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Abstract: This paper proposes a new pseudo-random sequence generator to improve the security of data. The method 

innovatively integrates a 2D Henon map into the evolutionary process of cellular automata to introduce chaotic features 

into selected dynamic neighbourhoods during evolution, boosting the generator’s efficacy. The proposed generator 

outperforms static neighborhood-based pseudo-random generators and meets the criteria defined by the National 

Institute of Standards. To overcome the limitation of the one-time pad algorithm, where the key length must match the 

plaintext length, the proposed generator ensuring that the key length matches the length plain text. The encryption 

scheme achieves an average entropy information value of 7.99%, which indicates robustness against entropy attacks. 

Additionally, the Number of Pixels Change Rate (NPCR) was above 99% and the Unified Average Changing Intensity 

(UACI) was close to the ideal value of 33%, demonstrating its suitability for image encryption with enhanced security 

and minimal complexity. 
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1. Introduction 

As computing power increases, the risk of 

cybercrimes also rises, making data transmission 

security crucial [1]. Encryption is a vital method for 

safeguarding data, with research focusing on 

encrypting image data gaining prominence [2-5].  

In this study, a digital image was chosen as the 

focus of investigation. Cellular Automata (CA), a 

type of discrete system, have been utilized by several 

researchers for image encryption, harnessing CA’s 

capabilities to offer effective methods for image 

security. There are primarily two CA-based image 

encryption approaches. The first involves generating 

encryption keys where CA acts as a random number 

generator to create a key matrix filled with pseudo-

random numbers, subsequently used to encrypt the 

original image. The second method uses CA to 

directly manipulate image data for encryption 

purposes, transforming the image into a binary format 

and applying a specific CA, like a second-order CA, 

to diffuse the data and scramble the image content.  

There are many methods proposed during the 

literature based CA, including [6], where the work 

proposes a novel two step image encryption 

technique leveraging chaotic maps and CA to 

enhance image security. Initially, the method 

addresses strong pixel correlation in the original 

image by separating it into red (R), green (G), and 

blue (B) channels. Each channel undergoes 

independent permutation using a specific key and a 

3D chaotic transformation. Subsequently, diffusion 

involves additional scrambling of the image data. The 

permuted image is transformed into 24 separate “one-

bit patches”, likely representing bit plane images 

where each pixel’s value is divided into eight 

individual bits. These bit planes are then subjected to 

bitwise XOR operations using appropriate 2D 

reversible CA rules, utilizing CA generated keys to 

further scramble the individual bit values in each 
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channel and enhance resistance against statistical 

attacks. In addition, a new image cryptosystem uses 

boundary elementary CA (ECA) with permutation 

diffusion architecture is designed in [7]. The method 

exploits specific attractors from elementary periodic 

boundary CAs to efficiently transform pixel values. 

It uses symmetric private key encryption with five 

keys generated to rearrange pixels, swap hash values, 

and perform bitwise XOR operations. The encryption 

process involves splitting blocks, calculating the hash, 

permuting image and hash blocks, and evolving the 

CA to produce state attractors. Each layer of the color 

image undergoes individual encryption steps; 

including hashing, permutation, and CA based 

encryption. The encrypted image is constructed by 

merging encrypted layers. Moreover, in [8], the 

authors utilize the CA to the confusion phase, 

introducing complexity and non-linearity to the 

encryption process. By leveraging both the chaotic 

dynamics of the logistic sine map and the state 

transitions of CA. Furthermore, in the research work 

[9], the proposed image encryption algorithm 

features three distinct stages. The first stage utilizes a 

Pseudo Random Generator key along with a novel 7D 

hyper chaotic function for diffusion. In the second 

stage, an extended CA S box is employed to 

redistribute image data. Lastly, a key generated by a 

CA is used to implement another diffusion stage. 

Additionally, an algorithm utilizes ECA in which, 

during the confusion phase, it shuffles the image 

according to a key controlled permutation box 

governed by a Henon chaotic map. Rule 15 of ECA 

plays a crucial role in the second phase, where a 

shuffled image serves as input for further encryption 

processes, integrating ECA dynamics for efficient 

image transformation and encryption [10]. The work 

presented in [11] introduces a novel image encryption 

algorithm based on chaotic maps and CA. Initially, 

the secret keys of the chaotic maps are computed 

using the SHA-256 hash value of the original image. 

Subsequently, the plaintext image is diffused and 

scrambled using CA. The final encrypted image is 

derived by transforming the scrambled image with 

CA. The algorithm employs 1D CA for bit-level 

image encryption and sequence numbers based on 

CA are randomly generated by evaluating the interval 

of values of the pseudo random sequence, thereby 

enhancing the randomness in selecting CA 

transformation rules. In [12], the authors present an 

image encryption scheme integrating hyper chaotic 

system, N+2 ring Joseph algorithm, and reversible 

CA operations. The N+2 ring Joseph algorithm 

disrupts pixel information using N rings rolling 

forward, offering enhanced scrambling and 

flexibility, leveraging N chaotic sequences to shift 

image pixels and enhance randomness. Reversible 

CA technology in diffusion involves XOR operations 

with chaotic matrices, followed by iterations to 

achieve a consistent histogram for the encrypted 

image. On another side, chaotic methods are also 

used in encryption method but focus on blurring pixel 

positions in the image. They will give essentially the 

same result as the original image. As a result, many 

studies advocate combining multiple encryption 

techniques to improve overall security [13-15]. As in 

[16], a hybrid encryption algorithm proposed 

combines MD5 hash algorithm, DNA sequence, and 

Henon chaotic map to enhance robustness against 

attacks. Unlike other evolutionary based encryption 

methods, this method employing the Henon chaotic 

function enhanced by the Imperialist Competitive 

Algorithm. The objective is to find optimal α and β, 

values for image encryption. On the other hand, 

among the algorithms used for image encryption, 

there is the One-Time Pad (OTP) algorithm also 

referred to as the Vernam cipher, which is a 

substitution cryptography algorithm known for its 

perfect security when using a truly unpredictable key 

stream [17]. However, the strength of this algorithm 

heavily relies on the key used which must be entirely 

random, used only once, and shared exclusively 

between the sender and receiver. Therefore, this 

paper aims to address this limitation by utilizing CA 

and chaotic maps to generate high-quality 

pseudorandom number sequences suitable for use as 

secure secret keys within the Vernam algorithm. This 

approach ensures that the key length matches the 

length of the plaintext, thereby enhancing practicality. 

While this concept is not novel, the key innovation 

lies in leveraging an internal combination of chaotic 

maps within the evolutionary process of CA to 

generate chaotic data. This stands in contrast to 

conventional methods, where external combinations 

are typically employed, such as using chaotic maps to 

generate private keys for CA as their initial 

configurations, or employing genetic algorithms to 

evolve Boolean functions with good cryptographic 

properties for CA, specifically focusing on 

applications like pseudo-random sequence 

generation [18]. In a related study [19], the research 

proposes a method for generating pseudo-random 

sequences of numbers using CA with two active cells. 

It achieves this by combining the outputs of two CA 

cells with an XOR operation, resulting in a sequence 

with better statistical properties. Another study 

investigates a new method for designing one-

dimensional CA with five-cell neighborhoods for use 

in cryptographic key sequence generation is proposed 

[20]. This method addresses the challenge of creating 

symmetric CAs that correspond to specific 
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mathematical properties (primitive polynomials) by 

leveraging transition matrices and block matrices. 

In this paper, the proposed generator pseudo 

random sequence is constructing by integrating the 

2D Henon map into the parameters evolution of ECA, 

this approach introduces chaotic characteristics 

within selected neighborhoods during evolution, 

thereby bolstering the efficacy of the new pseudo-

random sequence generator. This generator exhibits 

robust random properties and has undergone 

thorough theoretical and experimental validation, 

demonstrating exceptional chaotic attributes and 

resilience against differential attacks. It outperforms 

classical pseudo-random generators commonly 

utilized for data generation [21] which using Rule 30 

and the that selects a batch of n random bits from the 

center column to form the required n-bit random 

number, then proceeds sequentially to build 

subsequent random numbers using the next n bits. 

Importantly, the proposed generator successfully 

meets all criteria set forth by the National Institute of 

Standards. The use of chaotic systems in CA offers 

numerous mathematical advantages, allowing for the 

expansion of neighborhood space, the introduction of 

rich and complex dynamics, the modeling of natural 

systems, the optimization of complex problems, and 

the generation of random numbers. These properties 

make chaotic CAs a powerful tool for the study of 

complex systems, scientific research, and 

technological innovation. In addition, images 

encrypted via OTP with the new generator achieved 

good performance in terms of entropy, correlation 

and resistance to differential attacks, which brings 

them online and can be used in the field of 

cryptography, compared recent research proposed in 

this area. 

The remainder of this paper is structured as follows: 

Section 2 introduces the basic concepts and 

terminologies of CA and the 2D Henon map. Section 

3 outlines the proposed approach for constructing the 

new pseudo-random sequence generator and its 

application in image encryption. The security 

analysis results are discussed in Section 4, and 

Section 5 presents the conclusion. 

2. Preliminaries 

2.1 Cellular automata (Background) 

A CA is a collection of simple cells comprising a 

regular network of cells defined as a simple type of 

computing machine that is discrete in both space and 

time [22]. The CA was presented in the 1940s by 

John von Neumann as a formal model of self-

replicating systems, and Stanislaw Ulam, who 

examined the growth of crystals [23]. Subsequently, 

Wolfram introduced the CA as a mathematical model 

for self-organizing statistical systems [22]. 

The structure of CA is a discrete network of cells 

in one or more dimensions, where each cell has a 

finite number of possible states and maintains a state 

S. In formal terms, CA can be represented by a 

quadruple <C, S, V, f>, where: C is the automata cell, 

S contain a collection of potential states for all cells 

within a CA, V define the size of the automata and the 

set of neighboring states, and ƒ define the transition 

rule for the transfer of CA, where ƒ: S→S. 

The configuration of CA is the state of all cells at 

time t, and it is denoted 𝐶𝐴𝑡. The subsequent state of 

CA is represented by 𝐶𝐴𝑡+1. It is supposed that the 

state 𝐶𝐴𝑖
𝑡 of a cell i at time t+1 (𝐶𝑖

𝑡+1) is determined 

by the transition function, taking into account the 

current state and relying only on its neighboring cells 

at time t. This phenomenon is represented by Eq. (1): 

 

𝐶𝐴𝑖
𝑡+1 = 𝑓(𝐶𝑖−𝑟

𝑡 , 𝐶𝑖−𝑟+1
𝑡 , , 𝐶𝑖

𝑡 , 𝐶𝑖+1
𝑡  , … , 𝐶𝑖+𝑟

𝑡 )  (1) 

 

In ECA, each cell i called a central cell, is 

connected to r local neighbors on either side, where r 

is the radius. Thus, each cell has 2r + 1 neighbors, 

including the cell i. During the evolution, the next 

state of the cell i at time t +1 (St+1 (i)) is updated by 

discrete time steps, depending on the old state St(i) 

and the neighboring cells statements (St(i-1), St(i+1)), 

according to a well-defined rule (ƒ). This 

phenomenon is represented by Eq. (2): 

 

𝑆𝑡+1(𝑖) = 𝑓(𝑆𝑡(𝑖 − 1), 𝑆𝑡(𝑖), 𝑆𝑡(𝑖 + 1))      (2) 

 

In this type of model, there are two possible states, 

S  (0,1) and 3-bit neighborhoods.  

 

 
Figure. 1 Rule table and patterns of rule 30 CA 
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Figure. 2 A visualization of the Henon attractor 

 

 

With 8 possible neighborhoods states 

(000,001,010,011, 100,101,110, 111) there are 223
= 

256 possible rules. 

Wolfram has given a particular name for the 256 

CA rules, where each rule is called by the decimal 

number given by the conversion of the binary string 

presented in its truth table [24]. Wolfram has encoded 

the set of local rules governing the time evolution of 

an ECA [22]. An illustration of CA rule 30 is provided 

in Fig. 1. 

2.2 The two-dimensional hénon map 

The Henon map is defined as one of the simplest 

2D quadratic recurrence equations which Henon 

initially introduced them in [25] as a simplified model 

of the Poincaré section of the Lorenz model. 

Mathematically, the Henon map defined as follows: 

 

𝑥𝑛+1 = 1 − 𝛼𝑥𝑛
2 + 𝑦𝑛                      (3) 

 

yn+1 = βxn                               (4) 

 

The map is characterized by two control 

parameters, α and β, where n represents the number 

of map iterations. In the classical case of the Henon 

map with α = 1.4 and β = 0.3, the dynamical system 

can exhibit chaotic behaviors. Fig. 2 depicts the 

outline on a 2D plane for the Henon map. 

3. The research methods 

3.1 Process of constructing the generator pseudo 

random sequence  

To evolve the ECA using the classical method 

[22], the new cell state (𝑆𝑖 
𝑡+1)  in the next 

configuration is generated according to the current 

state (𝑆𝑖 
𝑡) and the two nearest neighbors of the state 

selected from the present configuration. The equation 

above describes this process. 

 

𝑆𝑖   
𝑡+1 =  (𝑆𝑖−1

𝑡  , 𝑆𝑖   
𝑡 , 𝑆𝑖+1 

𝑡 )                (5) 

 

However, in the evolutionary process proposed 

[15], two configurations are required to generate the 

next configuration in ECA: the initial configuration 

provides the neighbors of the precedent state, and the 

actual configuration provides the current state. This 

process is described by Eq. (6). 

 

𝑆𝑖   
𝑡+1 =  (𝑆𝑖−1

𝑡−1 , 𝑆𝑖   
𝑡 , 𝑆𝑖+1 

𝑡−1)                (6) 

 

In This paper the proposed evolution incorporates 

the 2D Henon map as an internal parameter within the 

CA neighborhood, enhancing dynamism and chaos 

compared to static neighborhood approaches 

proposed in literature [26]. 

The new cell state (𝑆𝑖
𝑡+1)  in the next 

configuration is generated based on the two chaotic 

chosen neighboring values (Sa, Sb) from the preceding 

configuration, and the previous state (𝑆𝑖
𝑡) from the 

current configuration (Eq. (7)). 

 

𝑆𝑖   
𝑡+1 =  (𝑆𝑎

𝑡−1 , 𝑆𝑖   
𝑡 , 𝑆𝑏 

𝑡−1)                 (7) 

 

The 2D Henon map utilized has lower 

computational complexity and excellent chaotic 

characteristics [27]. 𝑥𝑖 , 𝑦𝑖  are iterated values from 

the 2D Henon Map. These values can be identified as 

control parameters of Eqs. (8) and (9) to determine 

the position of the neighborhoods. This process is 

defined in the equations bellow, where a, and b define 

the position values in the input vector of 

configurations, and L is the length of the input vector. 
 

𝑎 = ((𝑥𝑖 ∗ 107 ) − 𝑖 )𝑚𝑜𝑑(𝐿)                (8) 
 

𝑏 = (𝑖 + (𝑦𝑖 ∗ 107)) 𝑚𝑜𝑑(𝐿)                (9) 
 

In more detail, the steps for the proposed 

evolution process are described below: 

3.1.1. Initialize parameters and configurations 

a. Set pre-initial configurations CA-1. 

b. Obtain the dimensions of the initial 

configuration I and save it into a variable 𝐿. 

c. Define vectors X and Y with dimensions (1×L), 

then fill them using a 2D Henon map to generate 

random numbers. 

d. Define the transition rule R. 



Received:  April 6, 2024.     Revised: June 22, 2024.                                                                                                      1138 

International Journal of Intelligent Engineering and Systems, Vol.17, No.4, 2024           DOI: 10.22266/ijies2024.0831.84 

 

3.1.2. Evolution process 

a. Generate the initial configuration CA0 using Eqs. 

(10) and (11), where Si is the current state from 

the pre initial configuration, and Sa and Sb are 

two chaotic neighboring values based Xi and Yi 

selected from the pre initial configuration. Then, 

apply the chaotic conditions based on the values 

of a and b to modify Sa and Sb if necessary. 

 

𝐶𝐴0 =  𝑅(𝐶𝐴−1)                     (10) 

 

𝐶𝐴−1 =  (𝑆𝑎
𝑡  , 𝑆𝑖   

𝑡 , 𝑆𝑏 
𝑡 )                 (11) 

 

b. Iterate through the following steps for each 

subsequent configuration CAn: 

- Generate the next configuration CA1 based on the 

tow precedent configurations CA-1 and CA0, using Eq. 

(12), where, Si is the current state from the initial 

configuration CA0, and Sa and Sb two chaotic 

neighboring values based Xi and Yi selected from the 

pre-initial configuration CA-1. 

 

𝐶𝐴1 = 𝑅((𝑆𝑖   
𝑡 )𝐶𝐴0

 , (𝑆𝑎
𝑡−1 , 𝑆𝑏   

𝑡−1)𝐶𝐴−1
)      (12) 

 

- Update CA-1 to CA0 and CA0 to CA1 for the next 

iteration. 

- Repeat the evolution process until the desired 

number of configurations is generated using the Eq. 

(13), where Si is the current state from the actual 

configuration, and Sa and Sb are two chaotic 

neighboring values based Xi and Yi selected from the 

precedent configuration.  
 

𝐶𝐴𝑛 = 𝑅((𝑆𝑖   
𝑡 )𝐶𝐴𝑛−1

 , (𝑆𝑎
𝑡−1 , 𝑆𝑏   

𝑡−1)𝐶𝐴𝑛−2
)     (13) 

 

Chaotic conditions: 

Introduce conditions based on the values of a and 

b to add chaos to the evolution process. 

- If both a and b are even, apply the modifications as 

follows: 

 

Sa = XOR(Sa ,Sb)                      (14) 

 

Sb = XOR(Sb,(NOT Sa))                 (15) 

 

- If both a and b are odd, apply different 

modifications as follows: 

 

Sa = XOR (Sa , (NOT Sb));               (16) 

 

Sb = Sb;                              (17) 

 

- Otherwise, leave Sa and Sb unchanged. 

3.2 Application of the pseudo-random generator 

in image encryption based on one-time pad 

In this subsection, the new pseudo-random 

generator is utilized in One-Time Pad (OTP) to 

generate a key of the same length as the plaintext 

image. Subsequently, the exclusive-OR operator is 

applied between them to produce the cipher image. 

The flow diagram of the encryption system is 

illustrated in Fig. 3. 

The initial values for the CA are generated using 

the SHA-256 hash function applied to the original 

image. In cases where there’s a discrepancy of just 1 

bit, the resulting hash values of the two images 

exhibit considerable divergence, thus augmenting the 

sensitivity of the encryption system to the secret key. 

Before proceeding with encryption, the 256-bit hash 

value of the plain image is computed and designated 

as the secret key, denoted as K. The plain image 

employed in this proposed cryptosystem is “Lena” 

with dimensions of 256×256 pixels is shown in Fig. 

4. Fig. 5 illustrates the key image generated based on 

the hash value of Lena image and the encrypted 

image of Lena is depicted in Fig. 6. 

As illustrated in Fig. 6, the encrypted image 

exhibits similar appearances and does not reveal any 

discernible visual details about the original plaintext 

image. Thus, the suggested schema offers effective 

visual security. 

 

 

 
Figure. 3 Diagram of the stream cipher proposed 
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Figure. 4 Plain Lena image 

 

 
Figure. 5 Key image 

 
Figure. 6 Chiper image 

4. Results and discussion 

4.1 The pseudo random generator criteria 

Evaluating the effectiveness of any new generator 

design requires thorough analysis and comparison of 

its security features with existing ones. In our case, 

the comparison of our proposed generator is carried 

out with the generator created by the classical 

evolution method used in most creations of AC-based 

generators with static neighborhood. 

4.1.1. NIST SP 800-22 test 

The statistical properties of the proposed pseudo-

random number generator were rigorously evaluated 

using the NIST Test Suite [28].  

 
Table 1. NIST test suite 

Test name Our proposed generator Generator based rule 30 [21] 

P-values  Result P-values  Result 

monobit_test 0.7284483091099526 Pass 0.0 Fail 

frequency_within_block_test 0.2854838330299568 Pass 0.0 Fail 

runs_test 0.7610047231617658 Pass 0.0 Fail 

longest_run_ones_in_a_block_test 0.21773182121075785 Pass 2.01797822502071e-23 Fail 

binary_matrix_rank_test 0.04480654996864274 Pass 0.0 Fail 

dft_test 0.39757181048441276 Pass 0.0 Fail 

non_overlapping_template_matching_test 1.0000001050098712 Pass 0.9277500518708596 Pass 

overlapping_template_matching_test 0.33093073070380513 Pass 3.2665446384295794 Fail 

maurers_universal_test 0.33276185758963156 Pass 0.0 Fail 

linear_complexity_test 0.10770300019099753 Pass 0.0 Fail 

serial_test 0.01688786675250666

6 

Pass 0.0 Fail 

approximate_entropy_test 0.01713035121761063

3 

Pass 0.0 Fail 

cumulative_sums_test 0.6892676036074903 Pass 0.0 Fail 

random_excursion_test 0.02020866344487061

8 

Pass 2.772041441002831e-

12 

Fail 

random_excursion_variant_test 0.03276509474012674 Pass 0.4795001221869535 Pass 
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A sequence of 1,034,240 bits was generated from the 

new generator initialized with a key having the 

central cell set to 1 and surrounded by 0. 

Comprehensive testing revealed that this bit 

stream passed all evaluations in the NIST suite, 

exhibiting robust random properties resilient against 

pertinent attacks and attaining maximum confidence 

levels of 100% and 99% randomness. These results 

highlight the scientific advancement of the proposed 

approach, which demonstrates vastly improved 

statistical properties compared to the classic 

generator by [21] that failed all tests except the 

random excursion variant. This stark contrasts to the 

deficiencies of prior art underscores the scientific 

contribution of this research in developing a random 

number generator suitable for security and privacy 

solutions. Detailed results are provided in Table 1. 

4.1.2. Histogram analysis 

The histogram serves as a valuable visualization 

tool, revealing the tonal distribution and frequency of 

gray scale values within an image, a key metric for 

assessing randomness quality. Fig. 7 contrasts the 

images generated by the classic CA-based generator 

in (a) and the proposed new generator in (b). Fig. 8 

shows their respective histograms.  

 

 

 
(a) 

 

 
(b) 

Figure. 7 Generated images: (a) with classic CA-based 

generator and (b) based on new proposed process 

 
(a) 

 

 
(b) 

Figure. 8 Histograms results: (a) data generated with 

classic CA-based generator and (b) data generated based 

on the proposed new generator 

 

 

From histogram 1 unveils a uniform distribution 

spanning the full 0-255 intensity range for the new 

generator’s output, indicating an ideal uniform 

probability distribution. These results demonstrate 

the generator’s ability to produce data exhibiting the 

desired chaotic behaviour. Conversely, the classic 

generator fails this critical test. 

4.1.3. Information entropy analysis 

According to [29], Shannon entropy is a 

mathematical function used to measure uncertainty 

associated with random variables in an information 

source. For a source of discrete random variable X 

with n symbols, each symbol xi has a probability Pi of 

occurring. The entropy H of source X can be 

calculated using Eqs. (17) and (18), where n is the 

image dimension (in our case, n = 256 * 256 = 65536), 

i indicates the symbol value ranging from 0 to 255, 

and ki corresponds to the occurrence frequency of 

each value i. Ideally entropy is critical to ensure true 

randomness of a sequence. Consider a source with an 

alphabet of 256 characters: if all are equiprobable, the 

entropy is 8 bits. 
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Table 2. Entropy analysis 

Nature of Source 
Entropy in 

bits/symbols 

The Rate 

in  ideal 

source 

Proposed work 7.9991 99.99 % 

Generator based rule 30 5.1604 41.28% 

 

𝐻(𝑥) = − ∑ 𝑃𝑖 . 𝑙𝑜𝑔2(𝑃𝑖)𝑛
𝑖=1              (17) 

 

𝑃𝑖 =
𝑘𝑖

𝑛
                             (18) 

 

Table 2 shows entropy of 7.9991 bits with 

99.99% of characters equiprobable, validating the 

proposed generator’s ability to deliver random 

characters. In contrast, the classic generator produces 

non-equiprobable characters, failing this crucial test. 

4.1.4. Spectral test 

The spectral test holds immense significance by 

evaluating point distributions in 2D and 3D space and  

 

 
(a) 

 

 
(b) 

Figure. 9 Test spectral analysis: (a) 2D spectral test and 

(b) 3D spectral test 

demonstrating the generator’s effectiveness in 

discriminating between reliable and unreliable 

generators, as many inadequate ones fail this 

evaluation [30]. In Fig. 9 (a), the points exhibit a 

desirable uniform distribution within the square 

domain, indicating true randomness without patterns 

or clustering. The 3D representation in Fig. 9 (b) 

further validates this by illustrating a uniform cube 

distribution, eliminating higher-dimensional biases. 

Crucially, rotating the 3D cube confirms the absence 

of the Marsaglia effect. The lack of such artifacts 

affirms the randomness and independence of 

generated values, critical for cryptographic 

applications. As a result, the proposed generator 

successfully demonstrates its ability to produce 

random sequences suitable for security and privacy 

applications. 

4.1.5. Frequency test 

The frequency test is a fundamental evaluation in 

assessing the effectiveness of a pseudo-random 

generator. A high-quality pseudo-random sequence 

should exhibit a uniform distribution across its values, 

with each value occurring with equal frequency. 

Examining the graph in Fig. 10, it is apparent that the 

generated values between 0 and 255 are evenly 

distributed and occur with relatively equal 

frequencies. Consequently, the proposed generator 

effectively satisfies the crucial frequency test, a key 

requirement for producing truly random sequences 

suitable for various applications demanding robust 

randomness properties. 

 

 

 
Figure. 10 The frequency test numbers 



Received:  April 6, 2024.     Revised: June 22, 2024.                                                                                                      1142 

International Journal of Intelligent Engineering and Systems, Vol.17, No.4, 2024           DOI: 10.22266/ijies2024.0831.84 

 

4.2 Image encryption metrics 

4.2.1. Histogram analysis 

The histogram test plays a crucial role in 

evaluating encryption strength against statistical 

attacks [25]. Ideally, encrypted pixel values should 

spread evenly over the full 0-255 range, obfuscating 

any patterns from the original plaintext. Fig. 11 

presents the encrypted image’s histogram exhibiting 

near-uniform distribution, signifying a balanced 

spread of pixel values lacking discernible biases a key 

requirement to thwart statistical analysis attempts. 

Consequently, this histogram analysis validates the 

proposed encryption’s ability to statistically conceal 

all visually discernible information about the original 

plaintext image, underscoring its robustness against 

cipher text-only attacks exploiting pixel value 

distributions. 

 

 

 
(a) 

 

 
(b) 

Figure. 11 Histogram results: (a) plain image and (b) 

cipher image 

4.2.2. Key space analysis 

In cryptography, a crucial requirement is ensuring 

the encryption system’s key space sufficiently large 

to withstand brute force attacks [25], with industry 

standards dictating a minimum of 128 bits. In the 

proposed method, the secret key comprises the 

discrete 2D Henon map’s control parameters each 

contributing 128 bits, collectively forming a 256-bit 

key space. Additionally, the CA’s secret initial key 

adds another 256 bits. Consequently, the combined 

512-bit key space employed vastly exceeds 

theoretical minimums, rendering exhaustive searches 

computationally infeasible even with foreseeable 

technological advancements.  

4.2.3. Entropy analysis 

As entropy approaches the ideal maximum of 8, 

it statistically indicates that encrypted images 

become exponentially more challenging to decode by 

unauthorized parties [25]. Table 3 presents the 

entropy values for the plain Lena image and its 

encrypted counterpart. The entropy value closely 

approximates the ideal 8, on par with state-of-the-art 

approaches, demonstrating the proposed scheme’s 

ability to produce random, uniformly distributed 

cipher text. Also validates the method’s resilience 

against attacks which exploit non-uniform textures to 

compromise security. 

4.2.4. Correlation coefficient analysis 

The correlation coefficient, 𝑟𝑥𝑦, between adjacent 

pixels x and y is computed by the following formula: 

 

𝑟𝑥𝑦 =
𝐶𝑜𝑛(𝑥,𝑦)

√
1

𝑁
∑ (𝑥𝑖−

1

𝑁
∑ 𝑥𝑖

𝑁
𝑖=1 ))² 𝑁

𝑖=1  √
1

𝑁
∑ (𝑦𝑖−

1

𝑁
∑ 𝑦𝑖

𝑁
𝑖=1 )² 𝑁

𝑖=1

  (19) 

 

𝐶𝑜𝑛(𝑥, 𝑦) =
1

𝑁
∑ (𝑥𝑖 −

1

𝑁
∑ 𝑥𝑖

𝑁
𝑖=1 ) (𝑦𝑖 −𝑁

𝑖=1

1

𝑁
∑ 𝑦𝑖

𝑁
𝑖=1 )                                                                       (20) 

 

 
Table 3. The entropy and Sensitivity analysis  

Nature of 

Source 

Entropy in 

bits/symbols 

NPCR % UACI  

% 

Lena Plain 

image 

7.4748 - - 

Encrypted 

image 

7.9994 99.6768 33.7492 

Ref [11] 7.99927 99.6103 33.4540 

Ref [12] 7.9978 99.61 33.45 

Ref [16] 7.9977 99.4386 33.3250 

Ref [7]  99.4004 33.9512 
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Table 4. Correlation coefficients 

Imag

es 

Plain image Cipher image 

H V D H V D 

Lena 0.93

35 

0.95

92 

0.90

87 

0.00

19 

0.00

27 

0.00

20 

Ref 

[7] 

0.97

15 

0.97

51 

0.95

34 

0.00

99 

0.01

44 

0.01

51 

Ref 

[11] 

0.98

50 

0.97

82 

0.96

33 

0.00

65 

0.00

51 

− 

0.00

05 

Ref 

[12] 

0.95

88 

0.92

60 

0.92

91 

0.00

08 

0.00

31 

− 

0.00

58 

Ref 

[16] 

- - - 0.00

12 

0.00

25 

0.00

08 

 

 

Table 4 illustrates that proposed scheme reducing 

the correlation among pixels in the encrypted image 

to near-zero values in all directions. That 

demonstrates the algorithm’s effectiveness in 

randomizing the cipher image and eliminating any 

exploitable statistical relationships between 

neighboring pixels. Such a lack of correlation is 

crucial for withstanding statistical and structural 

attacks that leverage pixel redundancies. 

4.2.5. Differential attack analysis 

The proposed encryption algorithm exhibits a 

good property of high sensitivity to minute changes 

in the original image and encryption keys. This 

sensitivity is evaluated through two criteria: NPCR 

(Number of Pixels Change Rate) which measures the 

percentage of different pixels between two cipher 

images, and UACI (Unified Average Changing 

Intensity) which quantifies the average intensity 

difference. NPCR and UACI are defined by Eqs. 

(21)-(23), respectively. 

 

𝑁𝑃𝐶𝑅 =
∑ 𝐷(𝑖,𝑗)𝑖,𝑗

𝑀×𝑁
 × 100                            (21) 

 

𝐷(𝑖, 𝑗) = {
0  𝑖𝑓 𝐶1(𝑖, 𝑗) = 𝐶2(𝑖, 𝑗)
1 𝑖𝑓  𝐶1(𝑖, 𝑗) ≠ 𝐶2(𝑖, 𝑗)

             (22) 

 

𝑈𝐴𝐶𝐼 =
1

𝑀 × 𝑁 
[∑

𝐶1(𝑖,𝑗)−𝐶2(𝑖,𝑗)

255𝑖,𝑗 ] × 100    (23) 

 

The results in Table 3 demonstrate that a single-

pixel alteration in the plaintext image leads to 

substantial changes in the ciphertext, with NPCR and 

UACI values close to their ideal values and 

comparable to other state-of-the-art encryption 

schemes reported in the literature. This sensitivity 

ensures the algorithm’s robustness against various 

cryptanalytic attacks. 

5. Conclusion 

This paper presented a new pseudo-random 

sequence generator that integrates Hénon’s 2D 

chaotic map into the evolutionary process of 

Elementary Cellular Automata (ECA). By 

introducing dynamism into selected neighborhoods 

during evolution, the proposed generator exhibits 

improved efficiency and robust random properties 

compared to conventional static neighborhood-based 

generators in Cellular Automata (CA) evolution. The 

experimental analysis demonstrated the chaotic 

attributes of the generator, meeting all criteria defined 

by the NIST test. The new generator was successfully 

applied to the One-Time Pad (OTP) encryption 

algorithm for image data. Encrypted image achieved 

a near-maximum entropy value of 7.9994 bits per 

symbol, ultra-low correlation coefficients close to 

zero, and desirable Number of Pixels Change Rate 

(NPCR) and Unified Average Changing Intensity 

(UACI) values close to ideal thresholds underline the 

robustness and suitability of the encryption system 

for images. This work represents a scientific 

breakthrough by introducing an innovative evolution 

CA method to generate good pseudo-random 

sequences perfectly integrated with chaos-based 

encryption. 
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