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Abstract: Health developments have made it easier to transfer patient information although raising concerns about 

data vulnerability. In such scenarios, ensuring patient data security when transmitted and stored is essential. 

Steganography with the Prediction Error Expansion (PEE) can be a solution for storing critical patient data in ECG 

signals. However, PEE has shortcomings in balancing the quality and capacity of the embedding with the threshold 

used. Therefore, the method’s improvisation utilizes a mirror embedding scheme in PEE with a regression predictor 

to decrease the disparity of prediction results. To evaluate the method, the experiment used datasets from ECG MIT-

BIH. The results show that the resulting ECG signal can be maintained in a manner that is as similar as possible to the 

original signal. The quality of the embedding results can also be maintained above 52.8 dB for SNR and below 0.252 

for PRD at high bps, which is higher than that of other PEE-based or newest ECG steganographic methods. The 

resulting algorithm shows an increasing speed of up to 22.7 times from the existing method. 
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1. Introduction 

The health sector has experienced substantial 

growth because of the integration of technology for 

treating chronic diseases. In addition, healthcare 

professionals increasingly rely on health devices 

equipped with sensors that can transmit medical data, 

including scans, signals, and patient-specific details, 

to the internet. One application that relies heavily on 

this process is telemedicine, health services with the 

help of electronic communication and information 

technology to facilitate patients with medical 

personnel, such as online consultations, telehealth 

care, health information exchange, reporting 

management, and remote rehabilitation [1]. 

Telemedicine requires health workers to have 

observation and diagnostic capabilities to administer 

appropriate treatment. In addition, the transfer of 

patient information data is crucial as it could enable 

doctors to respond promptly. However, the 

availability of patient information raises deep 

concerns regarding data vulnerability. 

One potential problem is the risk of a man-in-the-

middle attack, whereby someone could acquire 

access to the patient’s personal data and tamper with 

it, thus disrupting the entire remote monitoring 

system [2]. Patient information stored on the 

server/cloud requires additional security mechanisms 

to prevent essential data leaks, including disease 

history, electrocardiogram signals (ECG), Magnetic 

Resonance Imaging (MRI), and Computed 

Tomography Scan (CT scan), which can compromise 

patient confidentiality [3]. To safeguard patient data, 

incorporating mechanism like steganography, which 

involves entering patient data as a watermark to 

maintain signals, could be beneficial as an addition to 

the security layer. 

A method that could be utilized to assess a 

patient’s condition is ECG, whose signals can 

indicate the presence of various cardiovascular 

diseases, including stroke, heart attack, arrhythmia, 

and coronary artery disease. Due to its critical 

position in disease management and diagnosis, there 

have been several advancements in the healthcare 

sector related to ECG.  
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Figure. 1 ECG wave structure 

 

The introduction of a monitoring system has made it 

feasible to use ECGs in hospitals, remote settings, 

and homes. Advances in ECG technology have given 

rise to mobile sensors, heart rate detection, disease 

diagnosis, emotion recognition, and compression 

methods through the implementation of the Internet 

of Things (IoT), mobile computing, and edge 

computation [4]. Steganography can be used as a 

method to enter important patient data into the ECG. 

However, ensuring the reversibility of the added 

watermark in the ECG is challenging. 

Previous research on steganography for ECG has 

proposed a method that first determines the wave 

structure. The ECG sample interval consists of P, Q, 

R, S, and T waves (sometimes U also), with the R 

wave being the peak, as shown in Fig. 1. With certain 

segments playing an important role in clinical 

features, some research has utilized this wave, such 

as embedding secret data only in the TP segment [5]. 

Banerjee and Singh predicted modified samples in 

the TP segment using a long short-term memory 

recurrent neural network (LSTM RNN), thereby 

reducing the original and prediction signal errors. 

Another study has divided the region into QRS and 

non-QRS [6]. In this work, Sony et al. used the hybrid 

approach of combining integer wavelet transform and 

modified the least significant bit (IWT-mLSB) in the 

QRS complex area. In contrast, the technique used in 

non-QRS areas is pixel inverted pixel value 

differencing (PI-PVD). 

Steganography in ECG mostly uses wavelet 

transformation to hide secret data. Kumar et al. 

researched a semi-blind scheme called ROSEmark 

[7]. Initially, ROSEmark decomposes the signal into 

segments of the same size and selects several 

segments for steganography. The tensed segments are 

then transformed using a three-level stationary 

wavelet transform (SWT) and discrete cosine 

transform (DCT). Yang and Wang employ a different 

transformation, like discrete wavelet transformation 

(DWT) [8]. Integer wavelet transform (IWT) is used 

with a combination of least significant bit 

replacement (LSB-r), coefficient alignment 

technique, and standard deviation blocks. When the 

standard deviation block is calculated before the 

embedding process, the data bits can be effectively 

included in the coefficients of IWT, increasing 

resistance to attack. Another similar transformation 

utilized by Mathivanan et al. [9] begins by converting 

patient data into a QR, followed by decomposition of 

the Daubechies four (db4) wavelet to the ECG signal. 

Subsequently, the coefficient of discrete wavelet 

transform (DWT) embeds the quick response (QR) 

codes from patient data in ECG signals. In addition, 

Mathivanan and Ganesh also proposed DWT with a 

pixel swapping technique to choose coefficient 

locations that could minimize signal degradation [10]. 

Khaldi et al. attempted to transform the signal 

into a 2D form and then implemented the fast DCT 

method [11]. Schur decomposition is utilized to 

process the coefficient results. Another approach that 

also performs transformations to 2D shapes using the 

pan-tomskin technique was proposed by Rani et al. 

Using a hybrid method of Multi-resolution Singular 

Value Decomposition (MSVD) and Contourlet 

Transform (ConT), the resulting steganography 

signal becomes more invisible and robust [12]. The 

main problem with the wavelet transformation 

approach is that the ECG used would not be fully 

reversible. 

To guarantee reversible steganography results, 

Wang et al. presented a steganography technique by 

adding a histogram shifting approach that utilizes a 

local linear predictor (LLP) and prediction error 

expansion (PEE) [13]. In this method, the ECG signal 

is separated into three types of samples, each of 

which uses a different predictor model. LLP is used 

as a sample predictor with sufficient neighboring 

samples, and a simple average is used if the predictor 

does not have enough neighboring samples. Bhalerao 

et al. modified the capabilities of the PEE method 

using Artificial Neural Networks (ANN), random 

forest regression, and Support Vector Regression 

(SVR) predictors [14, 15]. In contrast to the LLP 

scheme, the predictors obtain predicted values from 

four neighboring samples, thereby dividing the ECG 

into two segments: the embedding sample and the tip 

sample (the two earliest and last samples that are not 

embedded). Assuming that the overall signal has a 

prediction error value below the threshold, the data-

hiding capacity can reach 0.99 bps (bits per sample). 

However, the samples that can store the secrets bit 

can be reduced according to the existing prediction 

error threshold. To maximize the capacity 

augmentation, Gautama and Ahmad improved the 

schemas using looping PEE and regression predictors, 

making it harder for attackers to predict the value, 

although decreasing the overall quality [16]. Another 
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similar method by Samudra and Ahmad on audio 

could minimize the contrast of the original and 

watermarked samples by mirroring the value [17]. 

In this study, the proposed method considers 

ECG as a cover for reversible steganography. To 

improve PEE performance, the regression model is 

used as a predictor of new sample values. Regression 

also presents a solution that makes it more 

challenging to detect predicted values compared to 

the simple LLP method, although it still provides 

speed in calculations. Existing problems in PEE 

where the prediction has a vast distance from the 

original value, can be fixed with a mirror embedding 

approach; hence, it can further improve the quality 

and capacity of data hiding. The contributions include 

the following: 1) the improvement of reversible ECG 

steganography with a PEE-mirror embedding 

approach and 2) the quality enhancement of the 

reversible steganography while preserving large 

capacity. 

The remainder of this paper is organized into 

three parts. Section 2 discusses the details of the 

proposed technique. Section 3 demonstrates the 

results of the experimental analysis. Finally, section 

4 provides a conclusion on the contents of the paper. 

2. Proposed method 

The proposed method is intended to embed larger 

secrets inside the ECG. Existing research [6-12] 

primarily utilizes various transform domain 

approaches. However, the transform domain makes it 

challenging to produce the initial ECG signal from 

the entire extraction results. PEE provides the option 

of full reversibility of the extraction signal, as shown 

in [13-15]. However, problems arise when the 

predicted values differ significantly from the original 

values, causing more embedding slots to be wasted, 

resulting in reduced capacity and quality. The last 

study based on looping steganography with 

regression has a critical downside [16]. It creates a 

significant difference in errors from prediction error 

expansion, which removes the sample plot to embed 

the bit data. However, this worsens the overall quality 

of the watermark signal. Furthermore, improvement 

will combine modified prediction error expansion 

along with mirror embedding to add further 

embedding slots and enhance the capacity of ECG 

steganography while maintaining the quality as close 

as the original signal. The schemes are discussed in 

this section. 

2.1 Prediction scheme 

Before processing the ECG signal, the signal is 

divided into two usages: machine learning training 

and steganography implementation. Each signal will 

be cut into 10-second signals and converted into 

integers from floating-point by multiplying by 1000. 

For machine learning training, the 10-second signal 

is separated into a group of samples consisting of five 

consecutive records. Records will be divided into 

features and targets, as in model training. For each 

sample, the middle sample is defined as the target, 

while others are included in the feature. The process 

is explained in Fig. 2, where A, B, C, D, and E are the 

consecutive samples. For data preparation, A, B, D, 

and E are used as features to predict the value of C. It 

follows the same rule as the next consecutive groups: 

B, C, D, E, and F. 

In the steganography implementation, the 10-

second signal is used for cover. This whole cover is 

then divided into two parts: embedded and 

unchanged, as illustrated in Fig. 3. The unchanged 

part is located in the first and last two samples in the 

specified cover and is responsible for four sample 

points. In addition, the embedded part is responsible 

for hiding the secrets using the PEE method with the 

size of 𝑁𝑐 − 4  samples with 𝑁𝑐  representing cover 

size. Each sample could manage at least one bit of 

secret data for the ideal prediction. The terms of ideal 

prediction are discussed in Section 2.3. 

The embedding and extraction consist of three 

phases.  Assuming that one sample saves one bit of 

secret data, each phase could manage for around 0.33 

bps. As proposed by Bhalerao [14], the first phase 

will modify the values of C, F, and I. 

 

 
Figure. 2 Preprocessing of ECG samples to their 

respective groups 

 

 

 
Figure. 3 Partition in the embedding phase with an 

example containing 11 samples 
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Sample C will be determined by the values of A, B, 

D, and E as its two nearest sample neighbors; hence, 

this returns watermarked sample C’. If the entire 

secret data is not embedded, the second phase will be 

initiated. In the illustration, D and G are considered 

the next sample that will be added to the secret bit. 

Watermarked sample D’ will be obtained using B, C’, 

E, and F’. This phase achieved a maximum of 0.66 

bps. The same procedure was implemented in the last 

phase, obtaining an overall value of 0.99 bps. 

2.2 Predictor with a regression model 

The regression algorithm is a supervised learning 

method in machine learning that forecasts data from 

independent variables (feature) to analyze the 

relationship with the dependent variable (target). This 

research implements multiple types of regression 

models, such as ElasticNet, Bayesian Ridge, LASSO, 

and SGD Regressor, which are pipelined with 

Standard Scaler. Then, the model is trained using the 

prepared dataset. After training, the model will be 

used as a predictor for obtaining the closest value to 

the target sample. 

2.3 Embedding stage 

The proposed work starts the embedding stage 

after the ECG has been processed and the model has 

been trained. Parameters like threshold 𝑇 and bit rate 

of payload 𝑅𝑝 should be determined first. The other 

parameters used are contained in Table 1 to ease the 

readers’ understanding. In the usual PEE technique, 

the prediction error is calculated from the deviation 

of the prediction value obtained from the closest  

 
Table 1. Notation list 

Symbol Description 

𝑇 Threshold 

𝑅𝑝 Payload rate 

𝑥𝑖 Original signal index 𝑖 
𝑃𝑥𝑖  Prediction value of the index 𝑖 

𝑃𝑥′𝑖 
Prediction value of index 𝑖 from 

extraction 

𝑒𝑖 Embedding error 

𝑒′𝑖 Extraction error 

𝑆𝑖 Size of the total embedding error bits 

𝑆′𝑖 Size of the total extraction error bits 

𝐵𝑖  Total bit data that can be embedded 

𝐵′𝑖 Total bit data that could be extracted 

𝑃𝑑𝑖  Decimal representation of the bit data 

𝐶(𝑀𝑖) Total available mirror for embedding 

𝐶′(𝑀𝑖) Total available mirror for extraction 

𝑑𝑖 New embedding difference 

𝑥′𝑖 New stego ECG index 𝑖 
𝐼𝑖  Hidden information of the index 𝑖 

samples and the original. The improvement from the 

previous approach is the combination of the mirror 

embedding technique explained in [18] that is 

applicable to ECG signals. The process is detailed 

below. 

1) Begin from the index of the initial sample in 

the first phase of the embedding part.  

2) Predict new estimation of the ECG sample 

and call it the predicted value 𝑃𝑥𝑖 . The 

calculation contrast between the original 𝑥𝑖 
and the predicted value 𝑃𝑥𝑖  is defined as 

error 𝑒𝑖, computed on Eq. (1). 

 

𝑒𝑖 = |𝑥𝑖 − 𝑃𝑥𝑖|                   (1) 

 

3) Next, calculate the size of the total bits, 

represented as 𝑆𝑖 , that could be inserted as 

watermarked with Eq. (2). Here, if the size is 

more than 1, this is defined as the ideal 

prediction. If the ideal prediction cannot be 

achieved (or simplified by 𝑒𝑖 < 2 ), the 

calculation will move to step 7 because there 

is no secret bit that can be embedded. 

 

𝑆𝑖 = ⌊𝑙𝑜𝑔2 𝑒𝑖⌋                    (2) 

 

4) Determine the total bit data 𝐵𝑖 that could be 

inserted using Eq. (3). Then, 𝐵𝑖  bit taken 

from the secret data represented by 𝑃𝑏(𝐵𝑖) is 

converted to its decimal value with Eq. (4). 

 

𝐵𝑖 = {
⌈𝑅𝑝 + 𝑇⌉ 𝑖𝑓(𝑆𝑖 ≥ 𝑅𝑝 + 𝑇)

𝑆𝑖  𝑖𝑓(𝑆𝑖 < 𝑅𝑝 + 𝑇)
       (3) 

 

𝑃𝑑𝑖 = 𝑏𝑖𝑛2𝑑𝑒𝑐(𝑃𝑏(𝐵𝑖))           (4) 

 

5) Compute the new difference di  from 

prediction value and the mirrored value. To 

bring this value closer to the original value, 

the added secret value 𝑃𝑑𝑖 is mirrored with a 

certain number of existing mirror points from 

predicted 𝑃𝑥𝑖  and original value 𝑥𝑖 , notated 

by 𝐶(𝑀𝑖) with Eq. (5). The new difference 

di is calculated using Eq. (6). 

 

𝐶(𝑀𝑖) = ⌊
𝑒𝑖

2𝐵𝑖
⌋                   (5) 

 

𝑑𝑖 =

{
 
 

 
 
2𝐵𝑖×𝐶(𝑀𝑖)+(2

𝐵𝑖−𝑃𝑑𝑖) 𝑚𝑜𝑑2
𝐵𝑖;

𝑖𝑓 𝐶(𝑀𝑖) 𝑖𝑠 𝑜𝑑𝑑
 

2𝐵𝑖×𝐶(𝑀𝑖)+𝑃𝑑𝑖;
𝑖𝑓 𝐶(𝑀𝑖) 𝑖𝑠 𝑒𝑣𝑒𝑛

    (6) 
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6) Add the difference with the predicted value 

to obtain a new watermarked value. As in 

step 3, value of 𝑃𝑥𝑖 should not be the same 

as 𝑥𝑖; hence, 𝑃𝑥𝑖 ≠ 𝑥𝑖. Furthermore, the new 

stego-ECG sample 𝑥′𝑖 is determined by Eq. 

(7). 

 

𝑥′𝑖 = {
𝑃𝑥𝑖 + 𝑑𝑖;  𝑖𝑓 𝑃𝑥𝑖 < 𝑥𝑖  

𝑃𝑥𝑖 − 𝑑𝑖;   𝑖𝑓 𝑃𝑥𝑖 > 𝑥𝑖  
          (7) 

 

7) Continue the next index and apply the same 

step from 2 to 6 until the entire secret has 

been embedded. 

After the overall embedding phase, multiple 

pieces of information should be saved because they 

are parameters needed for the extraction stage: 

• Last sample index and phase from the 

embedding stage. 

• Total bit data inserted from the last 

embedding process. 

• Regression model used for embedding. 

• Bit rate of payload 𝑅𝑝 and threshold 𝑇 used 

in the overall process. 

• Hidden information representing the distance 

between 𝑥𝑖and the closest mirroring point is 

calculated by Eq. (8). 

 

𝐼𝑖 = 𝑒𝑖 − 2
𝐵𝑖 × 𝐶(𝑀𝑖)               (8) 

 

2.3 Extraction stage 

Data extraction is accomplished by reversing the 

order of the embedding process. The saved 

information can be retrieved as additional arguments 

to gather the hidden bit information. To ensure that 

the predictor could determine the same error, the 

same regression model as embedding will predict the 

sample. The detailed process is presented below. 

1) Begin from the last phase and index of 

embedding part.  

2) Find the error 𝑒′𝑖  by subtracting prediction 

𝑃𝑥′𝑖 and the watermarked value 𝑥′𝑖 in ECG 

sample computed below Eq. (9). 

 

𝑒′𝑖 = |𝑥
′
𝑖 − 𝑃𝑥

′
𝑖|                  (9) 

 

3) Check if the extraction error has a value less 

than 2 (represented by 𝑒′𝑖 < 2), the sample 

is not determined as an ideal prediction; 

hence, move to Step 6. If the sample is 

defined as an ideal prediction, similar to Eq. 

(2), obtain the total size of error bit 𝑆′𝑖 that 

could be extracted from the sample by 

following Eq. (10). 

 

𝑆′𝑖 = ⌊𝑙𝑜𝑔2 𝑒
′
𝑖⌋                    (10) 

 

4) Compute the availability of the total bit data 

that could be taken from the sample using Eq. 

(11). 

 

𝐵′𝑖 = {
⌈𝑅𝑝 + 𝑇⌉;  𝑖𝑓(𝑆

′
𝑖 ≥ 𝑅𝑝 + 𝑇)

𝑆′𝑖;  𝑖𝑓(𝑆
′
𝑖 < 𝑅𝑝 + 𝑇)

    (11) 

 

5) Figure the total mirror points 𝐶′(𝑀𝑖) varied 

from the prediction value to the watermarked 

value following Eq. (12). Subsequently, 

reflect the extracted error based on the mirror 

points as closer to the predicted value. To 

obtain the hidden value in decimal 𝑃𝑑𝑖, use 

the equation represented by Eq. (13) and 

change it to binary. 

 

𝐶′(𝑀𝑖) = ⌊
𝑒′𝑖

2𝐵
′
𝑖
⌋                 (12) 

 

𝑃𝑑𝑖 =

{
 
 

 
 
|𝑒′𝑖−2

𝐵′𝑖×(𝐶′(𝑀𝑖)+1)| 𝑚𝑜𝑑 2
𝐵′𝑖;

𝑖𝑓 𝐶′(𝑀𝑖) 𝑖𝑠 𝑜𝑑𝑑
 

|𝑒′𝑖−2
𝐵′𝑖×𝐶′(𝑀𝑖)|;

𝑖𝑓 𝐶′(𝑀𝑖) 𝑖𝑠 𝑒𝑣𝑒𝑛

  (13) 

 

6) Finally, the original value 𝑥𝑖  could be 

calculated by Eq. (14). The determination of 

the initial value can be divided into three 

conditions, with the initial condition being 

the development of the value 𝑒′𝑖 < 2, which 

is equivalent to 𝑃𝑥′𝑖 = 𝑥
′
𝑖 𝑜𝑟 |𝑥

′
𝑖 −

𝑃𝑥′𝑖|  =  1 . The remaining conditions are 

determined from the comparison of greater 

or less than with respect to prediction 𝑃𝑥′𝑖 
and the watermarked 𝑥′𝑖. 
 

𝑥𝑖 =

{
 
 
 

 
 
 

𝑥′𝑖
𝑖𝑓 𝑃𝑥′𝑖=𝑥

′
𝑖 𝑜𝑟 |𝑥

′
𝑖−𝑃𝑥

′
𝑖| = 1

𝑃𝑥′𝑖+(2
𝐵′𝑖×𝐶′(𝑀𝑖)+𝐼𝑖)

𝑖𝑓 𝑃𝑥′𝑖<𝑥
′
𝑖

𝑃𝑥′𝑖−(2
𝐵′𝑖×𝐶′(𝑀𝑖)+𝐼𝑖)

𝑖𝑓 𝑃𝑥′𝑖>𝑥
′
𝑖

         (14) 

 

7) Repeat the same steps from 2 to 6 with the 

next index until the first index of the first 

phase is processed. 
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The extraction process can be performed by 

constructing the whole original value to form the 

ECG signal. The secret data are represented by the 

binary value of the hidden decimal. 

3. Experimental analysis 

3.1 Dataset 

The Massachusetts Institute of Technology-Beth 

Israel Hospital (MIT-BIH) dataset [19, 20] was used 

as the source for the preparation process in section 

2.1. Of the 48 records, 46 ECG signals with MLII 

availability were processed into segments of 10 

seconds each. With a frequency of 360 Hz, the total 

number of samples obtained was 3600. These 

samples were then divided for use in machine 

learning regression and steganography. Meanwhile, 

the secret data used the same key dataset as that used 

in the study conducted by Gautama and Ahmad [16], 

where the secret was randomly arranged with the total 

number of bits adjusted to the BPS (bits per sample) 

ranging from 0.08 to 0.99 bps. 

3.2 Performance evaluation 

As utilized in previous research, the quality of the 

resulting signal will be assessed with two essential 

metrics, namely the signal-to-noise ratio (SNR) 

represented by Eq. (15) and the percentage residual 

difference (PRD) represented by Eq. (16). The length 

of the existing signal is expressed by 𝑌. Parameter 𝑥𝑖 
and 𝑦𝑖 indicate sample points for input signal 𝑋 and 

output signal 𝑌 , respectively, where 𝑖  is the signal 

index. 

 

𝑆𝑁𝑅(𝑋, 𝑌) = 10 ⋅ 𝑙𝑜𝑔10 (
∑ (𝑥𝑖)

2𝑁
𝑖=1

∑ (𝑥𝑖−𝑦𝑖)
2𝑁

𝑖=1

)      (15) 

 

𝑃𝑅𝐷(𝑋, 𝑌) =
√∑ (𝑥𝑖−𝑦𝑖)

2𝑁
𝑖=1

√∑ (𝑥𝑖)
2𝑁

𝑖=1

× 100         (16) 

 

In executing the PEE method with mirror 

embedding, various parameters are manipulated to 

demonstrate the contrast between the original signal 

and the one that contains the secret payload. In the 

case example shown in Fig. 4, four examples of 

implementation using the LASSO machine learning 

model exist. As shown, between columns is a 

comparison of the payload rate and threshold, such as 

using payload rate 1 and threshold 0, when compared 

with payload rate 3 and threshold 1. The sum of the 

payload rate and threshold values is called the 

maximum available bits that could be accommodated 

in one sample, following Eq. (3). In the maximum 

available bit comparison, the biggest influence is the 

contrast in the amplitude of the sample points. With 

bps of 0.99, payload rate 1 and threshold 0 appear to 

have subtler differences compared with payload rate 

3 and threshold 1, resulting in an SNR difference of 

only 9.55 dB. 

Meanwhile, between rows, different BPS secret 

data values are shown. When compared in terms of 

BPS, the most obvious influence is the distribution of 

points, which becomes more distinguished even 

when the BPS value increases. This is visible when 

comparing graphics with payload rate 3 and threshold 

1, where the original signal difference appears at 

almost every sample point at higher BPS. Another 

thing that should be mentioned is the difference in 

SNR and PRD values in the case of bps 0.99, payload 

rate 1, and threshold 0 compared with bps 0.08, 

payload rate 3, and threshold 1 of Fig. 4 reaches 1.2 

dB and 0.023, indicating that the lower maximum 

available bits have a more significant influence on 

reducing the contrast of metric’s values when facing 

a larger BPS. 

Based on the regression models, as illustrated in 

Fig. 5, there is a model with the worst performance, 

namely ElasticNet, but its value is close to that of the 

other models. This worse value is caused by 

calculations during mirror embedding, where the 

ElasticNet predicted value turns out to push the 

mirrored value further from the original value. 

However, the driving mirror value is still within 

reasonable limits of around 2Bi. 
In addition, the different results from each model 

indicate that this method can make it difficult for 

attackers to determine which predictor to use. When 

faced with a low BPS, such as 0.08 bps, the SNR and 

PRD values approach 64 dB and 0.070, respectively. 

Even at high BPS, the SNR and PRD values can be 

maintained above 52.8 dB and below 0.252 for the 

average maximum bit samples. In addition, as the 

need for secret data increases, the distance between 

the metric values becomes smaller, which can be seen 

at a distance between 0.66 and 0.99 bps. Therefore, 

this method has the advantage of accommodating 

more secret data while maintaining quality. 

Compared with the maximum available bit value, 

the SNR value can reach 67.5 dB for the lowest total 

number of bits, as illustrated in Fig. 6. The greater the 

BPS, the more this value slopes closer to 57 dB. The 

same graphic form as in Fig. 6 also applies to the PRD 

value. Increasing the value of maximum available 

bits decreases differences in metric quality. Therefore, 

at high maximum available bits, the increase in total 

bit value becomes insignificant. 
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Figure. 4 Comparison of the original and watermark in multiple parameters for patient code 100 with LASSO 

 

 

 
Figure. 5 Average SNR and PRD performances based on regression models 

 

 

When a comparison is made with the latest 

transform domain method, the proposed method has 

the advantage of full reversibility. However, the 

quality can still outperform the other methods, as 

shown in Table 2. Even when the BPS reaches 0.99 

bps, the PEE-mirror embedding method can still 

compete with the best PRD values. The SNR value is 

somewhat lower than [12] because the BPS values are 

very distant (contrast of 0.74 bps), but when 

corresponding under the same BPS conditions, the 

proposed technique can reach values above 60 dB. 
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Figure. 6 Average SNR and PRD performances based on the maximum sample bits 

 

 
Table 2. Comparison method with previous studies 

Method Algorithm Database Payload 

Maximum 

Payload 

(bps) 

Metrics Maximum 

SNR 

Lowest 

PRD 

Reversi-

bility 

[13] PEE+LLP MIT-BIH 

Binary 

data 0.45 PRD - 0.528 
Yes 

[14] PEE+ANN MIT-BIH 

Binary 

data 0.99 

SNR, 

PRD, and 

NCC 30.04 3.539 

Yes 

[15] PEE+SVM MIT-BIH 

Binary 

data 0.99 

SNR, 

PRD, and 

NCC 29.98 3.5 

Yes 

[10] 

DWT + Pixel 

Swapping MIT-BIH 

Image 

(2160 

bytes) - 

SNR, 

PRD, and 

NCC 33.79 4.6 

No 

[11] Fast DCT MIT-BIH 

QR 

Code 

(21904 

bits) 0.082 

SNR, 

PRD, and 

Bit Error 

Rate 

(BER) 48.37 0.5632 

No 

[12] 

ConT 

and MSVD  

MIT-BIH 

PTB-DB 

Image 

(64x64) 0.25 

SNR, 

PRD, and 

NCC 58.78 0.5121 

No 

[16] 

PEE + 

regression with 

looping MIT-BIH 

Binary 

data 0.99 

SNR, 

PRD, and 

NCC 23.83 7.184 

Yes 

Proposed 

Work 

PEE+Regression 

+mirror 

embedding MIT-BIH 

Binary 

data 0.99 SNR, PRD 57.28 0.152 

Yes 

* Payload may not be the same 

 

 

In addition, the experiment on this method is 

compared with existing PEE methods as in research 

[13-16]. The proposed method can display 

embedding quality performance values that surpass 

those of other methods with high bits per sample. At 

the highest capacity (around 0.99 bps), the SNR value 

can reach 57.28 dB, surpassing other methods in 

addition to the PRD value of approximately 0.152. In 

addition, the proposed method can maintain the 

reversibility proposed by PEE. 

3.3 Time complexity 

This research was carried out on the same 

operating system as that used in [16] with 32 GB 

RAM. Based on the experimental results, as shown in 

Table 3, ElasticNet performs slightly better than the 

other methods, with SVR being the worst. With an 

extensive training dataset, SVR requires O(𝑁2) time 

from the number of samples; therefore, it impacts the  
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Table 3. Time comparison of different models and methods 

Model 
BPS [13] 

Ratio 
0.08 0.15 0.21 0.32 0.39 0.48 0.51 0.66 0.99 Average Average 

Bayesian 

Ridge 
0.012 0.023 0.032 0.049 0.059 0.074 0.077 0.101 0.151 0.064 1.494 23.3 

ElasticNet 0.012 0.022 0.030 0.047 0.056 0.071 0.073 0.095 0.144 0.061 1.428 23.4 

LASSO 0.013 0.024 0.033 0.051 0.061 0.076 0.079 0.103 0.155 0.066 1.456 22.1 

SGD 

Regressor 
0.012 0.023 0.033 0.049 0.059 0.075 0.076 0.100 0.150 0.064 1.468 22.9 

SVR 0.193 0.359 0.498 0.755 0.919 1.130 1.202 1.555 2.328 0.993 21.750 21.9 

Average Ratio 22.7 

 

 

model size, affecting the research length. Other 

methods contain a way of handling large datasets so 

that they still produce good prediction quality. 

Compared with research [16], the proposed method 

maintains an average time performance 22.7 times 

better in the same environment. 

4. Conclusion 

This research proposes an improvisation of the 

Prediction Error Expansion method for ECG 

steganography to increase the quality value of the 

embedding results metrics. This method implements 

a regression predictor, which makes it difficult for 

attackers to predict the value of existing secret data. 

By using the mirroring technique, the difference 

between the original and watermarked ECG can be 

reduced to a minimum, thereby affecting the quality 

of the data hiding. In addition, the threshold is used 

to increase the amount of secret capacity that can be 

accommodated by the embedding process. 

The performance results reveal a significant 

increase in quality. With metric calculations using 

SNR and PRD, the method can produce values above 

52.8 dB and below 0.252 in average situations with 

high BPS. This value can increase to 64 dB and less 

than 0.070 with a low BPS compared with the 

existing methods. The resulting stego-ECG graph 

appears more dynamic and similar to the original 

signal. Apart from that, the mirroring method can 

maintain the quality as the capacity increases, as seen 

from the comparison of the total BPS of the secret 

data. In addition, the proposed method can deliver 

speed performance up to a ratio of 22.7 times that of 

the previous method. 
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