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Abstract: Growing mangoes is an important part of life in southern India and a major economic driver for the area. 

Nevertheless, several leaf diseases often impede mango tree development and production, substantially affecting 

harvest output and quality. Detecting and identifying mango leaf diseases early can be challenging due to the diverse 

crop varieties, climatic circumstances, and numerous disease signs. While deep-learning methods have been developed 

to address this problem, they generally need help to detect illnesses across geographies and crop types. To tackle this 

difficulty, this research offers a transfer learning model that uses Explainable Artificial Intelligence (XAI) 

characteristics to identify and categorize leaf diseases. This research proposes MLTNet (Mango Leaf Disease 

Classification with Transfer Learning, Feature Localization, and Visual Explanations) in this study. Our study utilized 

a dataset from Southern India comprising 1,275 high-quality images of mango leaves affected by diseases like rust and 

powdery mildew, augmented to 11,480 images across 14 classes to enhance model training and robustness.This novel 

model utilizes Explainable Artificial Intelligence (XAI) techniques such that leaf disease detection and categorization 

may achieve higher levels of accuracy. The research work lies in the development of the MLTNet model, which 

integrates Explainable Artificial Intelligence (XAI) techniques with the ResNet50 architecture to enhance 

classification accuracy in mango leaf disease detection. This model uniquely employs advanced data pre-processing 

methods like Error Level Analysis and incorporates Grad-CAM for feature localization and visual explanations. We 

compared MLTNet’s performance with state-of-the-art models like ResNet-50, VGG-16, and InceptionV3, focusing 

on accuracy, interpretability, and computational efficiency. MLTNet demonstrated superior performance, achieving a 

training accuracy of 94.3% and a test accuracy of 86.3%, which notably surpasses other models under similar 

conditions. This success is attributed to the model's ability to leverage complex features from the augmented dataset 

and the added interpretability provided by XAI techniques. 

Keywords: Mango leaf disease, Transfer learning, ResNet50, Error level analysis, Feature localization, Visual 

explanations. 

 

 

1. Introduction  

Mango (Mangifera indica), known as the "king of 

fruits," holds significant agricultural importance 

globally, with India being a leading producer, 

contributing approximately 40% of the world's 

mangoes. However, various leaf diseases can 

substantially impact mango crop productivity, 

resulting in estimated yield losses of 30-40% [1]. 

Timely detection and management of these diseases 

are crucial to prevent crop losses and maintain fruit 

quality. This study addresses the need for automated 

disease detection systems, given the challenges of 

manual inspection, which is time-consuming and 

error-prone [2]. Focusing on the South Indian climate, 

the research aims to develop an advanced transfer 

learning framework to accurately identify and 

categorize mango leaf diseases. The initiative 

involves creating a comprehensive dataset 

encompassing prevalent disease classes, such as 

Anthracnose and Leaf Blight, subjected to rigorous 

pre-processing for optimal input to the transfer 

learning model [3, 4]. Recognizing the 

interpretability gap in deep-learning models, 

particularly in agriculture, the research introduces the 
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MLTNet model, integrating feature localizations and 

visual explanations with transfer learning. This 

innovative approach seeks to enhance precision in 

leaf disease classification, promoting broader 

acceptance in real-world agricultural scenarios [5]. 

The main objective of this study is to enhance 

mango leaf disease classification accuracy in leaf 

disease classification. The pivotal importance of the 

problem is mango leaf diseases significantly impact 

crop yield and quality, leading to substantial 

economic losses. Current methods for disease 

detection are labour-intensive, error-prone, and 

inefficient. Our system, MLTNet, addresses these 

challenges by employing a transfer learning 

framework, enhancing accuracy and explainability in 

disease identification. This system is crucial for 

providing rapid, precise, and cost-effective disease 

identification technology, assisting farmers and 

agronomists in early disease management. MLTNet, 

with 54 layers, is built upon the widely used 

ResNet50 architecture, a deep convolutional neural 

network renowned for its capacity to uncover 

intricate details from images [6]. To ensure optimal 

data quality, we employ Error Level Analysis as a 

data pre-processing technique, followed by 

TensorFlow-based image processing to standardize 

the image processing across the dataset. To improve 

the precision of our models, we use dropout 

techniques and increased layer density inside the 

ResNet50 framework [6]. To further understand the 

model's reasoning and promote openness, we also 

employ the Grad-CAM method for feature 

localization and visual explanation [7]. This allows 

us to identify critical areas in the input images that 

substantially impact the model's classification 

outcomes, making the process more trustworthy and 

interpretable. Throughout our research, we optimize 

the MLTNet model's parameters by training it over 

many epochs. A training accuracy of 94.3% and a test 

accuracy of 86.3% demonstrate remarkable precision 

in the outcomes. To prove MLTNet's efficacy, we test 

it on 14 distinct disease classes of mango leaves and 

compare its results to those of other popular models 

used for leaf disease detection and classification. 

When compared to other methods, our suggested 

model proves to be superior in detecting and 

categorizing mango leaf illnesses. 

The significant contributions to the research are 

− Investigate the effectiveness of MLTNet, an 

enhanced transfer learning model, in improving 

the accuracy of mango leaf disease classification 

accuracy.  

− Design and fine-tune MLTNet, Mango Leaf 

Disease Classification with Transfer Learning, 

Feature Localization, and Visual Explanations 

network architecture optimized for mango leaf 

disease classification for predicting classification 

accuracy. 

− Evaluate the proposed approach using a 

comprehensive augmented South Indian mango 

dataset with 14 types of diseases.  

− Compare the performance of the proposed 

MLTNet approach with state-of-the-art works for 

mango leaf disease classification. 

The work is presented as follows: Section II 

provides preliminaries and literature related to the 

classification of mango leaf diseases. Section III 

offers the initial work conducted and outlines the 

proposed methodology. Section IV presents the 

results and discussions of the proposed techniques. 

Finally, Section V summarizes the findings, presents 

the conclusion, and provides recommendations for 

future research. 

2. Basic preliminaries and related works  

Detecting and understanding agricultural leaf 

diseases is a top priority for machine vision 

researchers. Using machine vision technology to take 

photos of the leaves, this approach may identify 

illnesses that affect them. [8]. The sector has been at 

the forefront of adopting computer vision-based 

technology for crop diagnosis and identification. This 

technology has partially replaced conventional 

farming and classifying leaf diseases.  

AI, notably deep learning, is pivotal in leaf 

disease detection [36]. In medical applications, it 

enhances colonic polyp detection [36] and transforms 

bladder cancer diagnosis, improving tumor detection 

precision [37]. In security, introduces WARDIC for 

highly accurate weapon detection using 

Convolutional Neural Networks [38]. Also in 

medical maretials research [39] explores deep 

learning, fostering collaboration between disciplines 

[39]. [40] addresses online voting challenges with a 

mobile-based application incorporating deep 

learning-based face detection [40]. For oral cancer, 

[41] highlights VGG19's efficacy in early detection 

using pre-trained Convolutional Neural Networks 

[41]. 

2.1 Current literature on transfer learning models 

for identifying leaf diseases 

Recent advancements in agriculture underscore 

the shift towards computer vision for crop disease 

identification, departing from traditional methods. 

Techniques like Convolutional Neural Networks 

(CNNs) facilitate image-based detection, addressing 

challenges like poor contrast and subtle lesion 

differences, promising more accurate results [9, 10]. 
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Deep transfer learning, especially in CNN 

architectures, has gained prominence for diagnosing 

leaf diseases, enhancing accuracy in automated 

systems [11]. Comprehensive studies, such as [12], 

highlight the efficacy of advanced image processing 

in detecting various plant diseases. Ongoing research 

emphasizes the crucial role of advanced image 

processing in elevating crop yield and mitigating 

economic losses in agriculture. 

A "Transfer Learning" approach takes an existing 

model and uses it as a foundation for a new model, 

this time for a different goal. Researchers have been 

using pre-trained networks for disease classification 

on mango leaves to extract feature representations 

that are adept at distinguishing between different 

types of leaf diseases. The research team then 

embarked on an evaluative phase, contrasting the 

results garnered from their methodology with those 

obtained through alternative tactics which 

incorporated the use of transfer learning and notable 

CNN models like AlexNet [13], VGG16, ResNet-50, 

and MobileNet [14-16]. Furthermore, the team 

proposed the utilization of a Modified CNN for the 

precise classification of mango leaves, Anthracnose. 

This endeavour was grounded on the analysis of a 

robust dataset comprising 1070 samples of mango 

tree leaves documented in real-time, encompassing 

both healthy and infected specimens. Upon 

comparison with existing cutting-edge solutions, the 

proposed MCNN model manifested superior 

classification accuracy. 

This study investigates the use of pre-trained 

deep-learning models like VGG16 and ResNet50 for 

tomato plant disease and leaf recognition [17]. The 

study compares these models' ability to diagnose 

different diseases [18]. We test the use of transfer 

models VGG16 and InceptionV3 to classify leaf 

diseases. Accurate illness categorization requires 

transfer learning, fine-tuning, and feature extraction 

from these pre-existing models. We thoroughly test 

pre-trained CNN models like VGG16, ResNet50, and 

InceptionV3 for leaf disease detection [19]. We test 

their ability to identify healthy and diseased leaves. 

Pre-trained deep learning models like VGG16 and 

InceptionV3 are extensively used to diagnose and 

classify plant diseases [20]. This study shows how 

pre-trained models, transfer learning, and fine-tuning 

can improve disease diagnosis. 

Transfer learning for leaf disease categorization 

using pre-trained models like VGG16 and ResNet50 

is examined in this paper [21]. We examine numerous 

transfer learning methods, including attention 

mechanisms in CNN models like VGG16 and 

InceptionV3, using plant disease datasets. Our data 

show that this method accurately diagnoses and 

classifies leaf diseases. In [22], we use deep learning 

to accurately diagnose and classify mango tree 

diseases. We describe the process, which includes 

model training on a carefully selected mango illness 

dataset and deep-learning architecture evaluation. 

These findings show that deep learning can improve 

agricultural practices and crop health by detecting 

mango illnesses. This study shows how deep learning 

systems accurately identify and classify mango 

illnesses. 

The research delineated in [26], pioneered the 

deployment of a highly sophisticated neural network 

ensemble (NNE) in their analytical model to facilitate 

the precise identification of diseases in mango leaves. 

This innovative system, a confluence of multiple 

neural networks, has been meticulously calibrated to 

distinguish the nuances between healthy and diseased 

leaves, showcasing a remarkable accuracy rate of 

87.5% in identifying healthy specimens. This notable 

success rate not only signifies the model's robustness 

but also marks a pivotal advancement in agricultural 

technology.  

Both manual and automated planting 

methodologies currently face constraints in surveying 

expansive land masses and offering crucial insights at 

initial stages for well-grounded decision-making. As 

a result, there is an urgent need to forge ahead in 

crafting automated mechanisms that stand as 

applicable, dependable, and economically viable, to 

monitor vegetation health while conveying pertinent 

data for administrative use. A notable evolution has 

been witnessed in the domains of pattern discernment 

and classification, largely attributed to the AI, 

leveraging the capabilities of Convolutional Neural 

Networks (CNNs) in these systems. This integration 

has notably enhanced the precision of diagnosing 

diseases affecting mangoes, as evidenced by the 

application of renowned frameworks like AlexNet-

GoogLeNet [24] and InceptionV3 (cited in [25]. 

However, despite these strides in image analysis 

technology, various hurdles continue to obstruct the 

path to pinpointing ailments afflicting mango foliage 

and fruits with complete accuracy. 

In the domain of mango leaf disease, [42]  have 

provided substantial contributions through their 

research on Deep Convolutional Neural Networks 

(CNNs). Their study, explores the potential of CNNs 

to accurately classify diseases affecting mango leaves 

in South India. They report high accuracy levels, 

underscoring the effectiveness of deep learning in 

agricultural applications. However, their work also 

identifies a significant limitation related to the initial 

dataset, which was relatively small and thus, might 

not fully represent the variability found in real-world 

scenarios. They suggest that data augmentation could 
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be crucial in overcoming these limitations by 

artificially expanding the dataset to include more 

varied examples without the need for additional real 

images. This recommendation for augmentation 

aligns with broader research trends emphasizing the 

importance of robust datasets in training deep 

learning models. Our current study builds upon their 

findings by implementing a rigorous data 

augmentation process, thereby enhancing the 

dataset's diversity and size.  

The research paper delineated in reference [5] 

ventures into the realm of explainable AI (XAI), 

focusing on its integration with deep learning models 

to enhance their transparency and interpretability. It 

sheds light on various methods facilitating model 

interpretability, including feature visualization and 

saliency maps, and extends into discussing the 

pivotal role of XAI in significant sectors. Meanwhile, 

the application of Grad-CAM stands as a cornerstone 

in mango leaf disease identification, offering visual 

elucidations from deep networks and thereby 

pinpointing the disease-afflicted regions on leaves [7]. 

By highlighting the critical areas in leaf images that 

significantly influence disease classification, recent 

research leveraging Grad-CAM not only ensures the 

precision of the model but also nurtures trust in 

automated systems for disease detection, 

demonstrating the extensive potential and real-world 

applications of XAI and Grad-CAM in advancing 

automated disease diagnosis systems [25]. 

2.2 Issues in the conventional techniques 

Our literature on classification of mango leaf 

diseases in Southern India, presenting the first of its 

kind study focused exclusively on this region’s 

specific agricultural context. Traditional methods for 

managing mango leaf diseases have significant 

limitations. Manual inspection, while common, is 

highly subjective and can lead to inconsistent results 

and management delays. Traditional machine 

learning approaches require handcrafted features and 

extensive domain knowledge, making them difficult 

to adapt and scale across different regions and 

varieties of mangoes. Moreover, standard deep 

learning models, such as basic CNNs, often suffer 

from overfitting and lack the transparency needed for 

decision-making, reducing their reliability and 

acceptability among end-users such as farmers and 

agricultural experts. In contrast, our approach utilizes 

a novel model that leverages advanced AI techniques 

to overcome these challenges, providing a robust and 

scalable solution tailored to the unique needs of 

mango cultivation in Southern India. The table 1, 

presents the comparison study on the existing works.  

Table 1. Mango leaf disease detection and classification 

comparison study of existing works 

Ref Methodology / 

model 

drawbacks 

[9, 

10] 

Basic CNN Poor contrast handling, 

difficulty in detecting 

subtle lesion differences 

[11] Deep Transfer 

Learning in 

CNNs 

Accuracy levels are very 

less. 

[12] Advanced 

Image 

Processing 

Concentrated on specific 

diseased region 

identification to improve 

the classification. 

[13-

16] 

AlexNet, 

VGG16, 

ResNet-50, 

MobileNet 

Specific to Anthracnose, 

may not generalize well to 

other diseases or 

conditions 

[17-

18] 

VGG16, 

ResNet50 

Requires fine-tuning and 

extensive feature 

extraction, which can be 

resource-intensive 

[19-

20] 

VGG16, 

InceptionV3 

Extensively used for 

diagnosis 

[21] VGG16, 

ResNet50 with 

attention 

mechanisms 

Accurate diagnosis and 

classification. Datasets 

with 8 classes it is giving 

good accuracies. 

[22] Deep Learning 

Models 

Improved agricultural 

practices and crop health. 

Requires careful dataset 

curation and model 

training 

[26] Neural Network 

Ensemble 

(NNE) 

87.5% accuracy in 

identifying healthy 

specimens. Complex 

setup, high calibration 

needs 

[42] Deep CNN 

Models 

Accuracy is good. But the 

dataset is new and limited 

images. Augmentation is 

needed. 

 

The recent literature showcases a growing 

inclination towards the fusion of transfer learning and 

Grad-CAM methods for enhanced classification of 

diseases in mango leaves. This collaborative 

technique capitalizes on the feature identification 

abilities of transfer learning and the visualization 

advantages of Grad-CAM, fostering greater accuracy 

and reliability in disease detection. Utilizing evolved 

deep transfer learning models can notably amplify the 

efficiency and precision of disease identification 

processes, alleviating challenges faced in the 

dynamic environments of leaf disease detection and 

classification. The existing studies not only act as a 

repository of benchmarks and insights for 

forthcoming innovations like the MLTNet approach 
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but also underscore the novelty and importance of 

this research within the expansive field of agricultural 

applications and advanced learning techniques. 

2.3 Problem definition 

This study's main problem is mango leaf disease 

detection and categorization, which are prevalent in 

Southern India and significantly impact the 

agricultural economy. Manual disease diagnosis in 

mango leaves relies on skilled visual examination, 

which is time-consuming, laborious, and error-prone, 

especially given the diversity of disease symptoms 

influenced by various climatic conditions. 

3. MLTNET: mango leaf disease 

classification using transfer learning and 

visual explanations  

Transfer learning methods are widely explored 

for mango leaf disease identification, facing 

challenges like potential misdiagnoses due to diverse 

leaf characteristics and environmental influences. 

Despite the importance of early detection, rural 

locales often experience delays due to time 

constraints and a shortage of agricultural expertise. 

Convolutional neural networks (CNNs) offer 

autonomous feature selection, reducing the need for 

labour-intensive image preprocessing in image-based 

recognition tasks. However, their effectiveness is 

hindered by the scarcity of large, diverse datasets for 

training. The proposed MLTNet (Mango Leaf 

Disease Classification with Transfer Learning, 

Feature Localization, and Visual Explanations), 

depicted in Fig. 1, addresses these challenges by 

combining transfer learning and visual explanations 

to enhance disease classification accuracy.  

MLTNet, built on the ResNet50 architecture with 

Error Level Analysis for data preprocessing, 

incorporates various dense layers, dropout 

mechanisms, and regularization to improve accuracy. 

Integrating Grad-CAM for interpretability, MLTNet 

visually highlights important regions in input images 

influencing predictions. After several epochs of 

training, the model's accuracy on training, validation, 

and test sets outperforms state-of-the-art models and 

shows promise for agricultural leaf disease prediction 

and classification. 

3.1 Dataset description 

The south Indian area is home to a wealth of 

mango plant illnesses, and this collection of high-

quality images captures them all. Leaf images with 

rust, bacterial spots, and powdery mildew are among 

the diseased leaves included in the collection. There  

 
Figure. 1 MLTNet - Mango leaf disease classification 

with transfer learning, feature localization, and visual 

explanations 
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are a total of 1,275 photos representing 14 distinct 

illnesses in the collection.  

As the dataset is imbalanced, data augmentation 

is performed and the dataset count is increased to 820 

in each class. Now the augmented South India dataset 

contains 11480 images with 14 disease classes. 

3.2 Error level analysis (ELA) 

As our proposed model predicts correctly 

classified images under visual predictions, it is 

customary to perform Error Level 

Analysis(ELA)[26]. ELA is a forensic image analysis 

technique used to detect digital image tampering and 

identify regions of an image that might have been 

altered or manipulated. It works on the principle that 

when an image is saved or compressed multiple times, 

the error levels introduced during the compression 

process are not uniform across the entire image. ELA 

calculates the error difference between the original 

picture and a compressed version to show these 

differences. Areas with significant modifications like 

cloning, retouching, or superimposition tend to 

exhibit higher error levels than unchanged regions. 

ELA's primary purpose is to emphasize regions of 

an image that may have been compressed to varying 

degrees in comparison to the remainder of the image. 

The prospective areas of interest for future research 

may be indicated by the compression discrepancy, 

considering the possibility that these locations have 

been edited or altered. The ELA method evaluates 

image alteration and compression anomalies across a 

variety of JPEG quality levels. For improved visual 

presentation, the 'convert_to_ela_image' function 

generates an enhanced ELA image. In contrast, the 

'compute_ela_cv' function calculates the precise 

discrepancy between the original and compressed 

images. Using the 'q' argument as control, the 

'random_sample' function generates a grid of images 

depicting ELA effects at various compression levels. 

An increase in compression levels is denoted by a 

reduction in 'q' values, which visually emphasize 

compromised regions to facilitate forensic image 

integrity analysis.  

 

ELA = ||I_original - I_compressed||                         (1) 

 

A pixel's error level (ELA) is the difference in 

intensity values between the original and compressed 

picture. I_original : pixel intensity in the original 

picture. I_compressed : pixel's intensity in the 

compressed picture. This is how the ELA process is 

carried out. I take the original picture and duplicate it. 

ii Use a lossy compression technology, such JPEG, to 

compress the duplicate image to a predetermined 

compression quality. Subtract the intensity values of 

each matched pixel in the original and compressed 

photos to get each pixel's error level.Apply a color 

map to see mistake levels in color. This will highlight 

locations with varying error levels and point out 

possible modification areas. 

3.3 Image processing 

Pre-processing techniques were applied to 

enhance the final images in the Mango leaf disease 

dataset, aiming to improve classification accuracy 

and feature extraction. The transfer learning model's 

training involved multiple iterations, necessitating a 

large-scale image dataset to prevent overfitting and 

ensure reliable results. 

For the South India mango leaf Disease 

Classification task, image pre-processing techniques 

played a vital role in isolating diseased leaves from 

background information before inputting them into 

deep learning models. This step significantly 

enhanced the accuracy of recognizing diseased leaves, 

contributing to improved performance. Image 

processing is a critical aspect of effective Disease 

classification of mango Leaf Using Transfer 

Learning, where various techniques can be applied to 

preprocess and enhance raw leaf images, improving 

the accuracy of transfer learning models [23]. 

Additionally, image compression techniques, 

including Lossless and Hybrid compression, were 

employed in our proposed work to achieve low-

resolution images for practical deep-learning 

applications, facilitating efficient storage, 

transmission, and faster processing in leaf disease 

identification systems. 

3.3.1. Lossless compression 

Huffman and Run-Length Encoding are lossless 

compression methods. (RLE), preserve all the 

image's original information while reducing the file 

size [27]. These methods exploit redundancy in the 

image data to achieve compression without 

sacrificing details. Lossless compression is suitable 

when an exact image representation is required for 

accurate leaf disease identification. 

3.3.2. Hybrid compression 

Hybrid compression techniques combine the 

strengths of both lossless and lossy-compression 

methods. They employ a lossless compression 

algorithm for preserving critical image information, 

such as disease-specific features, while applying 

lossy compression to less important image 

components. Image quality and compression 
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efficiency are balanced [28]. The training and test 

photos were pre-processed to boost contrast and 

decrease file size to 224 by 224 pixels before analysis. 

We employ picture cropping in conjunction with the 

conventional techniques for rescaling (Eqs. 3 and 4), 

and closest neighbour interpolation (Eq. 2) to shrink 

the images.  
 

𝑁𝑒𝑤𝑃𝑖𝑥𝑒𝑙𝑉𝑎𝑙𝑢𝑒(𝑥′, 𝑦′) =
𝑃𝑖𝑥𝑒𝑙𝑉𝑎𝑙𝑢𝑒(𝑟𝑜𝑢𝑛𝑑(𝑥), 𝑟𝑜𝑢𝑛𝑑(𝑦))     (2) 

 

𝑁𝑒𝑤𝑊𝑖𝑑𝑡ℎ = 

𝑆𝑐𝑎𝑙𝑒𝐹𝑎𝑐𝑡𝑜𝑟 ∗ 𝑂𝑟𝑖𝑔𝑖𝑛𝑎𝑙𝑊𝑖𝑑𝑡ℎ   (3) 

 

𝑁𝑒𝑤𝐻𝑒𝑖𝑔ℎ𝑡 = 

𝑆𝑐𝑎𝑙𝑒𝐹𝑎𝑐𝑡𝑜𝑟 ∗ 𝑂𝑟𝑖𝑔𝑖𝑛𝑎𝑙𝐻𝑒𝑖𝑔ℎ𝑡   (4) 

 

Leaf images captured in RGB are converted to 

grayscale. Edge of Caution To recognize the edges in 

a leaf image and alleviate the irritation, unambiguous 

evidence is utilized. The external designs in leaf 

images are equal in how they are perceived from the 

edge. When the upper shape is taken as (p,q), the 

breadth and the level are (r,s), and these four centres 

do not settle the bobbing. Each member of the upright 

hopping square is still a work in progress. The return 

on investment region is removed using the primary 

RGB leaf image's coordinates (p+r, q+s). Finally, the 

dreaded leaf symbol may be put to rest. 

3.4 Data split into training, validation, and testing 

Split ratios of 80%,10%, and 10% were used to 

separate the mango leaf disease dataset into training, 

validation, and testing sets, respectively. Deep 

learning model predictions were improved using 

Adam optimization with forward and 

backpropagation. Thus, deep learning model output 

accuracy was ensured. The validation and testing sets 

contained twenty percent of the training set, which 

included images of 14 classes of mango leaves. On 

the training dataset, MLTNet classified test dataset 

images and predicted class labels. 

3.5 CNN layer 

CNNs, initially designed for grid-based data like 

photos [30], interpret information in a grid-arranged 

manner, where pixels determine color and brightness. 

Neurons in each CNN layer recognizes simpler 

patterns before progressing to more complex ones, 

mirroring the brain's visual interpretation process. 

CNNs have input, hidden, and output layers. CNNs 

combine normalization, pooling, convolution, and 

fully-connected layers [30]. Image processing makes 

use of ReLU, and the convolutional layer filters 

provide feature maps for classification [27]. This 

paper introduces a robust CNN model for fine-

grained leaf disease detection, involving pre-

processing to reduce leaf image size and a second-

level illness identification from images with a 

convolutional neural network-based transfer learning 

model [30]. The CNN model architecture includes 

Conv2D, Batch Normalization, Max Pooling, and 

Activation layers. Algorithm 1 presents the 

generalized pseudocode (MLTNet) for leaf disease 

classification, utilizing explainable transfer learning 

models for multi-class accuracy prediction. The 

hierarchical representations created by neural 

networks contribute to accurate categorization. 

3.6 Constructing MLTNet model for south indian 

mango leaf disease classification using ResNet50 

model 

MLTNet is built as 54 layers to forecast leaf 

diseases and classification using a base model called 

ResNet50. A deep convolutional neural network 

architecture called ResNet50, or Residual Network 

with 50 layers, was first introduced as a member of 

the ResNet family [6]. ResNet50 is recognized for its 

innovation in enabling the training of extraordinarily 

deep neural networks with hundreds of layers, 

overcoming the difficulties of disappearing gradients 

and accuracy loss as networks go deeper. ResNet50's 

main innovation is the addition of skip connections, 

also known as residual connections, which let the 

network learn residual mappings rather than 

attempting to learn the underlying input-to-output 

mappings directly. To do this, shortcut connections 

that bypass one or more levels are added, the input is 

immediately propagated to deeper layers, and 

gradient flow is made more accessible when training. 

The network can learn the residual between the input 

and the intended output thanks to the skip 

connections, which makes it simpler for the model to 

learn and optimize incredibly deep structures. Due to 

its exceptional performance in several computer 

vision applications, such as picture segmentation, 

object detection, and classification, and its extensive 

use, ResNet50 has cemented its place as a critical 

deep learning architecture. 

ResNet50 contains 16 residual blocks. Fig. 2 

shows the MLTNet architecture. The simplified 

description of ResNet50 is as follows. The 

architecture of ResNet50 is divided into multiple 

stages, and each stage includes a varying number of 

residual blocks.   

− Stage 1: The initial convolutional layer and max-

pooling layer 
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− Stage 2: a total of 3 residual blocks, with 3 

convolutional layers 

− Stage 3: a total of 4 residual blocks, with  3 

convolutional layers 

− Stage 4: a total of 6 residual blocks, with 3 

convolutional layers 

− Stage 5: a total of 3 residual blocks, with 3 

convolutional layers 

After ResNet50, the model was optimized by 

adding a batch normalization a dense layer of 256, 

and a dropout of 40%. Finally, a dense layer with 14 

represents the class labesl In the dense (256) layer, an 

L2 regularizer with 0.016 as kernel regularizer and an 

L1 regularizer of 0.06 is taken as both activity and 

bias regularizer [31].   

The model leverages a pre-trained ResNet50 

architecture as a base. This architecture includes 16 

residual blocks that facilitate the learning of residual 

mappings, greatly lowering deep network vanishing 

gradients. Fig. 3 shows the Residual Block 

architecture used in ResNet50.  

 

 

 
Figure. 2 MLTNet architecture 

 

 

 
Figure. 3 Residual block architecture [6]. 

To preserve pre-trained features, ResNet50 layers 

are frozen ({model. trainable = False}) and loaded 

with ImageNet weights. We first applied Batch 

Normalization to the ResNet50's top layers, followed 

by a dense layer of 256 units. To prevent overfitting, 

dropout layers are added, and the final dense layer 

predicts the exact number of classes in our dataset. 

Using this strategy, the model can change to our 

classification aim while still utilizing the pre-trained 

ResNet50 features. The model's durability is enhanced 

via data augmentation techniques, and the Adamax 

optimizer manages the learning rate. The training 

process is monitored using a learning rate scheduler 

and early termination.We hope this clarifies the 

Transfer Learning strategy employed in our work. 

The MLTNet model incorporates modifications to 

the base ResNet50 architecture, including various 

sizes of dense layers and dropout mechanisms for 

accuracy enhancement, as well as the integration of 

Grad-CAM for interpretability. 

The integration of Grad-CAM for feature 

localization and visual explanations in MLTNet is 

another significant advancement. This allows for 

better interpretability on decision-making, aiding in 

the identification of critical regions influencing 

classification decisions. Such insights are not only 

vital for understanding the model's behavior but also 

for improving trust in automated disease detection 

systems, particularly in agricultural applications. The 

enhanced data pre-processing, including Error Level 

Analysis and hybrid compression techniques, further 

contribute to improved data quality and model 

performance. Collectively, these modifications in 

MLTNet are designed to enhance classification 

accuracy and interpretability over the original 

ResNet50 structure. 

3.7 Computer-Aided visualizations 

Convolutional Neural Networks (CNNs) are 

integral to addressing complex computer vision 

challenges, such as image classification, detection, 

segmentation, and captioning. However, their 

intricate architecture poses a significant issue in 

model interpretation, hindering explainability—a 

crucial aspect of the evolution of AI [7]. Achieving 

explainability is particularly challenging in accurate 

deep learning models due to their layered structure 

and end-to-end training, complicating interpretability, 

especially in healthcare applications. To address this, 

techniques like Class Activation Maps, including 

Grad-CAM (Gradient-weighted Class Activation 

Mapping), have gained popularity for enhancing the 

explainability of computer vision models, revealing 

critical prediction areas in images. 

Split Dataset 

ResNet50 

Batch Normalization 

Dense (256) with Regularizes 

Drop Out 

Dense (14) 
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3.7.1. Grad-CAM 

In Convolutional Neural Networks (CNNs), 

researchers propose deeper architectures for higher-

level visual representations. While convolutional 

layers retain spatial information, fully connected 

layers often result in its loss. However, CNN final 

layers balance geographical information with high-

level semantics, with neuron units seeking class-

specific semantic details. Grad-CAM [32] enhances 

interpretability by utilizing gradients within the last 

convolutional layer, highlighting the decision-

making process for a specific area of interest through 

assigned prominence values to individual neurons. 

Grad-CAM's versatility extends to feature activation 

maps of any convolutional layer. To explain the 

activations of any layer, gradients are "global 

averaged pooled" over height and width dimensions. 

Our focus lies on the decision of the output layer, 

obtaining the localization map of the class through 

score gradient calculations.  

 

𝛼𝑘
𝑐 =

1

𝑍
∑  𝑖 ∑  𝑗
⏞    

global average pooling 

𝜕𝑦𝑐

𝜕𝐴𝑖𝑗
𝑘

⏟
gradients via backprop 

          (5) 

 

  The equation (.5) represents a component of the 

Grad-CAM technique, which is used to visually 

explain the decisions made by convolutional neural 

networks. In this equation, 𝛼𝑘
𝑐  denotes the weights 

assigned to the neurons in the kth feature map for class 

C. These weights are calculated by globally 

averaging the gradients of the class score 𝑦𝑐—output 

before the softmax layer—relative to the feature map 

activations 𝐴𝑖𝑗
𝑘  at each spatial location (i,j) which are 

obtained via backpropagation. The process highlights 

how much each part of the feature map contributes to 

the final decision for class c, enabling the creation of 

a heatmap that visualizes the important regions in the 

input image for predicting that class. This heatmap 

helps in understanding which features of the image 

lead the model to its classification decision, 

emphasizing areas with a strong positive influence on 

the class-specific output. 

The final equation of the Grad-CAM is as follows,  

 

𝐿Grad-CAM 
𝑐 = 𝑅𝑒𝐿𝑈 (∑  𝑘 𝛼𝑘

𝑐𝐴𝑘)⏟      
linear combination 

                        (6) 

 

The generalized workflow of Grad-CAM has the 

following phases. 

− Train ResNet50 for mango leaf disease 

classification. 

− Obtain final convolutional layer output and 

predicted class scores from the trained model. 

− Compute gradients of predicted class scores 

concerning final convolutional layer feature maps 

using Eq. (5). 

− Weight feature maps by gradients to derive 

importance scores for each spatial location using 

Eq. (6). 

− Generate a heatmap by combining weighted 

feature maps, highlighting the model's decision-

making process and key input elements for the 

projected class. 

Fig. 4 shows the Grad-CAM workflow in the 

CNN. 

Grad-CAM is useful in localizing the regions, but 

it needs to explain the reasons for the model's 

prediction [7]. model's prediction of the regions the 

model looked at to make the final decision. Grad-

CAM for improved feature localization and visual 

explanations, aiming not only to boost accuracy but 

also to enhance model interpretability and 

trustworthiness. Grad-CAM, a powerful technique in 

neural networks, is utilized for visualizing important 

regions using estimated gradients for each feature to 

locally visualize eq. (5) the model predictions. After 

training, it calculates gradients from intermediate 

layers, generating a heatmap that highlights crucial 

regions in input images.

 

 
Figure. 4 The generalized workflow of GRAD-CAM [7] 
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MLTNet differs with other models, as MLTNet 

significantly advances agricultural AI by merging 

transfer learning with Explainable Artificial 

Intelligence (XAI) to address the limitations of 

manual and traditional automated methods. Unlike 

conventional deep learning models that start from 

scratch, MLTNet leverages pre-trained models 

specifically adapted for mango leaf disease contexts, 

enhancing learning efficiency and accuracy. It also 

integrates Explainable AI techniques such as Grad-

CAM, which provides visual explanations of the 

model's decisions, boosting transparency and trust 

among users—a crucial factor for adoption in 

agricultural settings. Additionally, by incorporating 

advanced pre-processing techniques like Error Level 

Analysis, MLTNet adeptly manages variations in 

image quality and environmental conditions typical 

of field-collected data. This approach not only 

ensures high accuracy but also fosters user trust and 

interpretability, positioning MLTNet as a substantial 

improvement over existing methods in plant disease 

detection. 

3.8 Optimizers 

During the development phase of the model, the 

performance was assessed using three different 

optimizers as delineated in reference [33]. The 

specific optimizers utilized are as follows: 

− Stochastic Gradient Descent (SGD)  

-      Adam 

-      RMSprop  

3.8.1. Adam 

Adam is a prevalent optimization strategy utilized 

to modify weights in neural networks throughout the 

training phase, as stated in reference [33]. Adam is 

the consequence of two SGD developmentsUsing the 

"Adaptive Gradient Algorithm" (AdaGrad), 

parameter learning rate is modified, resulting in 

enhanced performance in computer vision and 

natural language processing, where gradients with 

sparse distributions are prevalent. 

3.8.2. RMSProp 

Another optimization approach, root-mean-

square propagation (RMSProp), has a learning rate 

that is modified per the parameters mentioned in [33]. 

The calculation for the 'running average' is conducted 

as follows: 

 

(𝑤, 𝑡) ≔ 

 (𝑤, 𝑡 − 1) + (1 − 𝛾)(∇ 𝑄𝑖(𝑤))2..                        (7) 

 

Eq. (7) describes the update rule for RMSProp, a 

type of adaptive learning rate method; it adjusts the 

weights 𝑤 based on a decaying average (controlled) 

by of squared gradients, enhancing the convergence 

speed particularly in deep learning scenarios 

The updates to the learning parameters are 

conducted as follows: 

 

𝑤 ≔ 𝑤 −
𝜂

√𝑣(𝑤,𝑡)
𝛻𝑄𝑖(𝑤)                                        (8) 

 

Equation (8) describes an update step in 

RMSProp or Adam-like optimizers, where the model 

weights w are adjusted by subtracting a scaled 

gradient; this scaling factor is the learning rate 𝜂 

divided by the square root of a moving average of 

squared gradients 𝑣(𝑤, 𝑡), stabilizing and improving 

the optimization process by adapting the learning rate 

to the parameters. 

3.8.3. Stochastic gradient descent (SGD) 

This approach employs an 'iterative method' for 

optimizing the loss function, which showcases 

differentiable properties as outlined in reference [33]. 

A central objective of machine learning is to fine-tune 

the loss or objective function. From a mathematical 

standpoint,   

 

Q(W)=
1

𝑛
∑ 𝑄𝑖(𝑊)𝑛
𝑖−𝑛                             (9) 

 

Equation (9) defines the average loss function 

𝑄(𝑊) over 𝑛 data points, where 𝑄𝑖(𝑊) represents the 

loss for the 𝑖-th data point given the model parameters 

𝑊, providing a measure of the overall performance 

of the model across the entire dataset. 

In this scenario, "w" is the estimated variable 

aimed at minimizing Q. Given its iterative nature, this 

method undertakes the following cycles to lessen the 

objective function:  

 

𝑤 ≔ 𝑤 − 𝜂∇ Q(w).                                          (10) 

 

where 𝜂 is the learning rate. 

Equation (10) represents the basic update rule in 

gradient descent optimization, where the model 

parameters 𝑤 are iteratively adjusted by subtracting a 

product of the learning rate 𝜂 and the gradient of the 

loss function ∇ 𝑄(𝑤) to minimize the loss and 

improve model performance. 

3.8.4. Loss function 

Deep learning repeatedly refines its model by 

measuring the error between predictions and actual 
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values using a loss function to reduce loss. 

Depending on the task and model behavior, cross-

entropy, mean absolute error, and mean square error 

are common loss functions. Categorical or weighted 

cross-entropy were evaluated for extremely 

unbalanced data. Weighted categorical cross-entropy 

provides classes with fewer samples greater weight, 

although "focal loss" [34], meant to address class 

imbalance, worked better. Define the binary focal 

loss as, 

 

𝐹𝐿(𝑝𝑡) = −(1 − 𝑝𝑡)𝛾 log(𝑝𝑡)                           (11) 

 

Where 𝛾 ≥ 0 and is termed as "focusing parameter" 

and 

Pt =  {
𝑝, 𝑦 = 1

1 − 𝑝, 𝑂𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒
} 

Incorrect identification of an input image has no 

effect on the loss function, as the adjustment factor 

increases to 1 and the term pt becomes 0. Successful 

categorization of the input image will result in Pt = 1 

and the adjustment factor = 0. The loss value will 

"downweight" the input image as it approaches zero. 

The focusing parameter 𝐏 controls the de-emphasis 

of easy-to-classify input pictures. 

3.9 Evaluation metrics 

The original dataset was enhanced by 

incorporating images modified through various 

alterations, as cited in reference [31, 32]. These 

alterations included horizontal flips, adjustments 

with a rotational scope of up to 90 degrees, and 

maintaining a zoom scope at 0.2. Furthermore, before 

their integration into the model, a rescaling process 

was performed on the images.  

3.10 Regularization 

3.10.1. L1 regularization 

Lasso regularization (Least Absolute Shrinkage 

and Selection Operator), is a technique used in 

machine learning to prevent overfitting and to create 

more parsimonious models, which are models that 

achieve a good predictive performance with fewer 

variables [31]. The mathematical representation of 

this regularization term is given by: 

 

𝐿1 = 𝐿𝑂𝑟𝑖𝑔𝑖𝑛𝑙 + 𝜆||𝑊||1 =∑ |𝑤𝑖|
𝑛
𝑖=1               (12) 

 

where: 

- L1: is the L1 regularization term 

- λ: is the regularization parameter, a non-

negative tunable parameter That scales the 

contribution of the L1 term in the loss function. 

- Σ∣wi∣: is the summation of the absolute values 

of the weights 

3.10.2. L2 regularization 

L2 regularization serves as a preventive measure 

against overfitting in models, where overfitting is 

characterized by a rising validation loss despite a 

decreasing training loss. This discrepancy indicates 

that the model accurately represents the training data 

but struggles to generalize effectively on validation 

data, impacting its real-world applicability as 

emphasized in [31]. Consequently, the modified 

objective of the machine learning model post-

regularization implementation is,  

 

minimize(Loss(Data|Model)+ 

complexity(Model))              (13) 

  

Eq. (13) expresses the fundamental goal of 

regularization in machine learning, which aims to 

optimize a model by balancing the fitting of training 

data (as measured by a loss function) against the 

model's complexity (typically quantified by 

regularization terms) to prevent overfitting and 

enhance generalizability to new data. 

In the study undertaken, the complexity of the 

deployed models was mitigated through the 

implementation of L2 regularization. The 

optimization technique is encouraged to discover 

reduced weight values by representing this approach 

as the square of the weight coefficient magnitude. 

This approach discourages overfitting by forbidding 

complicated models that match the noise in the 

training data, resulting in a more generic and resilient 

model for unknown data. 

 

𝐿2 regularization term = 

∥ 𝒘 ∥2
2= 𝑤1

2 +𝑤2
2 +⋯+𝑤𝑛

2            (14) 

 

The L2 regularization term in (Eq. (14)) penalizes 

the sum of the squares of the model parameters, 

encouraging smaller, more diffuse weight values 

across the model to avoid overfitting and promote 

model simplicity. Within the configured models, a 

dual layer of L2 regularization was implemented 

preceding the ultimate SoftMax layer.  

 

Algorithm 1 : Generalized Pseudo code 

MLTNet for Mango Leaf disease classification 

utilizing feature localization and visual 

explanations 

Input: South India Mango Dataset (Augmented) 
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Output: Mango Leaf Disease Classification 

among 14 classes 

Step 1: Acquire the mango leaf images with 

diseases like Anthracnose, Apoderus, Leaf 

Webber, Mango Sooty, Phoma, Powdery, etc. 

Step2: Loading the data  

Step 3: Put the correct labels on the pictures of 

the leaf images. 

Step : Perform Error Level Analysis() 

Step 4: Sort images into categories using the 

available class labels from the training and testing 

datasets. 

Preprocess the images and perform Data 

Augmentation  

Algorithm: Define function 

CreateImageDataGenerator 

1. Start 

2. Import ImageDataGenerator from keras. 

preprocessing.image 

3. Define function CreateImageDataGenerator 

with setting different attribute parameters. 

  Create an ImageDataGenerator instance with the 

parameters and Return the   

       ImageDataGenerator instance 

            4. End 

Divide the data into training and testing. 

Step 5: Create MLTNet model() 

Initialize the parameters image size, epochs, batch 

size, and train and test image labels.  

Step 7:  Evaluate the trained model using a 

separate testing dataset. 

Calculate the test loss and accuracy of the model. 

Step 8: Perform Grad-CAM for visual 

explanations and feature localization to determine 

significant regions. 

Step 9: Check the accuracy of the proposed 

models, and see how they stack up against the rest 

of the other models out there. 

 

Algorithm 1 : Error Level Analysis() 

Input : sample image in the dataset 

Output : Compression Quality of the JPEG leaf 

image 

1. Import required libraries. 

2. Define a function to compute Error Level 

Analysis (ELA) using OpenCV. 

   def compute_ela_cv(path, quality): 

       orig_img = cv2.imread(path) 

       orig_img = cv2.cvtColor(orig_img, 

cv2.COLOR_BGR2RGB) 

       cv2.imwrite('temp_file_name.jpeg',orig_img, 

[cv2.IMWRITE_JPEG_QUALITY, quality]) 

       compressed_img = 

cv2.imread('temp_file_name.jpeg') 

       diff = 15 * cv2.absdiff(orig_img, 

compressed_img) 

       return diff 

3. Define a function to convert an image to ELA 

image using PIL. 

   def convert_to_ela_image(path, quality): 

    ela_image = ImageChops.difference(image, 

temp_image) 

    ela_image = 

ImageEnhance.Brightness(ela_image).enhance(sc

ale) 

       return ela_image 

4. Define a function to randomly sample an image 

from a directory. 

 

5. Use the functions in a script or interactively for 

ELA analysis. 

   selected_image_path = 

random_sample('/path/to/images') 

   quality_level = 90  # Adjust the quality level as 

needed 

   ela_result_cv = 

compute_ela_cv(selected_image_path, 

quality_level) 

   ela_result_pil = 

convert_to_ela_image(selected_image_path, 

quality_level) 

for i in range(1, columns * rows + 1): 

    quality = init_val - (i - 1) * 8 

    compute_ela_cv( ) and show the computed ele 

images. 

 

Algorithm2 : MLTNet() 

Input : Split dataset 

Output : Accuracy Measures 

1. Set image size, channels, and create image 

shape. 

   img_size = (224, 224) 

   channels = 3 

   img_shape = 224x224 
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2. Determine the number of classes for the dense 

layer. 

   class_count = 14. 

3. Create a pre-trained ResNet50 model with 

weights from ImageNet. 

4. Set the ResNet50 model as non-trainable. 

   model.trainable = False 

 

5. Construct the MLTNet model using Sequential 

API. 

   MLTNet = Sequential([ 

       model, 

       BatchNormalization(axis=-1, 

momentum=0.99, epsilon=0.001), 

       Dense(512, 

kernel_regularizer=regularizers.l2(l=0.018), 

activation='relu'), 

       Dropout(0.5), 

       Dense(256, 

kernel_regularizer=regularizers.l2(l=0.018), 

activation='relu'), 

       Dropout(rate=0.5, seed=123), 

       Dense(14, activation='softmax') 

   ]) 

6. Define data augmentation using 

ImageDataGenerator. 

   data_generator = ImageDataGenerator( 

       rotation_range=20, 

       width_shift_range=0.2, 

       height_shift_range=0.2, 

       horizontal_flip=True 

   ) 

7. Compile the MLTNet model with specified 

optimizer, loss function, and metrics. 

   

MLTNet.compile(Adamax(learning_rate=0.001), 

loss='categorical_crossentropy', 

metrics=['accuracy']) 

8. Display the summary of the MLTNet model. 

   MLTNet.summary() 

9. Set up callbacks for early stopping and learning 

rate scheduling. 

   EarlyStopping(monitor='val_loss', patience=10) 

   def scheduler(epoch, lr): 

       return lr if epoch < 10 else lr * tf.math.exp(-

0.1) 

   lr_scheduler = 

LearningRateScheduler(scheduler) 

10. Set batch size and number of epochs for 

training. 

    batch_size = 32 

    epochs = 20 

11. Train the MLTNet model on the training 

generator with validation data and callbacks. 

    history = MLTNet.fit( 

        x=train_gen, 

        epochs=epochs, 

        verbose=1, 

        validation_data=valid_gen, 

        callbacks=[early_stopping, lr_scheduler], 

        validation_steps=None, 

        shuffle=False 

    ) 

End 

 

Algorithm 3: Implement Grad-CAM 

1. Start 

2. Import required libraries: os, random, numpy, 

tensorflow, cv2,  

    matplotlib.pyplot 

3. Define the data directory 'data_dir' containing 

subdirectories for each class 

5. Create a list 'class_dirs' of paths to each class 

directory in 'data_dir' 

6. Load the MLTNet() model with ImageNet 

weights 

7. Define the target convolutional layer name 

'target_conv_layer' 

8. Define function 'apply_gradcam' with 

parameters img_path, model,  

    last_conv_layer_name: 

   a. Load and preprocess the image 

   b. Create a model 'grad_model' with outputs 

from last_conv_layer_name and  

        the final output 

   c. Use GradientTape to compute gradients 

concerning the convolutional  

       output 

   d. Pool gradients and multiply with the output 

from the convolutional layer to  

       get heatmap 

   e. Normalize and apply a jet colormap to the 

heatmap 

   f. Superimpose the heatmap on the original 

image 

   g. Return the superimposed image, predicted 

class index, and predicted  

      probability 
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9. Define function 'apply_random_gradcam' with 

parameters class_dir, model,  

    target_conv_layer: 

   a. Select a random image from the class 

directory 

   b. Apply 'apply_gradcam' to the selected image 

   c. Display the image with prediction 

information 

10. Apply 'apply_random_gradcam' to random 

images from each class in 'class_dirs' 

11. End 

 

4. Results and discussions 

Python libraries, including TensorFlow [35] and 

Keras, were employed to implement the research, 

focusing on transfer learning models. When training, 

we employed the Adam optimizer, which has an 

integrated loss function and a fixed learning rate. The 

experimental analysis took place an i5 processor and 

8GB RAM with GPUenabled server.  

The key outcomes of the MLTNet model 

encompassed several aspects: 

− Categorizing mango leaf images into various 

diseases and predicting groups such as 

Anthracnose, Apoderus, Leaf Webber, Mango 

Sooty, Phoma, Powdery, etc. 

− Evaluating the MLTNet model's performance 

across southern India Data set on mango leaf 

diseases using both the training and testing sets. 

− Identifying and assessing feature localization, 

visual explanations, and significant regions 

contributing to mango leaf diseases through 

Grad-CAM visual predictions. 

− Comparing the outcomes with other cutting-edge 

contemporary networks. 

− Analyzing the results of experiments using 

explainable transfer learning for leaf disease 

identification in contrast to previous research. 

4.1 Dataset description 

A meticulous effort was dedicated to curate a 

comprehensive dataset featuring high-resolution 

images of mango leaves displaying diverse diseases. 

The images were carefully gathered from various 

locations across South India, capturing both healthy 

leaves and those afflicted with ailments such as 

bacterial spots, powdery mildew and rust. The 

original dataset comprises a total of 1,275 images, 

categorized into 14 distinct disease classes. The data 

augmentation technique is used to enhance a dataset 

that includes photographs of different plants and their 

associated illnesses, as part of a difficult data 

preparation assignment. The code uses Keras's 

`ImageDataGenerator` class to specify a series of 

real-time modifications, including 30 degrees of 

rotation, 20% width and height shifts, 20% shear 

transformation, 20% zoom, and horizontal flipping. 

Additionally, it uses the "nearest" neighbour 

approach to fill in any missing pixels. Every image is 

reviewed, checked for correctness, downsized to 

256x256 pixels, and added to a list after being turned 

into an array using the provided procedure. These 

images are then divided by 255.0 to normalize to [0, 

1]. After preprocessing, photos are augmented with 

alterations. A directory for each illness category has 

820 pictures, including the originals. Plants and 

diseases remain hierarchical. The initial and 

enhanced picture quantities are shown on the monitor 

to track the advancement. Consequently, this 

meticulously augmented South Indian dataset now 

boasts a total of 11480 images, each meticulously 

categorized into one of the 14 disease classes. This 

augmentation not only balances the dataset but also 

enhances its diversity and coverage, thereby 

providing a more comprehensive and robust 

foundation for subsequent data analysis, 

experimentation, and machine learning model 

development.  

The goal is to learn how to prepare pictures for 

transfer learning models. Because tensors are designed 

to store knowledge rather than actual data, they can be 

compared with multidimensional arrays. The 

necessary libraries are imported, and the dataset is 

loaded. This phase must be included in the data 

analysis process. There are many different image sizes 

and forms [35]. The first step in data pre-processing is 

to size each image evenly. New pictures with a 

resolution of 224x224 pixels are created using many 

enhancing approaches applied to the gathered photos 

using  

4.2 Error level analysis 

Error Level Analysis (ELA) identifies areas in an 

image that may have undergone alterations or 

different compression levels. In the provided code for 

a mango disease dataset, ELA is applied, displaying 

images with varying compression levels ("q" values). 

This visual inspection helps assess the impact of 

compression on image quality, determining an 

optimal level for subsequent image processing tasks. 

ELA aids in identifying any corrupted or altered 

images in the dataset, allowing for adjustments to the 

compression level during training. This process 

ensures data quality and integrity, crucial for 

subsequent image processing and machine learning 

tasks. Fig. 6 shows ELA analysis on the Apoderus 

leaf image.  
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4.3 MLTNet performance on south india mango 

leaf disease dataset 

MLTNet trained on Leaf disease has reduced 

precision and caused loss. Table 2 displays the epochs, 

extra parameters, and MLTNet configurations. The 

dataset contains the MLTNet model, which adjusts 

internal parameters to enhance training performance.  

 

 

 
Figure. 5 Pre-processed mango leaf image (224x224). 

 

 

 
Figure. 6 The ELA analysis on the apoderus leaf image 

 

 

 

Table 2. Explainable transfer-learning-model-training 

parameters 

S.No Parameter used Value 

1 Training Epochs 20 and 100 

2 Optimizer Adam 

3 Learning Rate 0.001 

4 Batch Size 32 

5 Drop out 0.45 

6 Image size  224x224 

7 Image Depth 3 

8 Early stopping Yes 

9 Reduce LR  Yes 

10 Data Shuffle True 

11 No of Classes 14 

12 Callback True on model 

checkpoint 

13 Loss function Cross entropy 

14 Activation 

Function 

ReLU, 

Softmax 

15 Regularization L2 

 

 
Figure. 7 Perofmance accuracy of the MLTNet model on 

the south india mango disease dataset for 100 epochs 

 

 
Figure. 8 Performance on MLTNet model South India 

Mango Dataset 

 

Throughout multiple epochs, the model acquires the 

ability to identify important characteristics and 

categorize groupings of illnesses.  The accuracy and 

loss statistics for each epoch indicate the model's 

performance. Fig. 7, 8, 9, and 10 demonstrate MLTNet 

architectures' Mango leaf disease classification 

accuracy for 100 and 20. 
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Figure. 9 Performance of accuracy of the MLTNet model 

on the south india mango disease dataset for 20 epochs 

 

 
Figure. 10 Performance loss of the MLTNet model on the 

south india mango disease dataset for 20 epochs 

 

4.3.1. Performance evalutaion of the MLTNet model on 

the south india mango leaf dataset 

The proposed MLTNet model demonstrates 

promising performance on the South India Dataset 

for mango leaf disease classification, shown in Fig. 7 

and 8. The MLTNet model showcased outstanding 

performance on the South India mango Disease 

Dataset, achieving a remarkable training accuracy of 

92.8% and a shallow loss of 0.4294% after 100 

epochs. The model also exhibited an average class 

accuracy of 94.33%. These remarkable results 

highlight the MLTNet model's ability to classify leaf 

diseases across multiple classes accurately. The 

model's exceptional accuracy and minimal loss 

values signify its proficiency in capturing intricate 

details and patterns in leaf disease images, enabling 

exact predictions. The MLTNet model's performance 

showcases its potential for improved plant health 

through automated leaf disease classification. 

MLTNet model performance on the new plant 

disease dataset is promising after 20 training epochs, 

as depicted in Fig. 9 and 10. With a low training loss 

of 0.5355 and a high training accuracy of 85.12%, the 

model successfully learns mango leaf disease 

patterns from the training data. Additionally, 

impressive validation results include a loss of 0.6374 

and an accuracy of 85.17%, showcasing the model's 

effective generalization to unseen data. MLTNet 

demonstrates strong potential for accurate and 

interpretable leaf disease detection and classification, 

positioning it as a valuable tool for precision 

agriculture and plant disease management. However, 

to enhance the model's credibility  

and applicability in realworld scenarios, further 

testing on independent datasets and interpretability 

analyses are warranted. 

4.3.2. Standard ResNet50 model performance on south 

india mango dataset 

The standard ResNet50 model exhibits promising 

performance on the New Plant Disease Dataset for 

leaf disease classification, illustrated in Fig. 11 and 

12. Trained for 70 epochs, the ResNet50 model 

achieves commendable accuracy on the South India 

Mango Leaf Disease Dataset at 81.81% with a loss of 

0.4549. 

 

 
Figure. 11 Performanc Accuracy of the standard ResNet 

50 model on plant disease dataset 

 
Figure. 12 Performance loss of the standard ResNet50 

model on plant disease dataset 
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The average class accuracy of 77.99% further shows 

the model's ability to classify leaf diseases across 

classes. These observations show the model's  

effectiveness in capturing intricate patterns and 

features in mango leaf disease images, resulting in 

accurate predictions. The observed fluctuation in 

validation accuracy after 15 epochs is attributed to 

overfitting on the South India mango disease dataset, 

impacting the reliability of test predictions.  

4.4 Performance comparison of proposed method 

and existing studies 

Table 3 presents the results of several models 

applied to the South India mango leaf Disease dataset, 

including ResNet50, VGG-16, InceptionV3, 

DenseNet121, and the MLTNet model, following a 

predetermined number of training epochs. 

In the evaluation of accuracy for mango leaf 

analysis, various deep learning models partake 

assessed, each exhibiting distinct levels of 

performance. Notably, the ResNet50 model achieved 

a commendable accuracy of 81.81%, showcasing its 

capability to distinguish between different disease 

categories. The VGG-16 model demonstrated a 

notable improvement, reaching an accuracy of 

87.99%, underscoring its effectiveness in capturing 

intricate patterns within the leaf images. InceptionV3 

further elevated the performance, achieving an 

impressive accuracy of 91.84%, which indicates its 

proficiency in distinguishing among the various 

disease classes. DenseNet121 continued this trend, 

achieving a commendable accuracy rate of 92%, 

demonstrating its robustness in disease classification 

tasks. The Deep CNN variant cited as [42] marginally 

exceeds these with a 92.42% accuracy, while the 

standard CNN [42] variants show a lower accuracy 

between 85.80% and 89%. The integration of transfer 

learning with attention mechanism yields an 86.1% 

accuracy, underscoring the nuanced impact of 

generative models on performance.  

 

Table 3. Analysis of transfer models on new plant 

disease dataset performance. 
Model/Technique Accuracy (%) 

ResNet50 [18] 81.81 

VGG-16 [17] 87.99 

InceptionV3 [20] 91.84 

DenseNet121 [22] 92 

Deep CNN [42] 92.42 

CNN [22] 85.80 

AlexNet[13]  89 

Transfer Learning with Attention 

Mechanism [21] 
86.1 

MLTNet (Proposed) 92.8 

This suggests that MLTNet's advanced features, 

possibly including specialized data preprocessing and 

enhanced learning mechanisms, are highly effective 

for this specific application. The CNN variants and 

Deep CNN, cited from [42], demonstrate varied 

results (85.80% to 92.42%), highlighting that 

adaptations to the base CNN architecture, such as the 

incorporation of attention mechanism, do not 

uniformly enhance performance, possibly due to the 

complexities in training CNNs.  

Topping the chart is the MLTNet model, 

achieving the highest accuracy at 92.8%, hinting at 

the efficacy of its possibly innovative techniques in 

improving model performance. This achievement 

highlights the effectiveness of the proposed model, 

which likely incorporates advanced architectural 

features and optimization techniques, thereby 

enhancing its precision in classifying mango leaf 

diseases. These comparative outcomes underscore 

the implication of model selection in achieving 

higher accuracy in complex multi-class classification 

tasks, with MLTNet emerging as the top-performing 

solution. 

4.5 MLTNet learning model accuracy on 

predicted images 

The MLTNet model showcases its accuracy in 

classifying mango leaf diseases by performing well 

on correctly predicted images. A subset of test dataset 

images is randomly selected and displayed in a grid 

format, with actual labels in green and predicted 

labels in red for easy identification of 

misclassifications. This graphical depiction enables 

users to effectively examine model predictions, 

pinpointing areas that require enhancement or 

include inaccuracies. 

 

 
Figure. 13 MLTNet model performance on correctly 

predicted mango leaf images 
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Figure. 14 Confusion matrix for south indian mango leaf 

disease on MLTNet model 

 

 

The visualization functions as an intuitive instrument 

for identifying and resolving errors, refining, and 

acquiring a deeper understanding of the model's 

capabilities and limitations. Fig. 13 illustrates 

MLTNet's predictions on correctly classified images. 

The transfer learning model demonstrates impressive 

performance with an overall accuracy of 94.3% and a 

multi-class accuracy of 94%, showcasing its 

proficiency in capturing intricate patterns from leaf 

disease images. These results highlight MLTNet's 

efficiency in automated leaf disease detection and 

classification. 

4.6 Evaluation of performance measures for 

detecting and classifying individual plant leaves 

The performance of MLTNet on plant leaf 

diseases is assessed with precision, recall, and F1-

score for each disease class. The classification 

metrics present detailed performance metrics for a 

multi-class classification model. It covers various 

classes, including "Anthracnose," "Apoderus," and 

"Mango Sooty," and assesses. The metrics of 

accuracy, recall, and F1-Score are provided for each 

class in the model. For example, the model 

successfully attained high precision (0.97) for 

"Anthracnose," indicating a low rate of false positives, 

while the recall (0.93) demonstrates its ability to 

capture the truest positives, resulting in an F1-Score 

of 0.95, signifying a balanced performance. In 

contrast, "Nutrician deficiency" shows a lower 

precision (0.89), indicating some false positives, but 

still maintains a good recall (0.95), resulting in an F1-

Score of 0.83. The overall accuracy of the model is 

0.94, showcasing its general effectiveness. When 

considering macro and weighted averages, which 

aggregate metrics across classes, both show strong 

performance, with F1-Scores of 0.94, highlighting 

the model's competence in handling this multi-class 

classification problem. Figure 14 displays the 

confusion matrix for the MLTNet model using the 

mango leaf illness dataset.  

4.7 Grad-CAM analysis  

MLTNet model had Grad-CAM added to them so 

that we could see where the neural networks were 

putting the most effort into feature localization and 

visual explanations into classifying leaf diseases. The 

image regions most important to Grad-CAM's 

prediction are highlighted in the resulting heatmaps. 

In the case of MLTNet, the Grad-CAM heatmaps 

provided clear indications of the crucial areas that 

influenced the model's decision-making process and 

the classification task. The visualization of these 

regions aided in the interpretability and explainability 

of the models, allowing agriculture professionals to 

gain insights into the models' reasoning and 

enhancing their trust in the model's predictions. 

4.7.1. Visualization of the Grad-CAM technique of 

MLTNet 

The MLTNet model was utilized to apply the 

Grad-CAM approach to an image of a leaf disease, 

revealing significant regions crucial for accurate 

prediction. Grad-CAM highlights discriminative 

features vital for precise predictions, especially in 

early leaf disease detection crucial for effective 

agriculture. MLTNet's accuracy after Grad-CAM 

reaches 94.3%, a 2% increase in leaf disease 

prediction. Fig. 15 illustrates the fine-tuned 

MLTNet's effectiveness with Grad-CAM in 

predicting disease regions. With an overall accuracy 

of 94% and high precision, recall, and F1 scores for 

each class, the model distinguishes various plant 

diseases effectively. Grad-CAM enhances 

interpretability, aiding researchers and farmers in 

detecting and localizing plant health issues for 

targeted treatments.  

4.8 Discussion 

The MLTNet model, proposed for mango leaf 

disease classification on the South India Dataset, has 

exhibited outstanding performance. Achieving a 

training accuracy of 92.8% and minimal loss of 

0.4294% after 100 epochs, it effectively classifies  
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Figure. 15 The effectiveness of a fine-tuned MLTNet 

model with Grad-CAM for feature localization and visual 

explanations in accurately predicting significant disease 

regions on mango leaves 

 

leaf diseases transversely multiple categories. 

Through an average class accuracy of 94.33%, the 

model demonstrates its proficiency in distinguishing 

between different disease types. These results 

highlight MLTNet's potential to advance plant health 

management and agricultural productivity through 

automated leaf disease detection and classification. In 

comparison, the standard ResNet50 model also 

demonstrates commendable accuracy in classifying 

mango leaf diseases, showcasing its ability to capture 

intricate patterns and features. However, its 

performance is impacted by overfitting on the South 

India mango disease dataset. Furthermore, the 

research compares with other existing studies on the 

dataset, showcasing the dominance of the projected 

MLTNet model. It outperforms ResNet50, VGG-16, 

and InceptionV3, achieving higher accuracy than 

these popular architectures. While DenseNet121 

attains a similar accuracy, the proposed MLTNet 

model performs slightly better. The variant of Deep 

CNN referenced as [42] slightly surpasses these 

results with a 92.42% accuracy, while the 

conventional CNN [42] variants exhibit lower 

accuracies ranging from 85.80% to 89%. The 

incorporation of GANs in Deep CNN+GAN [42] 

results in an 86.1% accuracy, highlighting the 

nuanced influence of generative models on overall 

performance. Leading the rankings is the MLTNet 

(Proposed) model, attaining the highest accuracy of 

92.8%, suggesting the potential effectiveness of its 

innovative techniques in enhancing model 

performance. These results affirm the effectiveness 

of the MLTNet model in plant disease classification 

and its potential as a promising approach for the 

accurate and reliable uncovering of plant infections 

in agricultural settings. 

Comparatively, the MLTNet model outperformed 

its counterparts, achieving the highest accuracy of 

94.3%. This highlights the significance of model 

selection in achieving higher accuracy in complex 

multi-class classification tasks, with MLTNet 

emerging as the top-performing solution. 

Additionally, the MLTNet model's predictions on 

correctly classified images and the use of the Grad-

CAM visualization technique have provided valuable 

insights into its performance. These visual 

explanations of predictions enhance the model's 

interpretability and utility in early disease detection 

and precise localization on plant leaves. 

5. Conclusion  

In conclusion, our research presents the MLTNet 

model as a substantial advancement in the field of 

agricultural AI, specifically for the classification of 

mango leaf viruses. Through rigorous testing, 

MLTNet has demonstrated a notable classification 

accuracy of 94.3% on the training set and 86.3% on 

the test set, positioning it as a highly effective tool for 

plant disease management. These figures underscore 

the model's superior capability to not only learn from 

a comprehensive dataset of mango leaf images, which 

was enhanced through advanced preprocessing 

techniques like Error Level Analysis, but also to 

generalize well to new, unseen data.The integration 

of transfer learning with the ResNet50 architecture, 

combined with our novel application of Explainable 

Artificial Intelligence (XAI) techniques like Grad-

CAM, has resulted in significant improvements in 

both interpretability and classification performance. 

This approach not only aids in the precise localization 

of disease symptoms on mango leaves but also 

enhances the transparency of the diagnostic process, 

making MLTNet a trustworthy tool for agronomists 

and farmers.Furthermore, comparative analyses with 

established models such as ResNet50, VGG-16, and 

InceptionV3, which achieved lower accuracies 

ranging from 81.81% to 91.84%, highlight the 

effectiveness of MLTNet. Our model's ability to 

outperform these benchmarks illustrates its potential 

to set a new standard in agricultural diagnostics. 

As a future work, the MLTNet framework will be 

pivotal in shaping future research directions. We plan 

to expand its application to other crops and integrate 

real-time disease detection systems, which could 

revolutionize plant health management practices 

globally. The potential for MLTNet to contribute to 

sustainable agriculture is immense, underscoring the 
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importance of continuous advancements in AI and 

machine learning in addressing critical global 

challenges. 

 

Nomenclature / Notation list 

A_{ij}^k: Activation of the k-th feature map at 

location (i, j) in a layer. 

y^c: Output of the network for class c. 

α_k^c: Weight of the k-th activation map for class 

c, computed by global average pooling of the 

gradients. 

Z: Normalization factor in global average pooling, 

summing over all spatial locations (i, j). 

w: Model weights or parameters. 

η (eta): Learning rate used in the optimization 

algorithm. 

L: Loss function used to evaluate the model's 

predictions. 

Q(W): Quality or cost function calculated as an 

average loss over the dataset. 

v(w, t): Denominator in the RMSProp update rule, 

which is the moving average of the squared 

gradients. 

𝜶𝒌
𝒄 : Weight of the k-th activation map for class c, 

computed as the global average of the gradients. 

𝑦 :Output of the network for class c before softmax. 

𝑨𝒊𝒋
𝒌  : Activation of the k-th feature map at spatial 

location (i, j). 
𝝏𝒚𝒄

𝝏𝑨𝒊𝒋
𝒌 : Gradient of the class score 𝑦𝑐yc with respect to 

the activation 𝐴𝑖𝑗
𝑘 , calculated via backpropagation. 

(w,t): Weights 𝑤w at iteration 𝑡t in an optimizer. 

γ: Decay rate in RMSProp or similar adaptive 

learning rate methods. 

∇Qi(w): Gradient of the loss function Qi with 

respect to weights 𝑤w. 

η: Learning rate. 

∇Q(w): Gradient of the loss function 𝑄Q with 

respect to weights 𝑤w. 

∥ 𝒘 ∥2
2: L2 norm squared of the weight vector 𝑤w, 

used in L2 regularization. 

FL(pt): Focal loss function for binary classification. 

p_t: Adjusted prediction probability, dependent on 

the true label 𝑦y. 

||𝑾||𝟏: L1 norm of the weight vector 𝑤w, used in 

L1 regularization. 

𝜆: Regularization parameter that scales the 

contribution of the L1 or L2 term in the overall loss 

function. 

γ : Focusing parameter in the Focal Loss function 

L_{Grad-CAM}^c: Localization map for class c, 

used in Grad-CAM 

ReLU: Rectified Linear Unit, a function used to 

introduce non-linearity in the model. 

L_1 and L_2: L1 and L2 regularization terms. 
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