 97.34 96.34 95.35 95.04

Table 8. Comparative Analysis with different number of VM

Performance

metric

Method Number of Virtual Machines

40 80 120 160

Makespan (s) MCT-PSO [19] 25.9 9.7 4.9 3.7

Proposed CSGJO 23.7 9.6 4.5 3.3

DOI MCT-PSO [19] 1.0 0.8 0.7 0.7

Proposed CSGJO 0.9 0.7 0.6 0.5

Execution Time

(s)

MCT-PSO [19] 486.8 518.7 427.0 417.6

Proposed CSGJO 475.9 503.2 412.5 403.8

Energy

Consumption (J)

MCT-PSO [19] 362 365 311 318

Proposed CSGJO 354 356 302 311

4.2 Comparative analysis

Table 4 shows the simulation parameters of the

different scenarios. The scenarios 3 depicted the

MCT-PSO [19] and PSGWO [20], whereas scenario

4 and 5 are depicted as the ESFO [22] and ANN-

BPSO [23] respectively. These different scenarios are

compared with the proposed CSGJO approach for

estimating the effectiveness of the model. Table 5, 6,

7 and 8 shows the comparison of the proposed

CSGJO with MCT-PSO [19], PSGWO [20], ESFO

[22] and ANN-BPSO [23]. The performance of

proposed CSGJO is compared with the MCT-PSO

[19] and PSGWO [20] in scenario 3 using the number

of tasks of 200, 400, 600 and 1000 respectively. The

performance of proposed CSGJO is compared with

the ESFO [22] in scenario 4 using the number of tasks

of 100, 200, 300 and 400 respectively. The

performance of proposed CSGJO is compared with

the ANN-BPSO [23] in scenario 5 using the number

of tasks of 1000, 2000, 3000 and 4000 respectively.

Table 8 represents the comparative analysis of the

proposed CSGJO with MCT-PSO [19] on a number

of VMs. The number of VMs such as 40, 80, 120 and

160 respectively.

4.3 Discussion

In this section, the achievement of the proposed

CSGJO approach is discussed along with their

advantages. The existing works have the limitations

such as resource utilization and energy consumption

not being identified, estimating only a minimum

number of parameters, while also the efficiency not

being optimized. Hence, in this research, the resource

utilization and energy consumption are estimated to

schedule the tasks and to minimize the over and

underutilization problems. The proposed CSGJO

effectively estimates the different parameters namely,

makespan, DOI, execution time, energy consumption

and resource utilization through continuously

improving the scheduling process based on the actual

data. CSGJO leverages the cooperative hunting

behavior of golden jackals to efficiently allocate tasks

to resources, also minimizing the makespan. The

algorithm dynamically adjusts the task assignments

based on VM load and task requirements. The

CSGJO effectively refines the fuzzy sets and

identifies the optimal resource allocation. The

proposed CSGJO attains minimum makespan, DOI,

Received: April 23, 2024. Revised: June 5, 2024. 841

International Journal of Intelligent Engineering and Systems, Vol.17, No.4, 2024 DOI: 10.22266/ijies2024.0831.63

execution time, energy consumption and resource

utilization of 1.9s, 0.23, 153.6s, 117J and 98.9%,

respectively. These results exhibit a commendable

improvement as compared to the existing approaches.

5. Conclusion

In this section, the achievement of the proposed

CSGJO approach is discussed along with their

advantages. The existing works have the limitations

such as resource utilization and energy consumption

not being identified, estimating only a minimum

number of parameters, while also the efficiency not

being optimized. Hence, in this research, the resource

utilization and energy consumption are estimated to

schedule the tasks and to minimize the over and

underutilization problems. The proposed CSGJO

effectively estimates the different parameters namely,

makespan, DOI, execution time, energy consumption

and resource utilization through continuously

improving the scheduling process based on the actual

data. CSGJO leverages the cooperative hunting

behavior of golden jackals to efficiently allocate tasks

to resources, also minimizing the makespan. The

algorithm dynamically adjusts the task assignments

based on VM load and task requirements. The

CSGJO effectively refines the fuzzy sets and

identifies the optimal resource allocation. The

proposed CSGJO attains minimum makespan, DOI,

execution time, energy consumption and resource

utilization of 1.9s, 0.23, 153.6s, 117J and 98.9%,

respectively. These results exhibit a commendable

improvement as compared to the existing approaches.

In CC, obtaining an efficient task scheduling

approach is significant for cloud providers and users.

In this research, CSGJO approach is proposed for

efficient task scheduling in a cloud. The CSGJO has

the capability to handle a large number of tasks and

resources, furthermore, efficiently optimizing the

schedules even for complex scenarios with various

constraints. Commencing the search process with the

LJFP and MCT approaches based on the selected

solutions efficiently effect a convergence speed, as

well as the performance. The FL approach is utilized

to solve the problem of load balancing effectively,

thereby optimally distributing the tasks according to

the fuzzy rules and supporting to minimize the

execution time. The proposed CSGJO accomplishes

a minimum makespan of 1.9s at the number of tasks

being 200. In the future, different meta-heuristic

approaches will be used with a greater number of

parameters to enhance the system performance.

Notation

Variables Descriptions

Y0 Initial randomized population

rand Random number which falling in

the range of 0 and 1

𝑌𝑚𝑖𝑛 Minimum value

ub and lb Upper and lower boundaries of

decision variables

Yij jth element of ith prey

n and d Total number of prey and

variables

f Objective function

FOA Matrix for storing fitness of

every prey

𝑓(.) Function of multiple variables

𝑌𝑖,𝑗 , where, 𝑖 ranges from 1 to

𝑛 and 𝑗 ranges from 1 to 𝑑.

𝑡 Present iterations

𝑃𝑟𝑒𝑦(𝑡) Position vector

𝑌𝑀(𝑡) and

𝑌𝐹𝑀(𝑡)

Positions of MJ and FMJ in the

search space

𝐸 Prey’s escape energy

𝑟𝑙 Random vectors according to the

Levy Flight (𝐿𝐹) distribution

𝛽 Constant fixed to 1.5

𝜇, 𝜎 Scaling factor between the range

of 0 and 1.

(.) Gamma function

𝐿𝐹(𝑦) Output of LF

|. | Absolute value

𝑌(𝑡 + 1) Variable 𝑌 at the next time step

𝑡 + 1

Y1(t) and

Y2(t)

MJ and FMJ’s position

. Dot product

‖Y1(t)‖ and
‖Y2(t)‖

MJ and FMJ’s lengths

𝑚𝑎𝑥(𝐶𝑡𝑖)𝑡𝑖𝜖𝑇 Maximum completion time

between all tasks

𝑚𝑖𝑛𝑙𝑜𝑎𝑑 and

𝑚𝑎𝑥𝑙𝑜𝑎𝑑

Minimum and maximum load

values observed in a given

period

𝐴𝑣𝑒𝑟𝑎𝑔𝑒𝑙𝑜𝑎𝑑 Average load value

Cti Execution time of the longest

task ti
T Number of tasks on the

application workflow

α1 to α5 Weights applied to all objective

functions

fi function value

fmin and fmax Minimum and maximum values

(x) Normalized value among 0 and

1

Received: April 23, 2024. Revised: June 5, 2024. 842

International Journal of Intelligent Engineering and Systems, Vol.17, No.4, 2024 DOI: 10.22266/ijies2024.0831.63

Conflicts of Interest

The authors declare no conflict of interest.

Author Contributions

Conceptualization, MZR and ASP; methodology,

MZR; software, ASP; validation, ASP; formal

analysis, ASP; investigation, MZR; resources, ASP;

data curation, MZR; writing—original draft

preparation, MZR; writing—review and editing, ASP;

visualization, MZR; supervision, ASP; project

administration, ASP

References

[1] N.K. Walia, N. Kaur, M. Alowaidi, K.S. Bhatia,

S. Mishra, N.K. Sharma, S.K. Sharma, and H.

Kaur, “An energy-efficient hybrid scheduling

algorithm for task scheduling in the cloud

computing environments”, IEEE Access, Vol. 9,

pp. 117325-117337, 2021.

[2] H. Mahmoud, M. Thabet, M.H. Khafagy, and

F.A. Omara, “Multiobjective task scheduling in

cloud environment using decision tree

algorithm”, IEEE Access, Vol. 10, pp. 36140-

36151, 2022.

[3] J.K. Konjaang, J. Murphy, and L. Murphy,

“Energy-efficient virtual-machine mapping

algorithm (EViMA) for workflow tasks with

deadlines in a cloud environment”, Journal of

Network and Computer Applications, Vol. 203,

p. 103400, 2022.

[4] S. Mangalampalli, G.R. Karri, and M. Kumar,

“Multi objective task scheduling algorithm in

cloud computing using grey wolf optimization”,

Cluster Computing, Vol. 26, No. 6, pp. 3803-

3822, 2023.

[5] H. Mahmoud, M. Thabet, M.H. Khafagy, and

F.A. Omara, “An efficient load balancing

technique for task scheduling in heterogeneous

cloud environment”, Cluster Computing, Vol.

24, No. 4, pp. 3405-3419, 2021.

[6] X. Fu, Y. Sun, H. Wang, and H. Li, “Task

scheduling of cloud computing based on hybrid

particle swarm algorithm and genetic algorithm”,

Cluster Computing, Vol. 26, No. 5, pp. 2479-

2488, 2023.

[7] L. Yin, C. Sun, M. Gao, Y. Fang, M. Li, and F.

Zhou, “Hyper-Heuristic Task Scheduling

Algorithm Based on Reinforcement Learning in

Cloud Computing”, Intelligent Automation &

Soft Computing, Vol. 37, No. 2, pp. 1587-1608,

2023.

[8] B. Sellami, A. Hakiri, S.B. Yahia, and P.

Berthou, “Energy-aware task scheduling and

offloading using deep reinforcement learning in

SDN-enabled IoT network”, Computer

Networks, Vol. 210, p. 108957, 2022.

[9] G. Shruthi, M.R. Mundada, B.J. Sowmya, and S.

Supreeth, “Mayfly taylor optimisation-based

scheduling algorithm with deep reinforcement

learning for dynamic scheduling in fog-cloud

computing”, Applied Computational

Intelligence and Soft Computing, Vol. 2022, p.

2131699, 2022.

[10] D.A. Amer, G. Attiya, I. Zeidan, and A.A. Nasr,

“Elite learning Harris hawks optimizer for multi-

objective task scheduling in cloud computing”,

The Journal of Supercomputing, Vol. 78, No. 2,

pp. 2793-2818, 2022.

[11] K.R.R. Laxman, A. Lathigara, R. Aluvalu, and

U.M. Viswanadhula, “PGWO‐AVS‐RDA: An

intelligent optimization and clustering based

load balancing model in cloud”, Concurrency

and Computation: Practice and Experience, Vol.

34, No. 21, p. e7136, 2022.

[12] S. Nabi, M. Ahmad, M. Ibrahim, and H. Hamam,

“AdPSO: adaptive PSO-based task scheduling

approach for cloud computing”, Sensors, Vol.

22, No. 3, p.920, 2022.

[13] P. Pirozmand, H. Jalalinejad, A.A.R.

Hosseinabadi, S. Mirkamali, and Y. Li, “An

improved particle swarm optimization algorithm

for task scheduling in cloud computing”,

Journal of Ambient Intelligence and Humanized

Computing, Vol. 14, No. 4, pp. 4313-4327, 2023.

[14] A. Chhabra, K.C. Huang, N. Bacanin, and T.A.

Rashid, “Optimizing bag-of-tasks scheduling on

cloud data centers using hybrid swarm-

intelligence meta-heuristic”, The Journal of

Supercomputing, Vol. 78, No. 7, pp. 9121-9183,

2022.

[15] N. Sharma, and P. Garg, “Ant colony-based

optimization model for QoS-Based task

scheduling in cloud computing environment”,

Measurement: Sensors, Vol. 24, p. 100531,

2022.

[16] F.A. Saif, R. Latip, Z.M. Hanapi, and K.

Shafinah, “Multi-objective grey wolf optimizer

algorithm for task scheduling in cloud-fog

computing”, IEEE Access, Vol. 11, pp. 20635-

20646, 2023.

[17] K. Malathi, and K. Priyadarsini, “Hybrid lion–

GA optimization algorithm-based task

scheduling approach in cloud computing”,

Applied Nanoscience, Vol. 13, No. 3, pp. 2601-

2610, 2023.

[18] F.S. Alsubaei, A.Y. Hamed, M.R. Hassan, M.

Mohery, and M.K. Elnahary, “Machine learning

approach to optimal task scheduling in cloud

Received: April 23, 2024. Revised: June 5, 2024. 843

International Journal of Intelligent Engineering and Systems, Vol.17, No.4, 2024 DOI: 10.22266/ijies2024.0831.63

communication”, Alexandria Engineering

Journal, Vol. 89, pp. 1-30, 2024.

[19] S.A. Alsaidy, A.D. Abbood, and M.A. Sahib,

“Heuristic initialization of PSO task scheduling

algorithm in cloud computing”, Journal of King

Saud University-Computer and Information

Sciences, Vol. 34, No. 6, pp. 2370-2382, 2022.

[20] M.S.A. Khan, and R. Santhosh, “Task

scheduling in cloud computing using hybrid

optimization algorithm”, Soft computing, Vol.

26, No. 23, pp. 13069-13079, 2022.

[21] B. Kruekaew, and W. Kimpan, “Multi-objective

task scheduling optimization for load balancing

in cloud computing environment using hybrid

artificial bee colony algorithm with

reinforcement learning”, IEEE Access, Vol. 10,

pp. 17803-17818, 2022.

[22] H. Emami, “Cloud task scheduling using

enhanced sunflower optimization algorithm”, Ict

Express, Vol. 8, No. 1, pp. 97-100, 2022.

[23] M.I. Alghamdi, “Optimization of load balancing

and task scheduling in cloud computing

environments using artificial neural networks-

based binary particle swarm optimization

(BPSO)”, Sustainability, Vol. 14, No. 19, p.

11982, 2022.

[24] F.M. Talaat, H.A. Ali, M.S. Saraya, and A.I.

Saleh, “Effective scheduling algorithm for load

balancing in fog environment using CNN and

MPSO”, Knowledge and Information Systems,

Vol. 64, No. 3, pp. 773-797, 2022.

[25] J. Zhang, G. Zhang, M. Kong, and T. Zhang,

“Adaptive infinite impulse response system

identification using an enhanced golden jackal

optimization”, The Journal of Supercomputing,

Vol. 79, No. 10, pp. 10823-10848, 2023.

