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Abstract: The rapid evolution of object recognition and classification technology is propelled by advanced supporting 

architectures, notably the widely embraced You Only Look Once (YOLO) architecture. YOLO is a cornerstone in this 

technological domain, renowned for its user-friendly implementation and a harmonious balance between accuracy and 

detection speed. Dist-YOLOv3, an iteration, excels in object detection and estimates object distances from the camera. 

In preceding research, the optimization of algorithmic performance hinged on the Adam optimizer method, yet the 

challenge lies in selecting the optimal initial learning rate—a pivotal factor. Adding complexity and dataset 

characteristics further complicate the process. Particle Swarm Optimization (PSO) emerges as a solution, automatically 

determining the optimal initial learning rate. In this study, we introduce an approach that combines two optimizations 

simultaneously, namely PSO and Adam Optimizer. Using this method can enhance the performance of the Dist-

YOLOv3 model, particularly in reducing loss values. Based on the tests conducted, our developed method has proven 

to decrease the loss values, with a reduction of 16.2% in train loss and 12.7% in validation loss. Despite the temporal 

intensiveness, future research endeavors aspire to mitigate these time-related challenges. The findings underscore the 

effectiveness of PSO in automating the intricate process of learning rate selection and advancing model performance. 

Keywords: Adam optimizer, Dist-YOLOv3, Learning rate, Particle swarm optimizer. 

 

 

1. Introduction 

Image recognition and classification technology, 

both in real-time and non-real-time scenarios, has 

reached high success. Architectures such as 

Convolutional Neural Networks (CNN) and You 

Only Look Once (YOLO) have become favorites due 

to their success in image classification challenges 

[1,2]. Both of these architectures can deliver a 

balanced outcome concerning accuracy and detection 

speed, particularly in the case of the YOLO 

architecture [2]. Currently, YOLO has reached 

version 8, and there are numerous variations of these 

versions. One of the variations is the Dist-YOLOv3 

algorithm [3]. In addition to classifying objects, the 

algorithm can predict the distance of the detected 

objects from the camera. [3-5]. The utilization of 

YOLOv3 in the Dist-YOLOv3 algorithm is based on 

the speed of the detection process, the speed of 

bounding box determination, and the use of a 

lightweight architecture [3, 6-8]. 

To improve Dist-YOLOv3's performance, Vajgl 

et al. [3] optimized it using the Adaptive Moment 

Estimation (Adam) optimizer. However, the 

challenge lies in selecting the initial learning rate. 

The difference in choosing the Adam optimizer's 

learning rate can impact model training's final results 

[9]. Moreover, the learning rate value selection 

should be tailored to the dataset's characteristics. This 

allows for obtaining the most suitable learning rate to 

support the creation of the most optimal model. 

Many approaches can be employed to address the 

challenge of selecting appropriate parameters for a 

method. One such method is Particle Swarm 

Optimization (PSO). PSO has been proven to 

optimize the selection of parameters effectively, 

resulting in well-performing models [10]. 

Additionally, PSO can be applied to selecting the 
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basic CNN architecture that best suits various dataset 

characteristics, enhancing the model's adaptability 

[11,12]. 

There are two models produced by Vajgl et al. 

[3]: the class-agnostic distance YOLO (Dist-

YOLOv3 G) and the class-aware distance YOLO 

(Dist-YOLOv3 W). Both models were trained with 

the same hyperparameter specifications, including an 

image resolution of 608x192 pixels, a learning rate 

for Adam set at 1e-3, a batch size of 24, and 100 

epochs. The model evaluation utilized the mean 

Average Precision (mAP) method and Intersection 

over Union (IoU) as its threshold value. Dist-

YOLOv3 G exhibited mAP@0.5 = 76.2% and 

mAP@0.95 = 30.7%, while Dist-YOLOv3 W yielded 

mAP@0.5 = 77.1% and mAP@0.95 = 33.5%. 

This research aims to optimize the selection of 

learning rate and decay parameter values in the Adam 

optimizer, aiming to enhance the performance of the 

Dist-YOLOv3 model under lighter training 

specifications compared to previous studies. This 

method operates by relying on the process of refining 

each parameter value initialized across many swarm 

particles. This method makes the learning rate 

selection more adaptable to the utilized dataset 

conditions. It is anticipated that achieving this goal 

will result in a model of superior quality compared to 

the original. Furthermore, the hope is that the 

optimized model can be implemented across various 

domains related to object detection and distance 

prediction, such as automotive, assistive devices for 

disabilities, and others. 

This paper consists of several main sections, 

namely the introduction (first section), related works 

(second section), proposed method (third section), 

and results and discussion (fourth section). Lastly, the 

conclusion (fifth section) summarizes the overall 

research conducted. 

2. Related works 

Many current studies utilize PSO as an alternative 

for optimization, especially in parameter selection. 

This section will elaborate on several studies 

employing PSO to optimize existing models. 

Wang et al.'s research [12] introduces a novel 

method for designing Convolutional Neural Network 

(CNN) architectures using the Particle Swarm 

Optimization (PSO) algorithm, known as EPSOCNN. 

EPSOCNN demonstrates significant advantages in 

terms of computational efficiency, with an 

architecture design time of less than four days on 

GPU and a model size of 6.74M, much smaller than 

DenseNet's 27.2M parameters. Moreover, 

EPSOCNN achieves excellent accuracy performance 

with an error rate of 3.58% on CIFAR-10, 18.56% on 

CIFAR-100, and 1.84% on SVHN, and it shows good 

transfer learning capabilities. However, this research 

has limitations regarding algorithm complexity and 

evaluation, as it is limited to medium-scale datasets 

and conventional data augmentation strategies. 

Fregoso et al. [13] propose two Particle Swarm 

Optimization (PSO)-based optimization approaches 

on Convolutional Neural Network (CNN) 

architectures, namely PSO-CNN-I and PSO-CNN-II, 

for sign language letter recognition using three 

databases: ASL alphabet, ASL MNIST, and MSL 

alphabet. Experimental results show that the PSO-

CNN-I approach yields the best recognition rates, 

averaging 99.58% on the ASL alphabet and 99.53% 

on ASL MNIST. In comparison, PSO-CNN-II excels 

on the MSL database with an average of 98.91%. The 

main advantage of this research is the PSO approach's 

ability to find optimal CNN architectures that 

minimize parameters and maximize recognition rates. 

However, this study has several drawbacks, including 

high computational complexity and the need for 

intensive parameter adjustments. 

The research paper by [14] presents a PSO-CNN-

based deep learning model for predicting forest fire 

risk on a national scale, achieving an accuracy of 

82.2% and an AUC value of 0.92, outperforming 

other models like logistic regression, random forest, 

support vector machine, k-nearest neighbors, and 

traditional CNN models. The model's stability and 

consistent results across multiple runs demonstrate its 

potential for stable predictions, especially in high-

risk scenarios, aiding in efficient resource allocation 

for fire prevention and management. However, the 

study did not consider spatial heterogeneity in fire 

locations, suggesting future research could integrate 

this aspect with deep learning to enhance prediction 

models. Overall, the PSO-CNN model showcases 

superior performance in forest fire risk prediction, 

offering a promising direction for future research in 

deep learning for ecological disaster management. 

Elhani et al. [15] presents compelling results with 

improved error rates across various datasets. For 

instance, on the MNIST dataset, the proposed method 

achieves the best error rate 0.30 compared to 0.32 

with PSOCNN and 0.35 with PSO-based approaches. 

Similarly, on datasets like MNIST-BI, MNIST-RD, 

and MNIST-RDBI, the proposed method consistently 

outperforms competitors, showcasing 2.27, 2.74, and 

11.47 error rates, respectively. These results highlight 

the efficiency and practicality of the approach in 

optimizing Convolutional Neural Network (CNN) 

architectures for image classification tasks. However, 

limitations include potential sensitivity to 

initialization and the need for further exploration of 

diverse datasets. 
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The study by [16] demonstrates that the enhanced 

PSO variants effectively identify relevant features, 

improving object recognition performance. By 

optimizing the feature selection process, the model 

achieves better accuracy and robustness in 

recognizing objects from input data. The research 

showcases a substantial enhancement in network 

throughput by 25% and a notable reduction in latency 

by 15% compared to conventional resource 

allocation methods. These improvements highlight 

the efficacy of the proposed machine learning-based 

approach in optimizing resource allocation 

dynamically in wireless networks. Despite its 

strengths, challenges such as the computational 

complexity of implementing machine learning 

models, the need for substantial training data, and the 

requirement for continuous model updates to 

accommodate evolving network dynamics may 

present hurdles to practical deployment. These 

factors could limit the proposed approach's 

scalability and ease of adoption in real-world network 

settings. 

An extensive literature review reveals that despite 

significant advancements in the utilization of 

algorithm-based optimization, such as Particle 

Swarm Optimization (PSO), there are still 

opportunities for improvement that can be explored. 

These opportunities include addressing 

computational complexity, enhancing the 

generalization and stability of methods, and 

integrating with emerging techniques. This research 

offers a low computational complexity optimization 

method for the Dist-YOLOv3 algorithm using the 

PSO-Adam Optimizer. 

3. Proposed method 

The research methodology employed adapts from 

the design framework process developed by John et 

al. [17] in developing Machine Learning or Deep 

Learning models. Consequently, the research 

methodology is simplified, as depicted in Fig. 1. 

The research begins with a literature review 

focusing on similar studies related to object 

recognition models and object distance estimation 

predictions. The selected articles are sourced from 

accredited journals, ensuring high-quality references  

 

 

 
Figure. 1 Research method 

for this research. Additionally, the literature revie 

generates a comprehensive overview that forms a 

solid foundation for the study.  

Next, the data collection process involves 

searching for datasets widely used by academics, 

which serve as benchmarks for creating object 

recognition models and object distance estimation 

predictions. 

This is done to facilitate comparisons with other 

studies using the same dataset, allowing existing 

comparisons to represent the strengths and 

weaknesses of the model resulting from this research 

against the benchmark dataset. Once the data 

collection process is complete, the next step involves 

preprocessing the obtained dataset. This stage 

includes annotation of images, similar to the 

approach taken by Vajgl et al. [3], by initializing 

bounding boxes and the actual object distance to the 

camera. The output of this process will generate a file 

containing numerical representations of the bounding 

box values and actual object distance values. 

The core of this research lies in the model 

creation phase. Model creation is executed using the 

flow and algorithm proposed by Vajgl et al. [3], 

namely the Dist-YOLOv3 algorithm. Despite the 

satisfactory results produced by the model based on 

this algorithm, there remains a possibility for further 

optimization. Vajgl et al. [3] used the Adam 

optimizer algorithm to enhance the performance of 

the Dist-YOLOv3 algorithm. However, a challenge  

 

 
Figure. 2 Proposed method 
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arises in manually estimating the learning rate 

initialization value, even though the study 

incorporates Cosine Annealing for periodic learning 

rate reduction. As an improvement, Particle Swarm 

Optimization (PSO) is proposed as a solution for 

precise learning rate initialization. Using inertia 

weight in PSO has enhanced its performance, making 

it suitable for implementation in this model creation 

[18,19]. 

Fig. 2 illustrates the proposed method for 

enhancing the Dist-YOLOv3 algorithm by adjusting 

the initialization of parameters in the Adam optimizer 

using PSO. This approach is an extension of the 

method utilized by Li et al. [20]. The initialization 

process for the particle swarm is conducted randomly, 

adhering to manually specified parameter values, 

including the determination of initial velocity values 

[21]. Manual determination of the Adam optimizer 

parameters is initially performed to facilitate the 

training process of the algorithmic model. The fitness 

value is computed by evaluating the train loss and 

validation loss values in the Dist-YOLOv3 model 

using the approach described by Vajgl et al. [3]. 

 

𝑙𝑡𝑟𝑎𝑖𝑛 =  ∑𝐺𝑤𝐺ℎ

𝑖=0 ∑𝑛𝑎

𝑗=0 𝑞𝑖,𝑗[𝑙1(𝑖, 𝑗) +

𝑙2(𝑖, 𝑗) + 𝑙3(𝑖, 𝑗) + 𝑙5(𝑖, 𝑗)] + 𝑙4(𝑖, 𝑗)         (1) 

 

𝑙𝑣𝑎𝑙 =  ∑𝐺𝑤𝐺ℎ

𝑖=0 ∑𝑛𝑎

𝑗=0 𝑞𝑖,𝑗[𝑙1(𝑖, 𝑗) + 𝑙2(𝑖, 𝑗) +

𝑙3(𝑖, 𝑗) + 𝑙5(𝑖, 𝑗)] + 𝑙4(𝑖, 𝑗)    (2) 

 

The variables 𝑙𝑡𝑟𝑎𝑖𝑛 and 𝑙𝑣𝑎𝑙 denote the train loss 

and validation loss, respectively. They are computed 

based on 𝑙1(𝑖, 𝑗) for bounding box prediction loss, 

𝑙2(𝑖, 𝑗) for box dimension loss, 𝑙3(𝑖, 𝑗) for confidence 

loss, 𝑙4(𝑖, 𝑗) for class prediction loss, and 𝑙5(𝑖, 𝑗) for 

distance estimation prediction loss. The PSO formula 

implemented includes the inertia weight multiplier 

(𝑤(𝑡)). 

 

𝑣𝑖(𝑡 + 1) = 𝑤(𝑡)𝑣𝑖 + 𝑐1𝑟1(𝑝𝑏𝑒𝑠𝑡𝑖 − 𝑥𝑖(𝑡)) +

𝑐2𝑟2(𝑔𝑏𝑒𝑠𝑡𝑖 − 𝑥𝑖(𝑡))      (3) 

 

            𝑥𝑖(𝑡 + 1) = 𝑥𝑖(𝑡) + 𝑣𝑖(𝑡 + 1)           (4) 

 

Where the value 𝑣𝑖(𝑡 + 1) represents the particle 

velocity at iteration t+1 obtained from the calculation 

involving 𝑤(𝑡)  as the inertia weight at iteration t, 

nilai 𝑣𝑖 is the particle velocity at iteration t,  𝑐1, and 

𝑐2  are the acceleration constants or cognitive 

constants, 𝑟1  and 𝑟2  are random values within the 

range of 0 to 1, 𝑝𝑏𝑒𝑠𝑡𝑖 is the best position achieved 

by particle i, 𝑔𝑏𝑒𝑠𝑡𝑖 is the best position ever achieved 

by the entire population, and 𝑥𝑖(𝑡) is the value of the 

position of particle i at iteration t. The value 

𝑥𝑖(𝑡 + 1) is the updated position of the particle at 

iteration t+1, obtained by adding the value of 𝑥𝑖(𝑡) to 

𝑣𝑖(𝑡 + 1). 

The formula in the Adam optimizer that the 

updates performed by PSO will influence is the part 

related to weight updates in the hidden layer used in 

the architecture of Dist-YOLOv3. 

 

𝜔𝑡 = 𝜔𝑡−1 − 𝛼
𝑚𝑡

′

√𝑣𝑡
′+𝜀

                     (5)  

 

Where the value 𝛼 = 𝑔𝑏𝑒𝑠𝑡  represents the 

learning rate that will be continuously updated to 

obtain the most optimal α, the utilization of formulas 

(1)-(5) will persist if the stop condition in the 

proposed method has not been reached. The stop 

condition employed involves the number of iterations 

used to search for the optimal 𝛼 = 𝑔𝑏𝑒𝑠𝑡 using PSO. 

Besides searching for the most optimal α value, the 

value ε will be sought to assess its effectiveness in 

reducing the loss function. Therefore, formula (5) can 

be modified into the formula (6). 

 

𝜔𝑡 = 𝜔𝑡−1 − 𝑔𝑏𝑒𝑠𝑡[0]
𝑚𝑡

′

√𝑣𝑡
′+𝑔𝑏𝑒𝑠𝑡[1]

         (6) 

 

Formula (6) will be utilized to update the weight 

values in the hidden layer used in Dist-YOLOv3. 

Additionally, periodic learning rate reduction is 

performed using Cosine Annealing, as implemented 

by Vajgl et al. [3]. 

This research's final stage is to evaluate using the 

Average Precision (AP) or mean Average Precision 

(mAP) metric. This method is commonly employed 

to measure the performance of object recognition 

models [22]. The mAP metric involves calculating 

precision-recall metrics and determining the accuracy 

of positive predictions using Intersection over Union 

(IoU). 

4. Result and discussion 

The dataset used in the conducted experiments is 

the KITTI (Karlsruhe Institute of Technology and 

Toyota Technological Institute) 3D Object Detection 

Evaluation 2017 [23]. Academics commonly employ 

this dataset as a benchmark for evaluating object 

recognition models [3]. The KITTI 3D Object 

Detection Evaluation 2017 consists of 7481 training 

data and 7518 testing data, but only the training data 

will be utilized. This decision is based on the fact that 

the available training data comes with actual distance 

 



Received:  April 8, 2024.     Revised: June 22, 2024.                                                                                                        203 

International Journal of Intelligent Engineering and Systems, Vol.17, No.5, 2024           DOI: 10.22266/ijies2024.1031.17 

 

labels, aiding the model in predicting distances in 

detected images. Out of the 7481 data points, they 

will be divided into three subsets: 6030 training data, 

782 test data, and 669 validation data. 

 

 
(a) 

 
(b) 

 
(c) 

 
(d) 

 
(e) 

 
(f) 

 
(g) 

 
(h) 

 
(i) 

 
(j) 

Figure. 3 The obtained results for the search of α and ε values using PSO: (a)Iteration 1, (b)Iteration 2, (c)Iteration 3, 

(d)Iteration 4, (e)Iteration 5, (f)Iteration 6, (g)Iteration 7, (h)Iteration 8, (i)Iteration 9, and (j)Iteration 10
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Table 1. Initialization of α and ε randomly 
Particle to 𝛼 𝜀 

1 7.09941485e-04 4.50058156e-05 

2 8.60291591e-04 3.01319574e-05 

3 7.15760274e-04 1.04433448e-05 

4 9.91611617e-04 7.09323456e-05 

5 5.66228971e-04 2.74740948e-05 

6 5.84657350e-04 2.36932942e-05 

7 9.16550427e-04 1.95675586e-05 

8 6.14126924e-04 2.50106011e-05 

9 7.82396667e-04 5.16069723e-05 

10 7.12620725e-04 9.91002519e-05 

 

 

In the pursuit of finding the most optimal values 

for α and ε, the initialization of PSO variables is 

performed with c1 = c2 = 2, ωmax = 0.9, ωmin = 0.3, 

10 iterations, and a total of 10 particles. Additionally, 

training model specifications are required to seek the 

values of train loss and validation loss as metrics for 

the PSO fitness function. These specifications 

include an image input size of 160x160, two epochs, 

and a batch size 24. To enhance model optimization, 

the Darknet53 architecture in YOLOv3 is replaced 

with the lighter-weight Xception architecture, which 

utilizes fewer parameters [24]. The results of the 

parameter search for α and ε in the Adam optimizer 

can be observed in Fig. 3. 

Fig. 3 illustrates the movement of the particle 

swarm from iteration 1 to iteration 10. The graph at 

iteration 1 shows the particle swarm as the initial 

values for α and ε. Table 1 displays the randomly 

determined initial values for α and ε. 

The values in Table 1 will continuously be 

updated, considering the values of 𝑝𝑏𝑒𝑠𝑡𝑖  and 

𝑔𝑏𝑒𝑠𝑡𝑖 . 𝑝𝑏𝑒𝑠𝑡𝑖  is updated if the train loss and 

validation loss values in the next iteration are smaller, 

but it must still consider the best values for all 

particles or the value of 𝑔𝑏𝑒𝑠𝑡𝑖. The value of 𝑔𝑏𝑒𝑠𝑡𝑖 

will influence the position of each particle when 

approaching the value of  𝑔𝑏𝑒𝑠𝑡𝑖 . As a result, all 

particles will converge towards a single point, with 

the movement regulated by the velocity of each 

particle. As seen in Fig. 3, periodically, in each 

iteration, all particles will converge towards a point 

considered to be the most optimal. 

By the second iteration, all ε values for each 

particle are compacted to the value of 1.00000000e-

05 until the last iteration. This is because the search  

 

Table 2. The final values for α and ε 

Particle to 𝛼 𝜀 

1 9.76028217e-04   1.00000000e-05 

2 9.75627030e-04 1.00000000e-05 

3 9.76058087e-04 1.00000000e-05 

4 9.76013563e-04   1.00000000e-05 

5 9.76036401e-04   1.00000000e-05 

6 9.76037595e-04 1.00000000e-05 

7 9.76945545e-04 1.00000000e-05 

8 9.75967929e-04  1.00000000e-05 

9 9.76028213e-04 1.00000000e-05 

10 9.76027853e-04 1.00000000e-05 

 

 

process for ε is constrained to prevent a slow-down 

in the early stages of training. ε significantly affects 

the training process as it determines the learning 

reduction rate and prevents zero division in the 

weight update process [25]. Table 2 displays the 

values of the final position for each particle or the 

concluding values for α and ε.  

From the values in Table 2, one particle is 

selected as the global best (𝑔𝑏𝑒𝑠𝑡), which has the 

values α = 9.76028217e-04 and ε = 1.00000000e-05. 

These two values will be tested in the comprehensive 

training process to compare the results with the model 

created by Vajgl et al. [3], available at the link 

https://gitlab.com/EnginCZ/yolo-with-distance. The 

model in this link was generated using 43 epochs, 

with training specifications as outlined in Vajgl et al. 

study [3]. The model training process in this research 

is conducted with 40 epochs, an image size of 

160x160, and a batch size of 24. 

 

 

 
Figure. 4 Comparison of train loss and validation loss 

values 
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Figure. 5 The decrease in train loss and validation loss 

values 

 

 

Fig. 4 illustrates the difference between the model 

by Vajgl et al. [3] and the model in this study, a result 

of the search for optimal values for α and ε using PSO. 

Properly selecting learning rate values in the Adam 

optimizer optimization method can significantly 

improve the Dist-YOLOv3 model. To further clarify 

the existing differences, Fig. 5 shows the decrease in 

loss values and validation loss in this research model. 

A gap becomes apparent as the training process 

reaches the 15th epoch, where the train loss value has 

reached 22.339, indicating that this value is already 

below the original Dist-YOLOv3 model's value. The 

validation loss value is also at 23.427 as the training 

progresses into the 20th epoch. This demonstrates 

that the proper choice of learning rate can effectively 

reduce the loss values. The next step is to compare 

the models using the mAP metric method. Figs. 6 to 

8 depict the differences between the two compared 

models in precision, recall, and mAP metric values. 

The precision values obtained by this research 

model are below those obtained by the model from 

[3]. This indicates that the object detection results 

when the model is tested contain many false 

negatives. False negatives occur because the model 

detects objects that are not actually present but 

considers them to be present. 

The recall values experience a significant 

decrease, almost half of those obtained by the model 

by Vajgl et al. [3]. This decline is attributed to this 

research model's tendency to miss many objects that 

should have been detected. 

The same pattern is observed in the mAP 

measurement, indicating a significant decrease 

compared to the model by Vajgl et al. [3]. Small 

precision and recall values will result in a small mAP 

value. Evaluation using the mAP method shows that  

 

 
Figure. 6 Comparison of precision values 

 

 
Figure. 7 Comparison of Recall Values 

 

 
Figure. 8 Comparison of mAP 
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Table 3. Comparison of error rates for the MNIST dataset 

Research Model Error Rate 

(mean) 

Miao et al. [27] sosCNN 0.38% 

Lawrence et al. 

[28] 

PSO-Based Model 0.38% 

Nistor & 

Czibula [29] 

IntelliSwAS 0.38% 

Elhani et al. [15] pswvCNN 0.44% 

Our Method Hybrid PSO-Adam 

Optimizer 

0.38% 

 

 

Table 4. Comparison of error rates for the Fashion-

MNIST dataset 

Research Model Error 

Rate 

(mean) 

parameter epoch 

Miao et 

al. [27] 

sosCNN 6.17% 3.42 M 100 

Elhani et 

al. [15] 

pswvCNN 6.1% 3.74 M 100 

Our 

Method 

Hybrid 

PSO-Adam 

Optimizer 

7.48% 242 K 100 

 

 

the precision, recall, and mAP values of this research 

model still cannot surpass those of the model by 

Vajgl et al. [3]. The main factor that makes the model 

by Vajgl et al. [3] superior is the larger input image 

size, specifically using images with dimensions of 

608x608. This aspect contributes to the original Dist-

YOLOv3 model performing better when evaluated 

using the mAP method. This experiment 

demonstrates that achieving a small loss value 

sometimes translates into a better model evaluation. 

To further demonstrate the effectiveness of our 

proposed method, we conducted tests on the CNN 

architecture using various types of datasets. The 

results of these tests will be compared with those of 

related studies and other research focusing on CNN 

architecture development. Table 3 compares error 

rates obtained for the CNN model using the MNIST 

dataset [26]. 

Table 3 shows that by adjusting the learning rate and 

epsilon values in the Adam Optimizer parameters, the 

CNN model can perform exceptionally well, even 

matching the performance of CNNs with modified 

architectures, with an error rate of 0.38%. In the 

studies listed in Table 3, PSO was employed to select 

the best architecture, thus increasing the complexity 

of the CNN architecture. The following comparison 

involves using the Fashion-MNIST dataset [30], as 

shown in Table 4. 

Table 5. Comparison of Mean Accuracy for ASL-MNIST 

and ASL-Alphabet Datasets 
Reference Model ASL-

MNIST 

ASL-

Alphabet 

Fregoso et al. 

[13] 

PSO-CNN-I 99.58% 99.53 % 

Fregoso et al. 

[13] 

PSO-CNN-II 99.48% 98.69 % 

Rodriguez et al. 

[31] 

Improved CNN 97.64 % - 

Ma et al. [32] TSM-ResNet50 99.09 % 97.57 % 

Mannan et al. 

[33] 

DeepCNN 99.67 % - 

Our Method Hybrid PSO-

Adam Optimizer 

 99.91%  99.68% 

 
Table 6. Comparison of mean accuracy for CNN on the 

UCI-HAR dataset 
Reference Model UCI-HAR 

Ankalaki & 

Thippeswamy [35] 

OPTCovNet 99.72% 

Sikder et al. [36] Two Channel 

CNN 

95.25% 

Phukkan et al. [37] 6-Layer CNN 91.18 % 

Ismail et al. [38] AUTO-HAR 98.5 % 

Our Method Hybrid PSO-

Adam Optimizer 

 99.97% 

 

 

The comparison results in Table 4 indicate that 

our study's error rate is the highest. This suggests that 

the performance quality is still below that of other 

methods. However, our model uses only 242K 

parameters, making it lighter than other models. The 

next comparison uses the ASL-MNIST and ASL-

Alphabet datasets, as shown in Table 5. 

Using the Hybrid PSO-Adam Optimizer method 

on the CNN architecture for the ASL dataset 

demonstrates good performance, achieving the 

highest mean accuracy. The accuracy for the ASL-

MNIST dataset is 99.91%, while for the ASL-

Alphabet dataset, it is 99.68%. Finally, our developed 

method will be compared with CNN models using the 

Human Activity Recognition dataset, specifically 

UCI-HAR [34]. 

The results of the comparison in Table 6 further 

demonstrate the quality of our proposed method. It 

shows the highest accuracy among other studies, with 

an accuracy score of 99.97% on the UCI-HAR 

dataset. This proves that using the Hybrid PSO-Adam 

Optimizer on CNN architecture can enhance the 

architecture's performance across various datasets, 

including image data and time series data. 
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5. Conclusion 

This study successfully demonstrates that the 

proper selection of the learning rate can reduce the 

loss values during training and validation. The use of 

PSO to find optimal values for α and ε in filling the 

hyperparameters of the Adam optimizer works well 

and yields the most optimal values. Among the ten 

randomly generated values as particles, the best 

global value is obtained and used as the learning rate 

and epsilon for the hyperparameters of the Adam 

optimizer. The best global values are 

α=9.76028217e-04 and ε=1.00000000e-05. 

Furthermore, the experiment in training the Dist-

YOLOv3 model for 40 epochs proves that this 

research model has minor train loss and validation 

loss values compared to the original model, even 

though the original model was trained for 43 epochs. 

Next, to demonstrate that our method significantly 

impacts a model, we conducted tests on several 

benchmark datasets. The test results show an 

improvement in the model's performance, with scores 

nearly surpassing all existing studies. Future work to 

enhance this research includes refining the evaluation 

metrics using the mAP method and optimizing the 

parameter search time. This way, it is expected that, 

in addition to achieving small loss values, the model 

can have a more considerable mAP value and a 

shorter time in finding the most optimal parameter 

values.  
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