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Abstract: Predicting the intensity of a user’s depression accurately is crucial for early intervention and preventing 

mental and physical health issues. Social media platforms are valuable sources of data for understanding and 

addressing mental health concerns. From this viewpoint, a Multi-Feature Long Short-Term Memory (MF-LSTM) 

network was developed to estimate depression levels in social media users based on various features: user-specific, 

community-specific, emotional, and structural features. However, the fixed values of hyperparameters used in MF-

LSTM lead to overfitting issues and degrade accuracy. To address this, the MF-BERT-Optimized LSTM (MF-BERT-

OLSTM) model is proposed in this article. This model uses an Improved Osprey Optimization Algorithm (IO2A) to 

optimize the LSTM network hyperparameters. The IO2A mimics the hunting behavior of ospreys for fish from the sea, 

focusing on balancing exploration and exploitation search processes. The analogy of osprey’s hunting behavior is used 

to find hyperparameters of LSTM in this paper. This IO2A adopts the Circle chaotic mapping in population 

initialization to improve diversity among individuals and quality of initial solutions. It also uses a dynamically 

modifiable elite leadership strategy for location updating, balancing global search capabilities and convergence speed. 

Additionally, a dynamic chaotic weight factor is employed to improve local search capabilities. Thus, the LSTM 

network parameters are optimized for training and predicting users’ depression levels. Additionally, this model uses 

BERT to better encode the complete semantic information of the given tweet sequences. The experimental results 

show that the MF-BERT-OLSTM model outperforms the MF-LSTM, Mood2Content, Ensemble, and MentalBERT 

models on the COVID-19 Twitter Dataset and Post-Traumatic Twitter Dataset. It achieves an accuracy of 98.9% and 

98.67%, as well as Root Mean Square Error (RMSE) values of 0.1846 and 0.1157, respectively, on the COVID-19 and 

Post-Traumatic Twitter Datasets. 

Keywords: Mental health, Social media platforms, Depression intensity prediction, MF- LSTM, BERT, 

Hyperparameter selection, Osprey optimization. 

 

 

1. Introduction 

Stress-related mental illness is a leading cause of 

global suffering and mortality, particularly among 

young people, affecting around 280 million 

individuals and rising daily [1]. Stress is the second 

most common factor in youth deaths, leading to 

social isolation and career setbacks [2]. India has the 

highest rates of depression, psychosis, and bipolar 

disorder worldwide [3]. Despite available therapies, 

only 10% of patients receive counseling due to 

societal stigma, preventing over 70% from seeking 

help and worsening their mental health [4, 5]. Recent 

events like movement restrictions, job losses, 

unemployment, domestic violence, and cyberattacks 

have exacerbated stress levels, causing 

dissatisfaction, worry, discomfort, and increased 

stress among individuals [6, 7]. Research on the 

mental health of social media users has been limited 

by time, cost, and lack of information. Online 

behavioral tests can help identify mental health issues, 

such as anxiety, which can vary in severity [8]. 

Treatment decisions are based on symptom severity, 

and medical intervention may be ineffective if the 

patient also shows signs of depression or anxiety. To 

address these challenges, Ghosh et al. [9] developed 

a deep classifier using webpage data to assess stress 
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levels. They extracted psychological, social, 

cognitive, individual-level, and distress-dependent n-

gram features to profile each user. This information 

was then input into a small LSTM model with Swish 

as an activation function. However, existing social 

media analytics tools often overlook the structural 

properties of influential entities. To overcome this 

limitation, the MF-LSTM network model was 

introduced [10] to estimate stress severity by 

considering the web topology of influential groups, 

impact metrics, and various characteristics. It 

analyzes the structural features of these groups, such 

as clinicians, academics, and social activists, to 

evaluate their local and global influence. 

1.1 Problem statement 

The accuracy of MF-LSTM for predicting 

depression intensity can be affected by improper 

hyperparameter selection. Manually determining the 

best hyperparameter values for different dataset sizes 

involves numerous trial and error attempts, making it 

a challenging task. So, an automated and adaptive 

hyperparameter selection algorithm is needed to 

improve accuracy, especially with large datasets. 

1.2 Major contributions of the manuscript 

This manuscript introduces the MF-BERT-

OLSTM model to optimize hyperparameters and 

enhance depression intensity estimation accuracy. 

This model incorporates the IO2A for optimal 

hyperparameter selection, which is inspired by the 

hunting behavior of ospreys. This study introduces 

three enhancements to the classical O2A algorithm: 

(i) The use of Circle chaotic mapping for population 

initialization improvement. (ii) A dynamic elite 

leadership strategy with a modifiable ratio for 

location updating. (iii) A dynamic chaotic weight 

factor for enhancing local searchability. Following 

this approach, the optimal hyperparameters of the 

LSTM network are selected for model training and 

depression intensity prediction. Additionally, this 

model utilizes a BERT-based encoder to encode the 

complete semantic information of the given tweet 

sequence, thereby enhancing prediction accuracy. 

The following sections are organized as follows: 

Section 2 covers the literature survey. Section 3 

describes the MF-BERT-OLSTM model and Section 

4 demonstrates its test results. Section 5 précises the 

study and offers future enhancements. 

2. Literature survey 

Recent studies have shown that DLM are more 

accurate than traditional machine learning methods in 

predicting depression levels in social media users. 

This section will review recent research on using 

DLMs to identify depression from social media data. 

2.1 Depression identification on social media 

A hybrid DLM [11] was created to predict a 

user’s mental state by classifying depressive and non-

depressive tweets using a grouping of Convolutional 

Neural Network (CNN) and Bidirectional LSTM 

(BiLSTM). A Sentic GCN, a Graph Convolutional 

Network (GCN) based on SenticNet [12], has been 

created to enhance text dependency graphs by 

integrating affective knowledge from SenticNet. 

A hybrid Sequence, Semantic, Context Learning 

(SSCL) framework [13] was developed by merging 

GloVe for feature extraction, LSTM and CNN for 

capturing the sequence and semantics of tweets, and 

GRUs with a self-attention strategy for contextual 

and inherent features. A fully connected layer with a 

sigmoid function was utilized to detect depression. 

The Multi-Aspect Depression Detection with 

Hierarchical Attention Network (MDHAN) [14] was 

created to identify depressed users on social media. 

Small deep-transfer learning language models [15] 

have been developed to classify depression from 

tweets. 

Ensemble hybrid learning [16] was developed 

that combines Attention LSTM and Logistic 

Regression (LR) for automated depression detection. 

A new typology [17] was created to diagnose 

depression severity from social media texts. The 

BiLSTM network with a DistilBERT model was 

utilized for classification.  

A Multimodal Hierarchical Attention (MHA) 

model [18] was created to detect depression in social 

media using an attention mechanism. An attention-

based BiLSTM-CNN [19] framework was developed 

to identify depressive tweets. 

A new method for detecting depression in social 

media text [20] was introduced by incorporating 

linguistic information into transformer models like 

BERT and MentalBERT. A new hybrid DLM using 

Fasttext CNN with LSTM [21], was developed for 

text representations. 

2.2 Depression detection during COVID-19 

A neural network model was presented [22] to 

predict post-traumatic stress disorder in adults. The 

pre-trained BERT and neural network [23] was 

developed to predict the sentiments from the tweets 

shared during COVID-19. The DNN [24] was 

presented to predict the depression of the elderly 

community according to the social factors related to 

stress, mental conditions, daily changes, and physical  
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Table 1. Summary of existing works 

Ref. 

No. 
Disadvantages 

[11] 
Using the BERT model was challenging because of the limited sentence length and low accuracy in 

learning complex features from the input sequence. 

[12] Increasing the number of GCN layers resulted in low accuracy and F1-score. 

[13] 
The model did not account for depression severity scores, resulting in low accuracy and F1-score for 

ternary labeled data. 

[14] 
The recall and accuracy were low because there was insufficient contextual knowledge of the short 

and long user-generated content. 

[15] 
The precision and recall were low because the model was trained on short tweets with limited 

vocabulary. This may make it less effective at predicting depression intensity in longer text passages. 

[16] 
Inadequate classification performance due to absence of transformer-based pre-trained language 

model like BERT and semantic features. 

[17] 
The model’s accuracy was low due to the exclusion of many features during training and the lack of 

data pre-processing. 

[18] 
The model’s accuracy and F1 score are low due to the lack of clear indicators of depression in the 

data. This makes it difficult for the model to accurately predict depressive tendencies in users. 

[19] 
The model’s accuracy was low due to the presence of words commonly found in non-depressive 

samples, leading to confusion and misclassification of depressive samples as non-depressive. 

[20] 
The authors were unable to optimize hyperparameters due to limited access to GPU resources, leading 

to poor detection performance. 

[21] The fixed hyperparameters may lead to low recall and accuracy values. 

[22] 
The accuracy of identifying PTSD-positive cases was low due to the limited number of positive 

samples. 

[23] 
Low recall and precision were observed due to limitations in collecting the number of available 

tweets. 

[24] 
Choosing the kernel width and number of features for a local model can be challenging, resulting in 

low accuracy. 

[25] The prediction accuracy and RMSE were not optimal due to the small dataset size. 

[26] The hyperparameters were not optimized, which tends to poor precision. 

[27] 
The accuracy was lower owing to the limited dataset size and potential information loss from 

encoding only the first 256 tokens of daily tweets. 

 

 

distancing. Also, the DNN parameters were 

optimized by the grid search scheme. A stress 

prediction technique based on the Elastic-Net 

normalization model [25] was developed to identify 

depression risks. 

A new hybrid DLM [26] using the LSTM and 

CNN was developed to estimate the consequence of 

COVID-19 on an individual’s psychological strength 

from tweets. A new Mood2Content model [27] was 

created to detect depression early in online users. It 

utilized content and mood encoders to extract content 

and mood representations from daily tweets. These 

representations are aggregated and inputted into a 

user encoder with Transformer and self-attention 

layers to predict depression risk. Table 1 outlines the 

drawbacks of above-studies techniques individually. 

2.3 Research gap 

Existing studies often struggle with selecting 

optimal hyperparameters, leading to low accuracy in 

depression detection. This study introduces a new 

metaheuristic optimization algorithm to dynamically 

choose hyperparameters for the LSTM network, 

improving its ability to predict depression severity 

with higher accuracy. In addition, semantic features 

of sentences are considered through BERT. 

3. Proposed methodology 

This section explains the MF-BERT-OLSTM 

network model for depression intensity prediction in 

detail. Table 2 lists the notations used in this study. 

A conceptual design of this work is portrayed in 

Fig. 1. Different phases in the depression intensity  



Received:  May 8, 2024.     Revised: June 21, 2024.                                                                                                       1125 

International Journal of Intelligent Engineering and Systems, Vol.17, No.4, 2024           DOI: 10.22266/ijies2024.0831.83 

 

 
Figure. 1 Conceptual design of the presented work 

 

 
Table 2. Lists of notations 

Notations Description 

𝑃  Population matrix of osprey’s positions 

𝑃𝑖  and 𝑝𝑖,𝑗 𝑖𝑡ℎ osprey and its 𝑗𝑡ℎ dimension, 

respectively 

𝑁  Amount of ospreys 

𝑚  Amount of problem variables 

𝐹  Vector of the fitness values 

𝐹𝑖  Fitness value of the 𝑖𝑡ℎ osprey 

𝑆𝑖  Group of fish locations for the 𝑖𝑡ℎ osprey 

𝑃𝑏𝑒𝑠𝑡  Optimal candidate solution  

𝑃𝑖
𝑆1   New location of the 𝑖𝑡ℎ osprey according 

to the initial stage of IO2A 

𝑝𝑖,𝑗
𝑆1   𝑗𝑡ℎ dimension of 𝑃𝑖

𝑆1  

𝐹𝑖
𝑆1   Fitness value of 𝑃𝑖

𝑆1  

𝐶𝑆𝑖  Selected fish for 𝑖𝑡ℎ osprey 

𝐶𝑆𝑖,𝑗  𝑗𝑡ℎ dimension for 𝐶𝑆𝑖   

𝐼𝑖,𝑗  Random value in the range of {1,2} 

𝑟𝑖𝑗   Random number between [0,1] 

𝑃𝑖,𝑗
𝑏𝑒𝑠𝑡  Position of the individual with optimal 

fitness value in the population 

𝛼   Dynamic modification factor 

𝑡  Present iteration 

𝑇  Highest amount of iteration 

𝜔  Dynamic chaotic weight factor 

𝑃𝑖
𝑆2   New location of the 𝑖𝑡ℎ osprey according 

to the second stage of IO2A 

𝑝𝑖,𝑗
𝑆2   𝑗𝑡ℎ dimension of 𝑃𝑖

𝑆2  

𝐹𝑖
𝑆2   Fitness value of 𝑃𝑖

𝑆2  

 

prediction model include (i) data collection, (ii) pre-

processing, (iii) feature mining and (iv) depression 

intensity prediction. First, the dataset is created by 

collecting user data from Twitter. A depression score 

is calculated based on sentiment polarities and Latent 

Semantic Analysis (LSA). This score is classified 

into no, minor, considerable and severe depression 

levels. The created dataset is pre-processed and used 

to extract a variety of features [10]. This involves 

removing emojis, punctuation, articles, and special 

characters from the tweets. The content of the tweets 

is tokenized, stemmed, and lemmatized. Redundant 

or unwanted words like typographical errors or 

acronyms are eliminated. 

After preprocessing, the online behaviors of 

Twitter users are considered to extract emotion 

features, event features, user-specific features and 

depression-related n-gram features. 

Also, social network structural properties and 

influence features are extracted. The obtained 

features are passed to the BERT to obtain the global 

information of the tweets. The BERT consists of 

many transformer units with a multi-head attention 

strategy [28]. Input vectors are linearly transformed 

through multiple layers and then processed by the 

attention unit to determine attention weights. The 

attention strategy result is merged with the preceding 

linear transformation to produce the absolute result of 

the multi-head attention strategy. The output of the 

BERT is fed to the LSTM network for depression 

severity prediction, with model hyperparameters 

optimized by the IO2A to increase prediction 

accuracy. The hyperparameters of the LSTM model 

include word embedding size, number of filters, 

activation function, learning rate, dropout rate, 

weight decay, epochs, batch size, momentum rate, 

and loss function. The values of these 
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hyperparameters are optimally set by the IO2A for 

effective model training. A detailed description of 

this IO2A is presented in the section below.  

3.1 Improved osprey optimization algorithm for 

hyperparameter selection 

The nocturnal bird of prey known as the osprey 

can serve as inspiration for a novel optimization 

algorithm by providing a natural test case in its ability 

to capture fish and fly them to a more favorable 

location [29]. The improvements in each phase of the 

IO2A algorithm are described below: 

1. Initialization: In the traditional OOA 

algorithm, pseudo-random numbers are used 

to initialize the population position, leading 

to low-quality initial population individuals 

and insufficient traversal of the solution 

space. By replacing pseudo-random numbers 

with chaotic sequences for population 

initialization, the initial population diversity 

is increased, and the initial solution quality is 

improved. Chaotic mapping also helps reduce 

randomness fluctuation in population 

initialization, increasing the robustness. 

2. Exploration phase: The IO2A algorithm 

updates individual positions through a 

dynamic elite leadership strategy. Initially, 

this strategy has a small proportion, allowing 

for random target detection by individuals to 

explore the solution space fully. As the 

algorithm progresses, this strategy plays a 

larger role, guiding individual position 

updates towards the optimal solution. This 

reduces ineffective searches and improves 

convergence speed. 

3. Exploitation phase: The IO2A algorithm 

incorporates a dynamic chaotic weight factor 

strategy in the exploitation phase. The weight 

factor, defined by Cubic chaotic mapping, is 

dynamically adjusted based on the number of 

iterations. This strategy enhances the 

algorithm’s local search ability and improves 

optimization accuracy. 

The mathematical modeling of the IO2A is 

explained below. 

3.1.1. Initialization 

The IO2A is a population-based method, which 

utilizes the searchability of the population to obtain 

an optimal result iteratively. Every osprey in the 

IO2A population is a potential solution because it 

uses its location in the search space to make decisions 

about the problem’s variables. 

First, the IO2A population is modeled by a matrix 

as given in Eq. (1), where 𝑖 = 1,… ,𝑁  and 𝑗 =
1,… ,𝑚. Then, the location of ospreys in the search 

space is set by the Circle chaotic mapping as given in 

Eq. (2). In Eqs. (1) and (2), 𝑃 is the population matrix 

of osprey’s positions, 𝑃𝑖 denotes the 𝑖𝑡ℎ osprey (i.e., 

a candidate solution), 𝑝𝑖,𝑗 indicates its 𝑗𝑡ℎ dimension 

(i.e., problem variable), 𝑁 is the amount of ospreys, 

and 𝑚  is the amount of problem variables (i.e., 

number of hyperparameters of the LSTM model. 

 

𝑃 =

[
 
 
 
 
𝑃1
⋮
𝑃𝑖
⋮
𝑃𝑁]
 
 
 
 

𝑁×𝑚

=

[
 
 
 
 
𝑝1,1 ⋯ 𝑝1,𝑗 ⋯ 𝑝1,𝑚
⋮ ⋱ ⋮ ⋰ ⋮
𝑝𝑖,1 ⋯ 𝑝𝑖,𝑗 ⋯ 𝑝𝑖,𝑚
⋮ ⋰ ⋮ ⋱ ⋮

𝑝𝑁,1 ⋯ 𝑝𝑁,𝑗 ⋯ 𝑝𝑁,𝑚]
 
 
 
 

𝑁×𝑚

   (1) 

 

𝑝𝑖,𝑗 = mod(𝑝𝑖 + 0.2 − (
0.5

2𝜋
) sin(2𝜋𝑝𝑖) , 1)   (2) 

 

The objective (fitness) function of a problem such 

as prediction accuracy can be evaluated by 

comparing each osprey as a candidate solution, and 

the evaluated values can be represented using a vector 

as given in Eq. (3): 

 

𝐹 =

[
 
 
 
 
𝐹1
⋮
𝐹𝑖
⋮
𝐹𝑁]
 
 
 
 

𝑁×1

=

[
 
 
 
 
𝐹(𝑋1)
⋮

𝐹(𝑋𝑖)
⋮

𝐹(𝑋𝑁)]
 
 
 
 

𝑁×1

              (3) 

 

In Eq. (3), 𝐹  denotes the vector of the fitness 

values and 𝐹𝑖  denotes the fitness value of the 𝑖𝑡ℎ 

osprey. The calculated fitness values are essential for 

determining the viability of potential solutions. The 

best value denotes the optimal candidate result, while 

the worst value denotes the worst solution. Each 

iteration of the search process involves updating the 

ospreys’ position in the search space, which in turn 

necessitates updating the best candidate solution. 

3.1.2. Exploration – searching location and hunting 

prey 

Ospreys, with their strong eyesight, can detect 

fish underwater and attack them. The primary stage 

of population update in IO2A is designed according 

to this nature. This simulation modifies the osprey’s 

location in the search space, increasing the 
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searchability of IO2A in recognizing best areas and 

evading local optima. The IO2A design considers 

underwater fishes with better fitness function values 

for each osprey’s position in the search space. The 

group of fish for every osprey is signified by Eq. (4). 

 

𝑆𝑖 = {𝑃𝑘|𝑘 ∈ {1,… ,𝑁}⋀𝐹𝑘 < 𝐹𝑖} ∪ {𝑃𝑏𝑒𝑠𝑡}   (4) 

 

In Eq. (4), 𝑆𝑖 denotes the group of fish locations 

for the 𝑖𝑡ℎ  osprey and 𝑃𝑏𝑒𝑠𝑡  denotes the optimal 

candidate solution (i.e., the best osprey). In this phase, 

individuals randomly select attack targets (fish) for 

location updating to explore the search space and 

avoid local optima. However, this random strategy 

may not always yield better solutions and can lead to 

an increase in invalid searches over iterations. To 

address this, a dynamic elite leadership strategy with 

a modifiable ratio is introduced. So, a new location 

for the corresponding osprey is determined as given 

in Eqs. (5a) and (5b): 

 

𝑝𝑖,𝑗
𝑆1 = 𝑝𝑖,𝑗 + 𝛼 ∙ 𝑟𝑖𝑗 ∙ (𝑃𝑖,𝑗

𝑏𝑒𝑠𝑡 − 𝑃𝑖,𝑗) + (1 −

𝛼) ∙ 𝑟𝑖𝑗 ∙ (𝐶𝑆𝑖,𝑗 − 𝐼𝑖,𝑗 ∙ 𝑝𝑖,𝑗), 𝛼 =
𝑡

𝑇
             (5a) 

 

𝑝𝑖,𝑗
𝑆1 =

{
 

 𝑝𝑖,𝑗
𝑆1 , 𝑙𝑏𝑗 ≤ 𝑝𝑖,𝑗

𝑆1 ≤ 𝑢𝑏𝑗

𝑙𝑏𝑗, 𝑝𝑖,𝑗
𝑆1 < 𝑙𝑏𝑗

𝑢𝑏𝑗, 𝑝𝑖,𝑗
𝑆1 > 𝑢𝑏𝑗

             (5b) 

 

When the fitness function value increases, this 

new location changes the former location of the 

osprey as shown in Eq. (6): 

 

𝑃𝑖 = {
𝑃𝑖
𝑆1 , 𝐹𝑖

𝑆1 < 𝐹𝑖
𝑃𝑖, 𝑂𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

                    (6) 

 

In Eqs. (5a), (5b), and (6), 𝑃𝑖
𝑆1  defines the new 

location of the 𝑖𝑡ℎ  osprey according to the initial 

stage of IO2A, 𝑝𝑖,𝑗
𝑆1  denotes its 𝑗𝑡ℎ  dimension, 𝐹𝑖

𝑆1 

indicates its fitness value, 𝐶𝑆𝑖 denotes the chosen fish 

for 𝑖𝑡ℎ  osprey, 𝐶𝑆𝑖,𝑗  is its 𝑗𝑡ℎ  dimension, 𝐼𝑖,𝑗  is 

random value in the range of {1,2}  and 𝑟𝑖𝑗  is a 

random number between [0,1] . Also, 𝑃𝑖,𝑗
𝑏𝑒𝑠𝑡  is the 

position of the individual with optimal fitness value 

in the population and 𝛼  is a dynamic modification 

factor to control the ration between the elite 

bootstrapping strategy and randomized exploration, 

whereas 𝛼  increases linearly from 0 to 1 with the 

number of iterations. 

This IO2A uses 𝛼  to shift from random 

exploration to elite leadership as the amount of 

iteration increases. A smaller value of 𝛼 at the start 

promotes exploration and avoids local optima, while 

a gradually increasing 𝛼 focuses on elite leadership 

for faster convergence to the best solution, reducing 

invalid searches. 

3.1.3 Exploitation – Moving the fish to the safe 

location 

In this phase, individuals who find locally 

optimal solutions undergo a recalibration process to 

slightly adjust their positions in the search space. This 

helps the algorithm move away from local optima. 

However, this method does not fully leverage global 

optimal solutions and may not provide accurate local 

search.  

To address this, a dynamic chaotic weighting 

factor is proposed based on Cubic chaotic mapping. 

This factor adjusts weight coefficients during 

iterations to enhance local search. The dynamic 

chaotic weight factor is calculated by Eq. (7): 

 

𝜔(𝑡 + 1) =
2.595𝜔(𝑡)(1−𝜔(𝑡)2∙(𝑇−𝑡))

𝑇
  (7) 

 

In Eq. (7), 𝜔(1)  takes the value 0.3, 𝑡 (𝑡 =
1,… , 𝑇) is the present iteration and 𝑇  indicates the 

highest amount of iteration. So, the location of the 

introduced dynamic chaos, the weight factor is 

formulated as given by Eqs. (8a) and (8b): 

 

𝑝𝑖,𝑗
𝑆2 = 𝜔(𝑡) ∙ 𝑝𝑖,𝑗 +

𝑙𝑏𝑗+𝑟𝑖𝑗∙(𝑢𝑏𝑗−𝑙𝑏𝑗)

𝑡
              (8a) 

 

𝑝𝑖,𝑗
𝑆2 =

{
 

 𝑝𝑖,𝑗
𝑆2 , 𝑙𝑏𝑗 ≤ 𝑝𝑖,𝑗

𝑆2 ≤ 𝑢𝑏𝑗

𝑙𝑏𝑗, 𝑝𝑖,𝑗
𝑆2 < 𝑙𝑏𝑗

𝑢𝑏𝑗, 𝑝𝑖,𝑗
𝑆2 > 𝑢𝑏𝑗

             (8b) 

 

After that, if the fitness function value is 

increased in this new location, it changes the former 

location of the resultant osprey as given in Eq. (9): 

 

𝑃𝑖 = {
𝑃𝑖
𝑆2 , 𝐹𝑖

𝑆2 < 𝐹𝑖
𝑃𝑖, 𝑂𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

                    (9) 

 

In Eqs. (8a), (8b), and (9), 𝑃𝑖
𝑆2  defines the new 

location of the 𝑖𝑡ℎ  osprey according to the second 

stage of IO2A, 𝑝𝑖,𝑗
𝑆2 denotes its 𝑗𝑡ℎ dimension and 𝐹𝑖

𝑆2 

indicates its fitness function value. Introducing the 

dynamic chaotic weight factor allows for a more 

precise search near the optimal solution during 

position updates. The weight factor decreases as the 

number of iterations increases, transitioning from 

fine search to rapid convergence.  
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Figure. 2 Flow diagram of IO2A for optimal 

hyperparameter selection 

 

 

This approach enhances accuracy in finding the best 

solution and evading local optima in optimization 

problems with multiple local optimal values. 

Thus, the IO2A updates osprey positions in the 

first iteration, compares fitness function values, and 

updates the best candidate solution in the subsequent 

iterations. The algorithm updates locations for 

ospreys in the final iteration, and after full 

implementation, the best candidate solution (best 

hyperparameters of LSTM network) stored during 

iterations is considered as a solution to the problem 

(hyperparameter selection). Algorithm 1 describes 

the pseudocode of IO2A for hyperparameter 

selection Fig. 2 depicts its overall workflow. 

 

Algorithm 1: IO2A-based hyperparameter selection 

Input: Set of LSTM hyperparameters 

Output: Optimal hyperparameters 

1. Begin 

2. //Initialization stage: 

3. Initialize the IO2A population size 𝑁 , the 

total number of iterations 𝑇 and boundary conditions 

(𝑢𝑏 and 𝑙𝑏); 

4. Define 𝐹 (prediction accuracy); 

5. Create the initial population matrix randomly  

        using Eqs. (1) and (2); 

6. 𝒘𝒉𝒊𝒍𝒆(𝑡 = 1: 𝑇) 
7.    𝒇𝒐𝒓(𝑖 = 1:𝑁) 
8.       Evaluate the fitness function by Eq. (3); 

9.       Specify the target fish population for 

             each individual from Eq. (4);    

10.       //Exploration Stage: 

11.       Determine the new location of each  

              individual using Eq. (5a); 

12.       Verify the boundary criteria by Eq. (5b); 

13.       Update the 𝑖𝑡ℎ individual using Eq. (6); 

14.       //Exploitation Stage: 

15.       Determine the new location of each  

             individual using Eq. (8a); 

16.       Verify the boundary criteria by Eq. (8b); 

17.       Update the 𝑖𝑡ℎ individual using Eq. (9); 

18.    𝒆𝒏𝒅 𝒇𝒐𝒓 

19.    Update the population optimal fitness  

          value and best location; 

20.    𝑡 = 𝑡 + 1; 

21. 𝒆𝒏𝒅 𝒘𝒉𝒊𝒍𝒆 

22. Return the best solution (i.e., optimal  

        hyperparameters); 

23. End 

 

Thus, the MF-BERT-OLSTM is trained using a set of 

optimal hyperparameters and used to accurately 

predict users’ depression levels from their tweets. 

4. Results and discussion 

In this section, the efficiency of the MF-BERT-

OLSTM model is compared to other models 

including MF-LSTM [10], Ensemble [16], 

MentalBERT [20] and Mood2Content [27]. The 

experiments are conducted on a laptop equipped with 

an Intel® Core TM i7-1065G7 CPU @ 4.90GHz, 8GB 

RAM, and a 256GB SSD running Windows 10 64-bit. 

To evaluate the performance improvements, all 

existing and proposed models are implemented in the 

MATLAB 2019b software with two distinct datasets. 

4.1 Parameter settings 

Table 3 presents the parameters and their optimal 

values used to simulate both existing and proposed 

models, for performance analysis. 
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Table 3. List of optimal hyperparameters for proposed 

and existing models 

Parameters Search Space 
Optimal 

Range 

Proposed MF-BERT-LSTM, MF-LSTM [10], 

Mood2Content [27], MentalBERT [20] and 

Ensemble [16] Models 

Learning rate [0.0001, 0.1] 0.01 

Dropout rate [2%, 5%] 2% 

Weight decay [0.0001, 0.001] 0.0001 

Number of epochs [100, 400] 250 

Batch size [32, 64, 128, 512] 128 

Momentum [0, 1] 0.9 

Optimizer [Stochastic gradient 

descent, Adam] 

Adam 

Loss [Cross-entropy, 

mean square error] 

Cross-

entropy 

MF-LSTM [10] 

No. of LSTM layers [1, 3, 5, 7] 3 

No. of hidden units [12, 24, 48, 96, 

128] 

128 

Word embedding 

size 

[128, 256, 520] 520 

Activation function [linear, ReLU, tan-

sigmoid, swish] 

Swish 

MF-BERT-LSTM 

Max. sequence 

length 

[384, 512] 512 

Warmup rate [0.1, 0.12, 0.2] 0.1 

Mood2Content [27] 

Patience of early 

stop 

[10, 20, 50] 10 

Modification factor 

𝜶 

[0.2, 0.5, 0.9] 0.5 

Ensemble Model [16] 

Regularization 

strength 

[0.5, 1] 1 

MentalBERT [20] 

Gamma [0.1, 0.2] 0.1 

Step size [2, 3, 5] 5 

Smoothing 

parameter 𝜶 

[0.001, 0.01] 0.001 

Learnable parameter 

𝜷 

[0.0001, 0.001] 0.0001 

 

 

Table 4. Dataset details 

Dataset Training Set Testing Set 

COVID-19 

Twitter 

Dataset 

8000 non-

depression 

2000 non-

depression 

32000 depression 

(8000 for each 

label) 

8000 depression 

(2000 for each 

label) 

Post-

Traumatic 

Twitter 

Dataset 

8000 non-

depression 

2000 non-

depression 

16000 depression 

and 16000 PTSD 

4000 depression 

and 4000 PTSD 

 

4.2 Dataset description 

This study analyzes the following datasets for 

performance evaluation: 

1. COVID-19 Twitter Dataset [10, 27]: The data 

was gathered from Twitter accounts between 

March and December 2020, including around 

50000 users, with 10000 non-depression and 

40000 depression users (10000 for each 

label). This dataset is compiled by web-

crawling Twitter user’s profile information 

and timeline. Additionally, it searches for an 

anchor tweet that characterizes the user’s 

mental state. For a month, every tweet that 

the anchor tweet posted was collected. When 

a user’s anchor tweet says “(I’m/was/I 

am/I’ve been) declared depression,” their 

tweets are classified as depressed. Individuals 

who failed to post any tweets that included 

the terms “stress” or “depressed” were 

classified as non-depressed. In this way, a 

non-depression dataset is also prepared. 

Additionally, an independent re-labeling 

strategy is developed for classifying the 

depressed tweets. This strategy uses the LSA 

to compute a depression score based on the 

emotion polarity of tweets. The scores are 

divided into minimal, mild, moderate, and 

severe depression categories. 

2. Post-Traumatic Twitter Dataset: The dataset, 

named the Post-Traumatic Twitter Dataset, is 

designed to evaluate the proposed model in 

this study. This dataset is structured similarly 

to other datasets like the CLPsych 2015 

Shared Task dataset [16] and Dreaddit dataset 

[20]. It includes user-generated posts from 

50000 Twitter users with depression or Post-

Traumatic Stress Disorder (PTSD) between 

January and December 2022. Particularly, 

there are three labels, i.e., non-depression, 

depression and PTSD. Of these users, 10000 

have no depression, 20000 have depression 

and 20000 have PTSD. This dataset has been 

annotated using the Amazon Mechanical 

Turk. This dataset also includes lexical, 

syntactic and social media features per post. 

Both datasets are divided into a training and a test 

set with an 80:20 split ratio. See Table 4 for more 

details. 

4.3 Performance evaluation measures 

The following metrics are measured to compare 

the presented and conventional models: 



Received:  May 8, 2024.     Revised: June 21, 2024.                                                                                                       1130 

International Journal of Intelligent Engineering and Systems, Vol.17, No.4, 2024           DOI: 10.22266/ijies2024.0831.83 

 

• Accuracy: It is the proportion of accurate 

identifications made out of all the data tested. It is 

calculated by Eq. (10). 

 

𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =
𝑇𝑟𝑢𝑒 𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒 (𝑇𝑃)+𝑇𝑟𝑢𝑒 𝑁𝑒𝑔𝑎𝑡𝑖𝑣𝑒 (𝑇𝑁)

𝑇𝑃+𝑇𝑁+𝐹𝑎𝑙𝑠𝑒 𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒 (𝐹𝑃)+𝐹𝑎𝑙𝑠𝑒 𝑁𝑒𝑔𝑎𝑡𝑖𝑣𝑒 (𝐹𝑁)
   (10) 

 

Here, TP is the amount of labels that are identified 

as no depression, TN is the amount of labels that are 

identified as depression, FP is the amount of labels 

wrongly identified as depression and FN is the 

amount of labels wrongly identified as no depression. 

• Precision: It is calculated by Eq. (11). 

 

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =
𝑇𝑃

𝑇𝑃+𝐹𝑃
                   (11) 

 

• Recall: It is calculated by Eq. (12). 

 

𝑅𝑒𝑐𝑎𝑙𝑙 =
𝑇𝑃

𝑇𝑃+𝐹𝑁
                         (12) 

 

• F1-score: It is measured by Eq. (13). 

 

𝐹1 =
2×𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛×𝑅𝑒𝑐𝑎𝑙𝑙

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛+𝑅𝑒𝑐𝑎𝑙𝑙
                   (13) 

 

• Root Mean Square Error (RMSE): It defines 

the disparity of all actual tags (𝑙𝑎) and estimated tags 

(𝑙𝑒). It is calculated by Eq. (14). 

 

𝑅𝑀𝑆𝐸 = √∑(𝑙𝑎 − 𝑙𝑒)
2                    (14) 

 

4.4 Performance analysis for COVID-19 twitter 

dataset 

Table 5 displays the confusion matrix of the 

existing and proposed models using the COVID-19 

twitter dataset. Fig. 3 compares various models on the 

COVID-19 twitter dataset and it is noticed that the 

MF-BERT - OLSTM outperforms current models in 

 

 
Table 5. Confusion matrix of existing and proposed models using COVID-19 Twitter Dataset 

Models True Labels 

MentalBERT 

P
re

d
ic

te
d

 L
a

b
el

s 

Labels 1 (No 

depression) 

2 (Minimal 

depression) 

3 (Mild 

depression) 

4 (Moderate 

depression) 

5 (Severe 

depression) 

1 1785 54 43 40 35 

2 54 1805 41 35 25 

3 62 57 1820 42 45 

4 50 43 43 1840 45 

5 49 41 53 43 1850 

Mood2Content 

Labels 1 2 3 4 5 

1 1800 50 38 38 35 

2 52 1827 31 33 24 

3 60 52 1850 40 45 

4 46 40 33 1848 44 

5 42 31 48 41 1852 

Ensemble 

Labels 1 2 3 4 5 

1 1820 45 32 32 32 

2 48 1847 27 30 21 

3 52 45 1866 36 41 

4 42 35 30 1865 41 

5 38 28 45 37 1865 

MF-LSTM 

Labels 1 2 3 4 5 

1 1840 40 29 28 30 

2 42 1870 25 25 20 

3 48 40 1880 30 38 

4 37 30 26 1887 36 

5 33 20 40 30 1876 

Proposed (MF-

BERT-OLSTM) 

Labels 1 2 3 4 5 

1 1975 6 7 5 6 

2 7 1975 6 6 5 

3 5 6 1974 7 4 

4 6 7 6 1976 5 

5 7 6 7 6 1980 
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Figure. 3 Comparison of MF-BERT-OLSTM model 

against existing models on COVID-19 twitter dataset 

 

predicting users’ depression severity due to 

optimized hyperparameters. 

Compared to MentalBERT, Mood2Content, 

ensemble, and MF-LSTM models, MF-BERT-

OLSTM increases precision by 5.92%, 4.93%, 4.17%, 

and 3.25%, recall by 7.59%, 6.09%, 5.78%, and 

4.95%, F1-score by 6.75%, 5.51%, 4.97%, and 4.1%, 

and accuracy by 8.68%, 7.77%, 6.8%, and 5.74%, 

respectively. 

4.5 Performance analysis for post-traumatic 

twitter dataset 

Table 6 displays the confusion matrix of the 

existing and proposed models using the post-

traumatic twitter dataset.  

Fig. 4 compares various models on the post-

traumatic twitter dataset and it is noted that the MF-

BERT-OLSTM outperforms current models in 

predicting users’ depression severity due to 

optimized hyperparameters and better model training. 

Compared to all existing models, MF-BERT-

OLSTM increases precision by 7.81%, 7.09%, 3.91%, 

and 2.45%, recall by 7.9%, 7.29%, 3.98%, and 2.5%, 

F1-score by 7.85%, 7.18%, 3.94%, and 2.47%, and 

accuracy by 7.72%, 7.01%, 3.87%, and 2.43%, 

respectively. Fig. 5 compares the RMSE of the 

proposed and existing models on the two different 

datasets. The RMSE of the MF-BERT-OLSTM is 

significantly lower compared to MentalBERT, 

Mood2Content, ensemble and MF-LSTM models on 

both datasets.  

 

 
Figure. 4 Comparison of MF-BERT-OLSTM model 

against existing models on post-traumatic twitter dataset 

 
Table 6. Confusion matrix of MF-BERT-OLSTM model using PTSD dataset 

Models  True Labels 

Labels 1 (No depression) 2 (Depression) 3 (PTSD) 

MentalBERT 

P
re

d
ic

te
d

 L
a

b
el

s 

1 1730 110 150 

2 140 3730 150 

3 130 160 3700 

Mood2Content 

Labels 1 2 3 

1 1750 100 140 

2 130 3750 140 

3 120 150 3720 

Ensemble 

Labels 1 2 3 

1 1802 60 77 

2 98 3852 78 

3 100 88 3845 

MF-LSTM 

Labels 1 2 3 

1 1840 40 50 

2 80 3888 45 

3 80 72 3905 

Proposed (MF-BERT-

OLSTM) 

Labels 1 2 3 

1 1920 10 17 

2 40 3979 15 

3 40 11 3968 
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Figure. 5 RMSE for proposed and existing models on two 

datasets 

 

Specifically, on the COVID-19 dataset, the RMSE 

reduction ranges from 37.25% to 45.59%, while on 

the PTSD dataset, the reduction ranges from 42.58% 

to 51.81%. 

5. Conclusion 

This study introduces the MF-BERT-OLSTM 

model, which enhances the prediction performance of 

depression intensity by optimizing the network’s 

hyperparameters using the IO2A approach. The 

IO2A is inspired by the hunting behavior of ospreys. 

By leveraging exploration and exploitation stages, 

the model identifies the optimal hyperparameters for 

estimating depression intensity levels of Twitter 

users. The test results demonstrate that the MF-

BERT-OLSTM model achieves 98.9% accuracy and 

0.1846 RMSE on the COVID-19 dataset, as well as 

98.67% accuracy and 0.1157 RMSE on the PTSD 

dataset, compared to the MentalBERT, 

Mood2Content, ensemble, and MF-LSTM models in 

depression intensity prediction. Future research will 

explore predicting depression or stress severity on 

various online networking services like Facebook 

and Instagram to assess the model’s generalizability. 
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