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Abstract: The neural activities of the brain are detected by Electroencephalography (EEG) that allows for analysis 

and classification of epileptic disease. The existing methods fail to capture high-dimensional data between adjacent 

sequences which make it difficult for the classifier to process and maximize the classification errors. This research 

proposes Hierarchical Long Short-Term Memory (H-LSTM) with a skip connection-based epileptic seizure 

classification method. The H- LSTM captures both short and long-term dependencies between adjacent sequences in 

the high-dimensional data. The skip connection is introduced between H- LSTM layers, facilitating the flow of data 

across adjacent sequences to improve the classification performance of epileptic seizures. The datasets used to evaluate 

the proposed H- LSTM with skip connection-based classification method are BONN-EEG and CHB-MIT EEG. The 

proposed H-LSTM with skip connection method attains 99.81% accuracy on BONN – EEG while attaining 99.34% 

accuracy on the CHB-MIT EEG dataset which is more effective than the existing methods namely, Bidirectional Gated 

Recurrent Unit (Bi-GRU) and Graph Convolutional Network (GCN). 

Keywords: Electroencephalography, Hierarchical long short-term memory, High dimensional data, Long-term 

dependencies, Skip connection. 

 

 

1. Introduction 

Epileptic people suffer from unnecessary seizures 

with uncontrolled bursts of electrical activity that can 

cause death if not treated early [1]. Hence, the 

effective diagnosis and prediction of epileptic 

seizures is critical in recent times [2]. Epilepsy is 

generally diagnosed by Electroencephalogram (EEG) 

signals, which record brain waves that generally 

reflect electrical activity in the brain [3]. The EEG 

signals are generally diagnosed by experienced 

experts with the naked eye, but manual prediction of 

EEG signals leads to high cost and error [4]. Hence, 

the development of automatic EEG detection 

methods is highly significant in neuroscience [5]. The 

Machine Learning (ML) and Deep Learning (DL) 

techniques attain huge performance and high speed in 

the prediction of EEG signals and show the method’s 

reliability [6]. The ML algorithms involve feature 

extraction as the initial stage, after which the 

classification is performed [7]. Feature extraction 

from EEG is a significant process in the classification 

of epileptic seizure techniques [8].  

To identify the EEG seizure, various features 

have extracted from time, frequency, and time-

frequency domains like power spectral density, spike 

rate, and energy of signals from wavelet transform [9]. 

The DL algorithms provides automatic feature 

extraction from EEG signals, without manual feature 

extraction [10-12]. In recent times, DL algorithms 

obtain features through the learning of model without 

manual feature selection, and exhibit an optimum 

performance in EEG recognition and classification. 

[13-15] The DL algorithms include Recurrent Neural 

Network (RNN) and Long Short-Term Memory 

(LSTM) networks that attain an effective 



Received:  May 19, 2024.     Revised: June 13, 2024.                                                                                                       971 

International Journal of Intelligent Engineering and Systems, Vol.17, No.4, 2024           DOI: 10.22266/ijies2024.0831.73 

 

performance in sequence EEG data [16]. The existing 

methods have drawbacks like difficulty in capturing 

high-dimensional data between adjacent sequences 

that minimizes the sample density and data 

representation. To overcome these limitations, this 

research proposes a Hierarchical LSTM with a skip 

connection-based epileptic seizure classification 

method. The Hierarchical LSTM captures both low 

and high-dimensional data between adjacent 

sequences and skips the connection between LSTM 

layers, enabling the network facilitate the flow of 

information across adjacent sequences. The essential 

contributions of this research are given as follows: 

• The Hierarchical Long Short-Term Memory 

(LSTM) with skip connection technique is 

proposed for classifying epileptic EEG 

seizures, which captures both low and high-

dimensional data between adjacent sequences 

to enhance the classification performance. 

• The skip connection between LSTM layers 

facilitates gradient flow of data across 

adjacent sequences, which mitigates the issue 

of gradient vanishing during training, thereby 

enhancing the classification performance of 

Epileptic EEF seizure.  

• The Short Time Fourier Transform (STFT) 

and Continuous Wavelet Transform (CWT) 

based feature extraction techniques are 

utilized in this research to capture necessary 

temporal and spectral characteristics of EEG 

to differentiate variance between seizure and 

non-seizure. 

This rest of the research paper is organized as 

follows: Section 2 analyzes the literature review of 

recent DL algorithms for epileptic seizure 

classification, while Section 3 describes the process 

of the proposed method with detailed information, 

Section 4 gives results and discussion and finally, the 

conclusion of this research is given in Section 5. 

2. Literature review 

Hassan [17] presented a novel epileptic detection 

technique with the integration of Empirical Mode 

Decomposition (EMD) and Mutual Information Best 

Individual Feature (MIBIF) selection technique and 

Multi-layered Perceptron Neural Network (MLPNN). 

At first, fixed length of EEG epochs was decomposed 

to amplitude, which is known as Intrinsic Mode 

Functions (IMFs). The important features were 

chosen from the measured feature through MIBIF 

technique for producing the last feature subset. Then, 

the produced feature subset was given to the MLPNN 

classifier. The presented method effectively detected 

and classified epileptic seizures. However, the 

problem of gradient vanishing occurred during 

training which affected the classification 

performance. 

Abdulwahhab [18] suggested a DL algorithm that 

had two simultaneous methods to detect the activity 

of epileptic seizures by EEG signals. The image of 

time-frequency in EEG and raw waves were crucial 

for input elements of Convolutional Neural Network 

(CNN), RNN with LSTM. Further, two signal 

processing techniques, Short-Time Fourier 

Transform (STFT) and Continuous Wavelet 

Transformation (CWT) were employed to produce 

spectrogram and scalogram images. Nonetheless, the 

method had difficulty in capturing the high 

dimensional data between adjacent sequences. 

Zhang [19] developed a Bidirectional Gated 

Recurrent Unit (Bi-GRU) neural network for seizure 

detection. The developed technique facilitated the 

treatment and diagnosis of epileptics. Initially, 

wavelet transforms were assigned for EEG 

recordings to filter in the pre-processing phase. Next, 

related signal energies in various specific frequency 

bands were measured and given to the Bi-GRU 

method. The developed BiGRU method captured 

long-term dependencies in EEG signals in both 

positive and negative directions. Nevertheless, 

developed technique had a high classification error 

rate that caused incorrect classification of epileptic 

seizures. 

Jia [20] introduced a Graph Convolutional 

Network (GCN) method to predict seizures for 

resolving the issue of oversize seizure prediction 

methods depending on graph architecture of EEG 

signals. In the graph classification, network structure 

included graph convolution layers which extracted 

node features with single-hop neighbors, pooling 

layers summarized the node features, and fully 

connected layers were implemented for classification. 

The introduced method resulted in effective 

prediction and lesser network size. However, the 

method captured only the time-based features 

because the method did not consider rhythmic 

oscillations of EGG, leading to less discriminative 

power in differentiating between seizure and non-

seizure EEG. 

Islam [21] implemented a highly heterogenous 

and included Dense Convolutional Blocks (DCB), 

Feature Attention Modules (FAM), Residual Blocks 

(RB), and Hypercolumn Technique (HT). Initially, 

DCB was utilized for providing discriminative 

features from EEG samples. Next, FAM extracted 

significant features, following which RB learned 

many important parts as a whole and utilized data in 

convolutional layer. At last, HT retained effective 

local features extracted from layers placed at various 
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phases of methods. Nevertheless, the method had a 

lesser effective flow of information across adjacent 

sequences, resulting in the loss of significant 

temporal context in classifying seizure patterns. 

Ra and Li [22] suggested a Synchro Extracting 

Transformation and Singular Value Decomposition 

(SET-SVD) method for enhancing the resolution of 

time-frequency. The SET was much energy focused 

on representation of TF than the traditional analysis 

techniques. Then, the classification of the pre-seizure 

technique was employed as one-Dimensional (1D-

CNN). The suggested SET-SVD method displayed 

effective performance in EEG prediction. 

Nonetheless, the extracted hand-crafted features were 

not effective when classifying the signals because of 

the limited representation of features. From the above 

analysis, the existing methods have drawbacks such 

as the problem of gradient vanishing, difficulty in 

capturing high dimensional data between adjacent 

sequences, high classification error rate, while 

capturing only time-based features, less effective 

flow of information across adjacent sequences, and 

extraction of the hand-crafted features only. In order 

to tackle these limitations, this research proposes a 

Hierarchical LSTM with skip connection method. 

The proposed method captures high-dimensional data 

and minimizes the error rate in classification. The 

CNN-based feature extraction is performed to 

capture the deep features with hand-crafted features. 

3. Proposed methodology 

The Hierarchical LSTM with skip connection-

based classification method is proposed for epileptic 

EEG seizure classification. The BONN-EEG and 

CHB-MIT EEG datasets are used in this research and 

is pre-processed by using Least Mean Square (LMS) 

and Z-score normalization techniques. Then, the time, 

frequency, and time-frequency features are extracted  

 
Figure. 1 Process of Epileptic Seizure Classification 

 

 

by using STFT and CWT based feature extraction 

methods. Further, it is classified by using 

Hierarchical LSTM with a skip connection-based 

classification method. Fig. 1 represents the process of 

epileptic seizure classification. 

3.1 Dataset 

The two publicly available EEG datasets utilized 

in epileptic seizure prediction are BONN-EEG [23] 

created through the University of Bonn Germany and 

CHB-MIT EEG [24] by the Children’s Hospital 

Boston, USA dataset. A brief explanation of these 

datasets is given as follows: 

3.1.1. BONN-EEG dataset 

The BONN-EEG dataset contains 5 subsets 

labeled as A, B, C, D, and E. Every subset has single-

channel EEG data with particular characteristics. The 

subset A and B have scalp EEG data from healthy 

volunteers and subsets, while C and D have 

intracranial EEG data from non-focal and focal 

epileptic patients. At last, E has seizure-relevant 

intracranial EEG signals. Every subset has 100 files 

and every file has 4096 samples, every file recording 

23.6 at a sampling rate of 173.61 Hz. Table 1 displays 

the dataset description of BONN-EEG. 

 

 
Table 1. BONN-EEG dataset description 

Subsets Subject details File name Duration in 

seconds 

Description 

A 5 normal subjects 

(healthy) 

Z001.txt – Z100.txt 

100 (23.6) 

EEG records with eyes open 

B O001.txt – O100.txt EEG records with eyes closed 

C 

5 epilepsy 

patients 

N001.txt – N100.txt 

EEG records of hippocampal 

formation in hemisphere opposite to 

epileptogenic zone. It is recorded in 

seizure-free periods. 

D F001.txt – F100.txt 
EEG records of epileptogenic zone. 

It is recorded in seizure-free periods 

E S001.txt – S100.txt 
EEG records of epileptic seizure 

activity from hippocampal focus. 
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3.1.2. CHB-MIT EEG dataset 

The CHB-MIT EEG dataset includes data 

acquired from seizure and interictal periods, 

following 10-20 international standard electrode 

placement system. The dataset has multiple channel 

EEG records with sampling rate of 256 Hz with a 

total of 23 records from 22 subjects. The N/A in the 

table represents the not specified, while Table 2 

displays dataset description of the CHB-MIT EEG 

dataset. 

3.2 Pre-processing 

The EEG signal is pre-processed to obtain 

important features with high possibility of ictal and 

interictal portions of correlation. The pre-processed 

techniques used in this research are Least Mean 

Square (LMS) and z-score normalization. A brief 

explanation of pre-processed techniques is given 

below: 

3.2.1. Noise removal using least mean square (LMS)  

The quality of EEG signals is highly influenced 

by noise that degrades the performance of EEG 

epileptic classification. The frequency of noise is a 

critical examination of EEG signals. The frequency 

of noise and unnecessary data in EEG signals is 

eliminated by using LMS [4]. The LMS method 

eliminates noises like the Gaussian noise which arises 

from random fluctuations in EEG signals by 

adjusting the filter coefficients, so as to reduce the 

mean squared error between the filtered result and the 

desired signal. 

3.2.2. Z-score normalization 

Normalization is performed to carry two signals 

for the same or predefined series. The distinctive 

sample of the pre-defines series is a statistical 

discernment of normalization which converts the 

signal where the value of mean is 1, and that of the 

standard deviation is 1. In this research, z-score 

method [4] is performed for normalization and the z-

score method reveals the classification performance 

through signal flattening. The numerical expression 

for the z-score value is given as Eq. (1). 

 

𝑧 − 𝑠𝑐𝑜𝑟𝑒 =
𝑠𝑐𝑜𝑟𝑒−𝑚𝑒𝑎𝑛

𝑠𝑡𝑎𝑛𝑑𝑎𝑟𝑑 𝑑𝑒𝑣𝑖𝑎𝑡𝑖𝑜𝑛
                (1) 

 

The score is the data point, mean is the average of 

all data points and standard deviation is the amount 

of variation in data. The normalization preserved 

correlation among normalized and actual EEG 

signals reduce the selection bias. The z-score 

normalization standardizes EEG data and enhances 

the feature discrimination. 

3.3 Feature extraction 

The pre-processed signals are given as input to 

the feature extraction phase for extracting the time  

 

Table 2. CHB-MIT EEG dataset description 

Records number Patient’s ID Age Gender Count of seizures Duration in hours 

Chb01 1-1 11 F 7 45.00 

Chb02 2 11 M 3 39.57 

Chb03 3 14 F 7 57.87 

Chb04 4 22 M 4 154.41 

Chb05 5 7 F 5 38.09 

Chb06 6 1.5 F 10 89.25 

Chb07 7 14.5 F 3 67.23 

Chb08 8 3.5 M 5 26.38 

Chb09 9 10 F 4 65.92 

Chb10 10 3 M 7 72.49 

Chb11 11 12 F 3 73.30 

Chb12 12 2 F 40 N/A 

Chb14 14 9 F 8 41.50 

Chb15 15 16 M 20 62.29 

Chb16 16 7 F 10 17.03 

Chb17 17 12 F 3 34.11 

Chb18 18 18 F 6 62.29 

Chb19 19 19 F 3 61.58 

Chb20 20 6 F 8 41.43 

Chb21 1-2 13 F 4 55.71 

Chb22 21 9 F 3 75.93 

Chb23 22 6 F 7 70.90 
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and frequency features. The Short-Time Frequency 

Transform (STFT) and Continuous Wavelet 

Transform (CWT) techniques are used in this 

research to extract the time and frequency domains. 

The brief explanation of these techniques is explained 

below: 

3.3.1. Short time-frequency transform (STFT) 

The STFT extracts the representations of time-

frequency in EEG signals which gives significant 

features for epileptic seizure classification. The 

features of time-frequency capture variations in 

spectra over short time intervals and provide 

discriminative features that differentiate between 

seizure and non-seizure. In STFT, the non-stationary 

signals are separated to little segments and those 

segments are taken as sequential, and therefore FT is 

used for every portion. These portions are acquired 

through utilizing the windowing function and the 

technique is known as signals windowing. By using 

STFT, the time-dependent signals are stated in time 

and frequency axes. The numerical expression for 

STFT (𝛾(𝑤, 𝜏))is given as Eq. (2), 

 

𝛾(𝑤, 𝜏) = 𝑆𝑇𝐹𝑇{𝑓(𝑡) = ∫ 𝑓(𝑡)𝑊(𝑡 − 𝜏)𝑒−𝑗𝑤𝑡𝑑𝑡  
(2) 

 

The 𝑓(𝑡) denotes time domain signal, 𝑊 denotes 

function of windowing, 𝑤 denotes the parameter of 

frequency, 𝑡 denotes the parameter of time, 𝛾(𝑤, 𝜏) 

denotes the outcome of SIFT, 𝑒−𝑗𝑤𝑡  represents the 

exponential function and 𝜏 denotes the parameter of 

slow time. In this research, the hamming is utilized as 

a windowing function in STFT. For BONN-EEG and 

CHB-MIT EEG datasets, the size of window is 

decided as 4,128.64 and parameter has number of 

points for overlapping among windows is utilized and 

determined as 2,64,32. 

3.3.2. Continuous wavelet transform (CWT) 

The CWT gives effective localization of time-

frequency features that allow simultaneous analysis 

of frequency and time characteristics of EEG signals. 

The CWT is used in this research to minimize the loss 

of resolution produced through selection of window 

size in STFT. The CWT utilizes a windowing 

function known as mother wavelet and variance 

among this windowing process, while windowing is 

deployed in STFT and is scalable. When processing 

the CWT, wavelet function is shifted in time and 

scale, and its mathematical expression is given as Eq. 

(3), 

 

Ψ𝑎,𝑏(𝑡) =
1

√𝑎
Ψ (

𝑡−𝑏

𝑎
)  𝑎, 𝑏 ∈ 𝑅, 𝑎 ≠ 0          (3) 

 

In the above Eq. (3), the parameter 𝑎 refers to 

the scaling, 𝑏  refers to the translation, 

Ψ(𝑡)represents the mother function. The parameters 

of low-scale compress signals when parameters of 

huge-scale expand the signals. The parameters of 

high-scale capture lesser frequencies, whereas the 

parameters of low-scale capture the high frequencies. 

The CWT is determined as signal integral to be 

examined with difficult conjugate of wavelet 

function and its mathematical formulation is given as 

Eq. (4), 

 

𝐶𝑊𝑇{𝑓(𝑡), 𝑎, 𝑏} = ∫ 𝑓(𝑡)Ψ∗
𝑎,𝑏(𝑡)

+∞

−∞
𝑑𝑡       (4) 

 

Where, the Ψ∗
𝑎,𝑏(𝑡)  represents complex 

conjugate in scaled and translated mother wavelet. 

The low-frequency data is taken for EEG signals due 

to delta band of EEG signals having less frequencies.  

3.4 Classification using hierarchical long short-

term memory 

The extracted time and frequency features are 

given as input to the classification stage to classify 

the epileptic seizure using hierarchical LSTM. The 

adjacent sequences define the segments of EEG data 

which are consecutive and temporal. The LSTM is 

used for classification which captures long-term 

dependencies and works well on the sequence data 

(i.e. EGG signals). In hierarchical LSTM, the multi-

layers of LSTM are organized hierarchically, with 

every layer processing the input sequence at various 

layers. The traditional LSTM concentrates on 

capturing the temporal dependencies with individual 

sequences, but the hierarchical LSTM extends its 

ability to capture hierarchical temporal dependency 

across multiple levels of representation. The 

hierarchical LSTM organizes input into multi-levels 

of representations, where every representation 

corresponds to various temporal scales. At every 

level of the hierarchy, an individual LSTM layer 

processes the input sequence and learns the temporal 

dependency with that level. The output representation 

from low levels is integrated to develop an input 

sequence for high levels, intern allowing the 

hierarchical LSTM to capture high-level temporal 

dependencies between adjacent sequences. In this 

research, hierarchical LSTM is developed for 

capturing two insights into EEG sequences. Initially, 

the method captures the correlation of local temporal 

context, alongside the channel correlation of every 

sample. The initial layer of hierarchical LSTM is 
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sample encoder layer, that captures local temporal 

correlations among samples with epochs. 

Additionally, the skip connections are introduced 

between hierarchical LSTM layers to facilitate the 

information flow across adjacent sequences. By using 

a skip connection, the learned features are transferred 

from one layer of the encoder to the respective layer 

of the decoder. The skip connection allows the 

hierarchical LSTM network to bypass certain layers 

and propagate data much more effectively. This 

process enhances the ability of the network to capture 

high-level temporal dependencies between adjacent 

sequences and gradients during training.  

To formulate sample encoder for 𝑗𝑡ℎ epoch, 𝑋𝑗 =

{𝑥𝑗1, 𝑥𝑗2, … , 𝑥𝑗𝑇} describes EEG sample in 𝑗  epoch, 

𝑥𝑗𝑡 ∈ 𝑅𝑘×1, 𝑡 ∈ {1,2, … 𝑇} . The hierarchical LSTM 

introduced with every time stage method for 

representing the hidden state is ℎ𝑗𝑡 ∈ 𝑅𝐿×1  and is 

executed as ℎ𝑗𝑡 = 𝑓(𝑊𝑗𝑥ℎ𝑥𝑗𝑡 + 𝑊𝑗ℎℎℎ𝑗(𝑡−1) + 𝑏𝑗ℎ) . 

Here, 𝑊𝑗𝑥ℎ ∈ 𝑅𝑇×𝑘  and 𝑊𝑗ℎℎ ∈ 𝑅𝑇×𝑇  represent the 

weight matrix integrated with 𝑥𝑗𝑡 input vector, where 

ℎ𝑗(𝑡−1)  represents the previous time step. For 

obtaining attention, a layer Multi-Layer Perceptron 

(MLP) is initially utilized for hidden representation 

𝑟𝑗𝑡  for ℎ𝑗𝑡  at every time step, and the numerical 

expression is given as Eq. (5), 

 

𝑟𝑗𝑡 = tanh(𝑊𝑙𝑜𝑐𝑎𝑙ℎ𝑗𝑡 + 𝑏𝑙𝑜𝑐𝑎𝑙)                (5) 

 

In the above eq (5), the 𝑊𝑙𝑜𝑐𝑎𝑙 ∈ 𝑅𝐿×1 represents 

the weight vector, ℎ𝑗𝑡  represents hidden state and 

𝑏𝑙𝑜𝑐𝑎𝑙  represents the bias vector. The normalized 

weight 𝛼𝑗𝑡  is measured through comparing 

similarities with 𝑟𝑙𝑜𝑐𝑎𝑙 context vector and numerical 

expression is given as Eq. (6), 

 

𝛼𝑗𝑡 =
exp (𝑟𝑗𝑡

𝑇 𝑟𝑙𝑜𝑐𝑎𝑙

∑ exp(𝑟𝑗𝑡
𝑇 𝑟𝑙𝑜𝑐𝑎𝑙)𝑡

                         (6) 

 

The numerical expression for 𝑒𝑗  is the last 

representation of epoch 𝑗 as given as Eq. (7), 

 

𝑒𝑗 = ∑ 𝛼𝑗𝑡ℎ𝑗𝑡𝑡                             (7) 

 

The inputs for the epoch encoder layer are 

represented as 𝑝  outcomes from the encoder layer 

𝑒1, 𝑒2, … , 𝑒𝑝 . In that, 𝑒𝑗 ∈ 𝑅𝐿×1  for 𝑗 ∈ {1,2, … , 𝑃} . 

Next, another LSTM layer is utilized to encode the 

correlation of temporal context in epoch 

representation to produce the hidden unit ℎ𝑗 ∈

𝑅𝐿×1∀𝑗 as outcome. The completed representation of 

a fully connected layer of sequence is given as Eqs. 

(8) – (10), 

 

𝑟𝑗 = tanh(𝑊𝑔𝑙𝑜𝑏𝑎𝑙ℎ𝑗 + 𝑏𝑔𝑙𝑜𝑏𝑎𝑙)               (8) 

 

𝛼𝑗 =
exp(𝑟𝑗

𝑇𝑟𝑔𝑙𝑜𝑏𝑎𝑙)

∑ exp(𝑟𝑗
𝑇𝑟𝑔𝑙𝑜𝑏𝑎𝑙)𝑗

                        (9) 

 

𝑣 = ∑ 𝛼𝑗ℎ𝑗𝑖                                 (10) 

 

In above eq (8)-(10), the 𝑟𝑗 represents the output 

of neuron, ℎ𝑗  represents the input to that neuron, 

𝑊𝑔𝑙𝑜𝑏𝑎𝑙 ∈ 𝑅𝐿×1  and 𝑏𝑔𝑙𝑜𝑏𝑎𝑙  represent weights and 

bias vectors, while the 𝛼𝑗  represents the 

corresponding weight, 𝑣  represents the final 

representation of the sequence. 

3.4.1. Skip connections 

Skip connections are introduced between 

hierarchical LSTM layers to facilitate the information 

flow across adjacent sequences. The skip connection 

allows the hierarchical LSTM network to bypass 

certain layers and propagate data much more 

effectively. This process enhances the ability of the 

network to capture high-level temporal dependencies 

between adjacent sequences and gradients during the 

training. The numerical expression for skip 

connection is given as Eq. (11), 

 

𝑠𝑘𝑖𝑝 = 𝑀𝑢𝑙𝑡𝑖𝑝𝑙𝑦()([𝑠𝑘𝑖𝑝, 𝑔𝑎𝑡𝑒])            (11) 

 

In the above Eq. (11), the 𝑀𝑢𝑙𝑡𝑖𝑝𝑙𝑦() represents 

the element-wise multiplication between skip 

connection and gate output, the 𝑠𝑘𝑖𝑝 represents the 

previous layer and 𝑔𝑎𝑡𝑒  represents the 

corresponding element.  

3.4.2. Network training 

The 𝑣  vector of sequence describes many 

essential and robust features. The hierarchical LSTM 

with skip connection is trained by 𝑁 training samples 

{(𝑋1, 𝑦1), … , (𝑋𝑁 , 𝑦𝑁), the 𝑦𝑛 represents the label of 

EEG sequence. The training process is done through 

reducing cross-entropy error over training samples. 

The numerical expression is given as Eq. (12), 

 

𝐸(𝜃) =
1

𝑁
∑ 𝑦𝑛 log(𝑦𝑛(𝑋𝑛, 𝜃)) +

𝜆

2
‖𝜃‖2

2𝑁
𝑛=1    (12) 

 

In the above Eq. (12), 𝜃  represents collection 

network parameters and hyper-parameters, 𝐸(𝜃) 

represents cost function, 𝑁 represents total number of 

training samples, 𝑋𝑛  represents input features, 𝑦𝑛 
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corresponding label and 𝜆  represents the Lagrange 

multiplier. The Adam optimizer is deployed for 

performing the optimization. The LMS method and 

z-score normalization are used in the pre-processing 

stage to remove the noise and standardize the data. 

Then, the features are extracted by using the SIFT and 

CWT techniques to differentiate the variance 

between seizure and non-seizure. Next, the extracted 

features are classified by using the hierarchical 

LSTM with a skip connection-based classification 

method. By using the skip connection method in 

hierarchical LSTM, it facilitates the flow of data 

across adjacent sequences which maximizes the 

performance of seizure classification. 

4. Experimental analysis 

The proposed Hierarchical LSTM with skip 

connection method is simulated with MATLAB 

2020a environment and the system requirements are 

Windows 10, i7 processor, and 16 GB RAM. The 

evaluation measures utilized to analyze performance 

of proposed Hierarchical LSTM with skip connection 

are accuracy, sensitivity, specificity, f1-score, and 

false detection rate (FDR). The numerical 

expressions for evaluation measures are given as Eqs. 

(13) – (15), 

 

𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =  
𝑇𝑃+𝑇𝑁

𝑇𝑃+𝐹𝑁+𝐹𝑃+𝑇𝑁
× 100          (13) 

 

𝑆𝑒𝑛𝑠𝑖𝑡𝑖𝑣𝑖𝑡𝑦 =
𝑇𝑃

𝑇𝑃+𝐹𝑁
× 100               (14) 

 

𝑆𝑝𝑒𝑐𝑖𝑓𝑖𝑐𝑖𝑡𝑦 =
𝑇𝑁

𝑇𝑁+𝐹𝑃
× 100              (15) 

 

In the above equations (13) – (15), the 𝑇𝑃 

represents truly positive and 𝑇𝑁  represents true 

negative that refers to number of seizure and non-

seizure segments that are accurately classified 

through the proposed Hierarchical LSTM with the 

skip connection method. The 𝐹𝑃  represents false 

positive which states that number of non-seizure EEG 

segments incorrectly classified through the proposed 

method and 𝐹𝑁  represents false negative that 

incorrectly labels the seizure segments. For every 

patient, FDR is referred to as mean amount of false 

detections per hour in non-seizure periods. 

4.1 Quantitative and qualitative analysis 

Table 3 represent the performance of the 

Hierarchical LSTM method on the BONN-EEG 

dataset with different evaluation measures. The 

existing neural networks are considered to analyze 

the proposed Hierarchical LSTM without skip  

Table 3. Performance of Hierarchical LSTM method on 

BONN-EEG dataset 

Methods Accur

acy 

(%) 

Sensiti

vity 

(%) 

Speci

ficity 

(%) 

F1-

score 

(%) 

FD

R 

(%) 

CNN 95.04 94.67 94.27 93.90 0.84 

MLP 95.82 95.16 95.16 94.73 0.77 

RNN 96.49 96.03 95.71 95.36 0.73 

LSTM 97.32 96.76 96.56 96.26 0.61 

Hierarch

ical 

LSTM  

98.27 97.62 97.17 97.45 0.54 

 
Table 4. Performance of proposed Hierarchical LSTM 

with skip connection method on BONN-EEG dataset 

Methods Accu

racy 

(%) 

Sensi

tivity 

(%) 

Speci

ficity 

(%) 

F1-

score 

(%) 

FDR 

(%) 

CNN 96.05 95.72 95.37 95.54 0.75 

MLP 96.40 96.26 96.01 96.12 0.62 

RNN 97.49 97.18 96.68 96.93 0.51 

LSTM 98.34 98.04 98.46 98.26 0.44 

Hierarchic

al LSTM 

with skip 

connectio

n 

99.81 99.87 99.75 99.79 0.33 

 

 
Figure. 2 Performance of proposed Hierarchical LSTM 

with skip connection method on BONN-EEG dataset 

 
Table 5. Performance of Hierarchical LSTM method on 

the CHB-MIT EEG dataset 

Methods Accu

racy 

(%) 

Sensi

tivity 

(%) 

Speci

ficity 

(%) 

F1-

score 

(%) 

FD

R 

(%) 

CNN 94.03 93.78 93.45 93.02 0.79 

MLP 94.68 94.32 94.04 93.82 0.73 

RNN 95.57 95.42 95.17 95.01 0.66 

LSTM 96.46 96.34 96.02 95.67 0.57 

Hierarchic

al LSTM 

97.53 97.02 96.65 96.82 0.45 

 

connection method are Convolutional Neural 

Network (CNN), Multi-Layer Perceptron (MLP), 

Recurrent Neural Network (RNN), and LSTM. The 

hierarchical LSTM attains 98.27% accuracy, 97.62% 

sensitivity, 97.17% specificity, 97.45% f1-score and  



Received:  May 19, 2024.     Revised: June 13, 2024.                                                                                                       977 

International Journal of Intelligent Engineering and Systems, Vol.17, No.4, 2024           DOI: 10.22266/ijies2024.0831.73 

 

Table 6. Performance of proposed Hierarchical LSTM 

with skip connection method on CHB-MIT EEG dataset 

Methods Accu

racy 

(%) 

Sensi

tivity 

(%) 

Speci

ficity 

(%) 

F1-

score 

(%) 

FD

R 

(%) 

CNN 96.17 94.16 96.03 95.58 0.63 

MLP 96.67 95.02 96.63 95.67 0.58 

RNN 97.23 95.56 97.47 96.65 0.47 

LSTM 98.78 96.23 98.03 97.27 0.35 

Hierarchica

l LSTM 

with skip 

connection 

99.34 96.86 98.62 97.54 0.27 

 

 
Figure. 3 Performance of proposed Hierarchical LSTM 

with skip connection method on CHB-MIT EEG dataset 

 

0.54% of FDR. The hierarchical LSTM performs 

better on BONN-EEG dataset than other existing 

neural networks. By using the hierarchical LSTM-

based classification method, it captures both the low 

and high-level features between adjacent sequences 

to increase the performance of epileptic seizure 

classification performance. Then, the skip connection 

is introduced between Hierarchical LSTM method to 

facilitate flow of data between adjacent sequences 

which increases the performance of the hierarchical 

LSTM method for epileptic seizure classification. 

Table 4 and Fig. 2 display the performance of the 

proposed Hierarchical LSTM with skip connection 

method on the BONN-EEG dataset with different 

evaluation measures. The existing neural networks 

considered to analyze the proposed Hierarchical 

LSTM with the skip connection method are CNN, 

MLP, RNN, and LSTM. The hierarchical LSTM with 

the skip connection method attains 99.81% accuracy, 

99.87% sensitivity, 99.75% specificity, 99.79% f1-

score and 0.33% of FDR. The hierarchical LSTM 

with the skip connection method performs well on the 

BONN-EEG dataset than other existing neural 

networks. 

Table 5 exhibit the outcomes of Hierarchical 

LSTM method on the CHB-MIT EEG dataset with 

different evaluation measures. The existing neural 

networks considered to analyze the proposed 

Hierarchical LSTM without the skip connection 

method are CNN, MLP, RNN, and LSTM. The 

hierarchical LSTM method achieves 97.53% 

accuracy, 97.02% sensitivity, 96.65% specificity, 

96.82% f1-score and 0.45% of FDR. The hierarchical 

LSTM performs well on the CHB-MIT EEG dataset 

than other existing neural networks. 

Table 6 and Fig. 3 represent performance of the 

proposed Hierarchical LSTM with skip connection 

method on the CHB-MIT EEG dataset with different 

evaluation measures. The existing neural networks 

considered to analyze the proposed Hierarchical 

LSTM with the skip connection method are CNN, 

MLP, RNN, and LSTM. The hierarchical LSTM with 

the skip connection method achieves 99.34% 

accuracy, 99.86% sensitivity, 98.62% specificity, 

97.54% f1-score and 0.27% of FDR. The hierarchical 

LSTM with the skip connection method performs in 

a superior manner on the CHB-MIT EEG dataset than 

other existing neural networks. 

4.2 Comparative analysis 

The proposed Hierarchical LSTM with skip 

connection method’s performance is compared to 

other existing methods like EMD+MIBIF+MLPNN 

[17], PCNN-LSTM [18], Bi-GRU [19] and GCN [20] 

on BONN-EEG and CHB-MIT EEG datasets. The 

performance of proposed Hierarchical LSTM with 

the skip connection method is evaluated with 

evaluation measures of accuracy, sensitivity, 

specificity, and FDR. 

 

 
Table 7. Comparative analysis of proposed Hierarchical LSTM with skip connection method on two datasets 

Dataset Methods Accuracy (%) Sensitivity (%) Specificity (%) FDR (%) 

Bonn-EEG  EMD+MIBIF+MLPNN [17] 99.54 N/A N/A N/A 

PCNN-LSTM [18] 99.75 99.83 99.62 N/A 

Proposed Hierarchical LSTM 

with skip connection 

99.81 99.87 99.75 0.33 

CHB-MIT 

EEG 

PCNN-LSTM [18] 99.12 96.75 97.49 N/A 

Bi-GRU [19] 98.49 93.89 98.49 0.31 

GCN [20] N/A 96.51 N/A N/A 

Proposed Hierarchical LSTM 

with skip connection 

99.34 96.86 98.62 0.27 
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The proposed Hierarchical LSTM with skip 

connection method attains 99.81% accuracy on 

BONN – EEG and 99.34% accuracy on the CHB-

MIT EEG dataset. The Hierarchical LSTM captures 

the high-dimensional data between adjacent 

sequences and skips connection between LSTM 

layers, thus facilitating the flow of information across 

adjacent sequences which helps improve the 

performance of epileptic seizure classification. Table 

7 represents the comparative analysis of Hierarchical 

LSTM with the skip connection method. 

4.3 Discussion 

The section explains the results observed from 

Hierarchical LSTM with skip connection method for 

improving the classification process of epileptic EEG 

seizures. The EMD+MIBIF+MLPNN [17] method 

has the issue of gradient vanishing. The PCNN-

LSTM [18] method has difficulty in capturing the 

high dimensional data between adjacent sequences of 

EEG. The Bi-GRU [19] method suffers from high 

classification error, while the GCN [20] method 

suffers from lesser effective flow of information 

across adjacent sequences. To overcome these 

limitations, the proposed Hierarchical LSTM with 

skip connection method exhibits commendable 

classification performance than the previous methods. 

The hierarchical LSTM-based classification method 

is used to capture both low and high-level features 

between adjacent sequences for maximizing the 

classification performance of epileptic seizures. The 

skip connection is introduced between the 

Hierarchical LSTM method to facilitate the data flow 

between adjacent sequences for maximizing the 

performance of the hierarchical LSTM method. 

5. Conclusion 

This research proposes a Hierarchical LSTM with 

a skip connection-based classification method to 

capture the high dimensional data between adjacent 

sequences. The hierarchical LSTM captures both 

short and long-term dependencies between adjacent 

sequences in high-dimensional data. The skip 

connection is introduced between hierarchical LSTM 

layers, therefore facilitating the flow of data across 

adjacent sequences to improve the classification 

performance of hierarchical LSTM. The datasets 

used to evaluate the proposed Hierarchical LSTM 

with the skip connection method are BONN-EEG and 

CHB-MIT EEG datasets. The proposed Hierarchical 

LSTM with skip connection method attains 99.81% 

accuracy, 99.87% sensitivity, 99.75% specificity and 

0.33% FDR on BONN – EEG and 99.34% accuracy, 

96.86% sensitivity, 98.62% specificity and 0.27% 

FDR on the CHB-MIT EEG dataset which is more 

effective than the existing methods of Bi-GRU and 

GCN. In the future, an optimization-based feature 

selection method can be used to eliminate the 

irrelevant features to further improve the 

classification performance. 

 

Notation 
Notations Description 

𝑓(𝑡) Time Domain Signal 

𝑊 Windowing Function 

𝑤 Parameter Of Frequency 

𝛾(𝑤, 𝜏) Outcome Of SIFT 

𝑋𝑗

= {𝑥𝑗1, 𝑥𝑗2, … , 𝑥𝑗𝑇} 

EEG Sample In 𝑗 Epoch 

ℎ𝑗𝑡 ∈ 𝑅𝐿×1 Hidden State 

𝑊𝑗𝑥ℎ ∈ 𝑅𝑇×𝑘 Weight Matrix Integrated With 

𝑥𝑗𝑡  Input Vector 

ℎ𝑗(𝑡−1) Previous Time Step 

𝑊𝑙𝑜𝑐𝑎𝑙 ∈ 𝑅𝐿×1 Weight Matrix 

𝑏𝑙𝑜𝑐𝑎𝑙  Bias Vector 

𝑒𝑗 Last Representation of Epoch 𝑗 

𝑀𝑢𝑙𝑡𝑖𝑝𝑙𝑦() Element-Wise Multiplication 

𝑦𝑛 Label Of EEG Sequence 

𝜃 Network Parameters 

𝜆 Lagrange Multiplier 

𝑒−𝑗𝑤𝑡  Exponential Function  

Ψ(𝑡) Mother Function 

Ψ∗
𝑎,𝑏(𝑡) Complex Conjugate 

𝛼𝑗𝑡 Normalized Weight 

𝐸(𝜃) Cost Function 

𝑋𝑛 Input Features 

𝑦𝑛 Corresponding Labels 

 

Conflicts of Interest 

The authors declare no conflict of interest.  

Author Contributions 

Conceptualization, NV; methodology, VKG; 

software, VKG; validation, VKG; formal analysis, 

NV; investigation, NV; resources, VKG; data 

curation, NV; writing—original draft preparation, 

NV; writing—review and editing, VKG; 

visualization, NV; supervision, VKG; project 

administration, VKG. 

References 

[1] F. Hassan, S.F. Hussain, and S.M. Qaisar, 

“Epileptic seizure detection using a hybrid 1D 

CNN-machine learning approach from EEG 

data”, Journal of Healthcare Engineering, Vol. 

2022, p. 9579422, 2022. 



Received:  May 19, 2024.     Revised: June 13, 2024.                                                                                                       979 

International Journal of Intelligent Engineering and Systems, Vol.17, No.4, 2024           DOI: 10.22266/ijies2024.0831.73 

 

[2] X. Liu, J. Wang, J. Shang, J. Liu, L. Dai, and S. 

Yuan, “Epileptic Seizure Detection Based on 

Variational Mode Decomposition and Deep 

Forest Using EEG Signals”, Brain Sciences, Vol. 

12, p. 1275, 2022. 

[3] C. Wang, L. Liu, W. Zhuo, and Y. Xie, “An 

epileptic EEG detection method based on data 

augmentation and lightweight neural network”, 

IEEE Journal of Translational Engineering in 

Health and Medicine, Vol. 22, pp. 22-31, 2024. 

[4] I. Palanichamy, and F.B.B. Ahamed, 

“Prediction of Seizure in the EEG Signal with 

Time Aware Recurrent Neural Network”, Revue 

d'Intelligence Artificielle, Vol. 36, No. 5, pp. 

717-724, 2022. 

[5] X. Jiang, X. Liu, Y. Liu, Q. Wang, B. Li, and L. 

Zhang, “Epileptic seizures detection and the 

analysis of optimal seizure prediction horizon 

based on frequency and phase analysis”, 

Frontiers in Neuroscience, Vol. 17, p. 1191683, 

2023. 

[6] G. Kumar, S. Chander, and A. Almadhor, “An 

intelligent epilepsy seizure detection system 

using adaptive mode decomposition of EEG 

signals”, Physical and Engineering Sciences in 

Medicine, Vol. 45, No. 1, pp. 261-272, 2022. 

[7] M. Varlı, and H. Yılmaz, “Multiple 

classification of EEG signals and epileptic 

seizure diagnosis with combined deep learning”, 

Journal of Computational Science, Vol. 67, p. 

101943, 2023. 

[8] Y. Gao, X. Chen, A. Liu, D. Liang, L. Wu, R. 

Qian, H. Xie, and Y. Zhang, “Pediatric seizure 

prediction in scalp EEG using a multi-scale 

neural network with dilated convolutions”, 

IEEE Journal of Translational Engineering in 

Health and Medicine, Vol. 10, p. 4900209, 2022. 

[9] W. Chen, Y. Wang, Y. Ren, H. Jiang, G. Du, J. 

Zhang, and J. Li, “An automated detection of 

epileptic seizures EEG using CNN classifier 

based on feature fusion with high accuracy”, 

BMC Medical Informatics and Decision Making, 

Vol. 23, No. 1, p. 96, 2023. 

[10] P. Kunekar, M.K. Gupta, and P. Gaur, 

“Detection of epileptic seizure in EEG signals 

using machine learning and deep learning 

techniques”, Journal of Engineering and 

Applied Science, Vol. 71, No. 1, p. 21, 2024. 

[11] Y. Zaid, M. Sah, and C. Direkoglu, “Pre-

processed and combined EEG data for epileptic 

seizure classification using deep learning”, 

Biomedical Signal Processing and Control, Vol. 

84, p. 104738, 2023. 

[12] N. Abderrahim, A. Echtioui, R. Khemakhem, W. 

Zouch, M. Ghorbel, and A. Ben Hamida, 

“Epileptic Seizures Detection Using iEEG 

Signals and Deep Learning Models”, Circuits, 

Systems, and Signal Processing, Vol. 43, No. 3, 

pp. 1597-1626, 2024. 

[13] W. Zeng, L. Shan, B. Su, and S. Du, “Epileptic 

seizure detection with deep EEG features by 

convolutional neural network and shallow 

classifiers”, Frontiers in Neuroscience, Vol. 17, 

p. 1145526, 2023. 

[14] A. K. R. Britto, S. Srinivasan, S. K. Mathivanan, 

M. Venkatesan, B. A. M. B. Malar, S. Mallik, 

and H. Qin, “A multi-dimensional hybrid CNN-

BiLSTM framework for epileptic seizure 

detection using electroencephalogram signal 

scrutiny”, Systems and Soft Computing, Vol. 5, 

p. 200062, 2023. 

[15] G. Yogarajan, N. Alsubaie, G. Rajasekaran, T. 

Revathi, M. S. Alqahtani, M. Abbas, M. M. 

Alshahrani, and B. O. Soufiene, “EEG-based 

epileptic seizure detection using binary 

dragonfly algorithm and deep neural network”, 

Scientific Reports, Vol. 13, No. 1, p. 17710, 

2023. 

[16] A. A. E. Shoka, M. M. Dessouky, A. El-Sayed, 

and E. E. D. Hemdan, “An efficient CNN based 

epileptic seizures detection framework using 

encrypted EEG signals for secure telemedicine 

applications”, Alexandria Engineering Journal, 

Vol. 65, pp. 399-412, 2023. 

[17] K. M. Hassan, M. R. Islam, T. T. Nguyen, and 

M. K. I. Molla, “Epileptic seizure detection in 

EEG using mutual information-based best 

individual feature selection”, Expert Systems 

with Applications, Vol. 193, p. 116414, 2022. 

[18] A. H. Abdulwahhab, A. H. Abdulaal, A. H. T. 

Al-Ghrairi, A. A. Mohammed, and M. 

Valizadeh, “Detection of epileptic seizure using 

EEG signals analysis based on deep learning 

techniques”, Chaos, Solitons & Fractals, Vol. 

181, p. 114700, 2024.  

[19] Y. Zhang, S. Yao, R. Yang, X. Liu, W. Qiu, L. 

Han, W. Zhou, and W. Shang, “Epileptic seizure 

detection based on bidirectional gated recurrent 

unit network”, IEEE Transactions on Neural 

Systems and Rehabilitation Engineering, Vol. 

30, pp. 135-145, 2022. 

[20] M. Jia, W. Liu, J. Duan, L. Chen, C. L. P. Chen, 

Q. Wang, and Z. Zhou, “Efficient graph 

convolutional networks for seizure prediction 

using scalp EEG”, Frontiers in Neuroscience, 

Vol. 16, p. 967116, 2022. 

[21] M. S. Islam, K. Thapa, and S.-H. Yang, 

“Epileptic-Net: An Improved Epileptic Seizure 

Detection System Using Dense Convolutional 



Received:  May 19, 2024.     Revised: June 13, 2024.                                                                                                       980 

International Journal of Intelligent Engineering and Systems, Vol.17, No.4, 2024           DOI: 10.22266/ijies2024.0831.73 

 

Block with Attention Network from EEG”, 

Sensors, Vol. 22, p. 728, 2022. 

[22] J. S. Ra, and T. Li, “A novel epileptic seizure 

prediction method based on synchroextracting 

transform and 1-dimensional convolutional 

neural network”, Computer Methods and 

Programs in Biomedicine, Vol. 240, p. 107678, 

2023. 

[23] BONN-EEG dataset: 

https://www.upf.edu/web/ntsa/downloads/-

/asset_publisher/xvT6E4pczrBw/content/2001-

indications-of-nonlinear-deterministic-and-

finite-dimensional-structures-in-time-series-of-

brain-electrical-activity-dependence-on-

recording-regi 

[24] CHB-MIT EEG dataset: 

https://physionet.org/content/chbmit/1.0.0/ 

 

 

about:blank
about:blank
about:blank
about:blank
about:blank
about:blank
about:blank

