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Abstract: The threat of credit card fraud to financial institutions and their customers is enormous which makes it 

essential to improve the fraud detection methods. The detection of credit card fraud is a problem for traditional 

detection methods. This paper presents a new loss function named Regularized Binary Cross Entropy (RBCE) in 

conjunction with an Autoencoder model. The RBCE loss function aims to improve the traditional BCE loss by 

incorporating regularization, enhancing the autoencoder's capability to learn robust and meaningful feature 

representations. This is particularly useful in situations involving high-dimensional and noisy data. The regularization 

term helps to reduce overfitting by penalizing model complexity, promoting the learning of more generalizable features. 

Consequently, the autoencoder's ability to identify meaningful features and detect anomalies becomes more accurate. 

RBCE improves the model's sensitivity to subtle deviations from normal patterns, leading to more precise detection of 

fraudulent transactions and other anomalies. Two datasets are used in the experiments: European and simulated credit 

cards. The results show the efficiency of the proposed model in improving fraud detection in both datasets and 

capturing complex patterns and anomalies in high-dimensional. Moreover, the proposed model outperforms prior 

works in terms of accuracy (95.130%), detection rate (91.176%), and area under the curve (93.156%) which produces 

significant improvement in fraud detection. 

Keywords: Autoencoder, Credit card fraud detection, Deep learning, Loss function, Sampling. 

 

 

1.  Introduction 

The threat of credit card fraud to customers and 

financial institutions is increasing which makes it 

important to improve the fraud detection methods. 

Detecting credit card fraud includes some difficulties. 

One of the serious problems is the disparity between 

legitimate and fraudulent transactions in credit card 

datasets. Second, fraudsters are always coming up 

with innovative and complex ways to evade 

discovery. Third, the effectiveness of fraud detection 

algorithms depends on careful feature engineering 

and selection. Finally, fraud detection in real-time is 

crucial. Therefore, cooperation between data 

scientists and financial organizations is needed to 

overcome these problems [1-3].  

An Autoencoder (AE) is convenient for detecting 

credit card fraud because it provides a meaningful 

representation of complex data. An AE's efficacy 

depends on its ability to capture relevant features and 

anomalies which makes it an effective approach for 

improving the accuracy and detection of fraud [3-5]. 

Earlier studies have mostly concentrated on 

enhancing the model structure. However, traditional 

loss functions are not adequate to address the 

problems related to credit card fraud detection [6-8]. 

This paper aims to enhance AE model performance 

for credit card fraud detection, by introducing a new 

loss function to facilitate AE model convergence to 

an optimal loss during training and generalization to 

new data samples. The primary contributions of this 

paper are as follows. 

Propose a new loss function that enhances the 

performance of the AE in detecting fraudulent 

transactions.  

Improve the ability of an AE to capture and 

reconstruct complex features related to fraudulent 

activities by incorporating AE models into credit card 
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fraud detection to learn patterns and anomalies in 

transaction data that are indicative of fraud. This can 

help improve the efficacy of credit card fraud 

detection by reducing false negatives while retaining 

a low false positive rate. 

The remaining sections of this work are organized 

as follows. Section 2 discuss several related works. 

Section 3 explains the fundamental concepts of AE, 

loss functions, and resampling techniques. Section 3 

presents the proposed model. The results of the 

proposed model are presented in Section 5. Finally, 

in Section 6, the conclusions and future work are 

presented. 

2.  Related work 

A new approach was proposed in [9] that merges 

Spark with a deep learning AE approach. Spark 

accomplishes two tasks: it combines historical 

transactions to achieve design engineering and it 

classifies transactions online to return the estimated 

risk of fraud. Different parameters and ML 

techniques, including RF, LR, ANN, DT, and SVM, 

were used in the comparative analysis. An accuracy 

of over 94 % was achieved for testing datasets. The 

paper lacked a sufficient range of metrics to 

adequately assess the approach. 

To respond in real-time, an auto-encoder (AE) 

and Restricted Boltzmann Machine (RBM) were 

proposed in [10], which can find anomalies from the 

reconstructed normal patterns by applying 

backpropagation. The results show that the Area 

Under Curve (AUC) for AE and RBM were 96.03 

and 95.05, respectively. But, the training model was 

computationally intensive and time-consuming. 

An evolving pattern change was detected by 

developing an AE model in [11]. This model 

comprises four hidden layers, with two encoders and 

two decoders. Both the encoder and decoder use 

"tanh" and "ReLU" activation functions in adjacent 

layers. The model's performance was evaluated using 

three datasets (European, Australian, and Taiwanese). 

Results indicate a 99% accuracy with the Taiwanese 

dataset, while the European dataset achieved a lower 

accuracy of 70%. The study does not address the 

interpretability of the model and how the decisions 

are made by the autoencoder. 

Lin [7] used oversampling techniques including  

Adaptive Synthetic Sampling (ADASYN), Tomek 

link (T-Link), and synthetic minority oversampling 

techniques (SMOTE) to European cardholders’ 

dataset to balance the numbers of fraudulent and 

legitimate transactions for improving the proposed 

AE with probabilistic random forest (AE-PRF) 

performance. The experimental results demonstrated 

that the performance of the AE-PRF was steady 

irrespective of whether oversampling techniques 

were applied. The results were compared in terms of 

accuracy, true positive rate (TPR), true negative rate 

(TNR), Matthews correlation coefficient (MCC), and 

area under the receiver operating characteristic curve 

(AUC-OC) of 99%, 81%, 99%, 84%, and 96%, 

respectively. However, the description of the 

superiority of the proposed method over popular 

techniques is insufficient, and there is a lack of 

comparative analysis with current state-of-the-art 

technologies. 

The AE in [12] was utilized by Bayesian 

hyperparameter optimization to determine the 

number of nodes in the hidden layers, activation 

function, epochs, and batch size. The model is then 

employed to encode the data used to train three 

additional models: K-nearest neighbours (KNN), 

logistic regression (LR), and support vector machine 

(SVM). These three models were applied to an 

imbalanced European cardholder’s dataset. The 

results showed that the AE had a recall rate of more 

than 80% and a high accuracy of 99%. This model 

encountered difficulties in identifying intricate and 

evolving fraud patterns that were not adequately 

represented in the training set. 

In a prior study [13], suspicious activity in 

fraudulent financial transactions was identified using 

deep learning (DL) techniques like Convolutional 

Neural Networks (CNN), AE, and Recurrent Neural 

Networks (RNN) to construct a classification model 

for fraud detection in finance. An ensemble 

classification model was then created. To address the 

dataset's imbalance, SMOTE was employed. 

Subsequently, DL models were applied. Experiments 

on a public European credit card dataset indicated 

that among the individual DL models, AE achieved 

the highest validation accuracy (93.4%), 

outperforming CNN (91.4%) and RNN (91.8%). The 

study did not account for the imbalance issue in the 

dataset before using it to build the classification 

model. Furthermore, the training and learning 

process took up a considerable amount of time. 

Salekshahrezaee in [14] investigated RUS, 

SMOTE, and SMOTE-Tomek methods to mitigate 

class imbalance using a European credit card fraud 

dataset and four ensemble classifiers: RF, CatBoost, 

LightGBM, and XGBoost, along with Principal 

Component Analysis (PCA) and Convolutional -

Autoencoder (CAE) methods for feature extraction. 

The results show that implementing the RUS method 

followed by the CAE method leads to the best 

performance for credit card fraud detection, with a 

95.4% F1-Score.  
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In [15], three DL models, namely AE, CNN, and 

LSTM, were implemented and optimized using 

hyperparameter tuning techniques, including random 

and Bayesian methods, as well as RUS, SMOTE, and 

ADASYN sampling methods. The European credit 

card fraud dataset was utilized to evaluate the 

performance of the models, and the results showed 

that the AE, CNN, and LSTM models with ADASYN 

outperformed the other methods. The best-achieved 

results included an accuracy of over 95%, a detection 

rate of over 90%, and an area under the curve of over 

92%. 

Previous research has primarily focused on 

employing various machine learning and deep 

learning approaches, including AE, CNN, and LSTM, 

in conjunction with different sampling methods to 

address class imbalance in credit card fraud detection. 

However, there has been no investigation into the 

effects of different loss functions when used with AE. 

This paper seeks to address this gap by proposing a 

new loss function specifically designed for 

autoencoder-based credit fraud detection. This 

proposed loss function has the potential to 

significantly impact model performance, especially 

when the class distribution is unevenly balanced. By 

optimizing the training process for imbalanced 

datasets, the proposed approach could lead to more 

effective fraud detection. 

3.  Preliminary concepts 

The theoretical basis of the concept used in this 

paper is explained briefly in this section. 

3.1 Loss function 

A loss function is an essential component of a DL 

model that assesses the performance of the model 

during training by comparing its predicted output 

values ŷi with the actual target values  yi , ∀ i =
1,2, … , n. The main goal is to minimize the difference 

between the values of the two sets. The following are 

some variations of loss functions [14, 16-18]: 

⚫ Mean Squared Error (MSE) function calculates 

the mean of the squared differences between the 

output values and the model's predictions as 

described in Eq. (1). However, this method is 

susceptible to outliers, so it's important to handle 

them carefully when using the MSE loss 

function. 

 

ℒ𝑀𝑆𝐸 =
1

𝑛
∑ (𝑦𝑖 − 𝑦�̂�)

2𝑛
𝑖=1                 (1) 

 

⚫ Binary Cross Entropy loss (BCE) function, also 

referred to as log loss, measures the disparity 

between the predicted probability of a class and 

the true class label as in Eq. (2). This loss 

function is frequently used for binary 

classification tasks and provides several 

advantages such as differentiability, 

computational simplicity, and a probabilistic 

interpretation of the model's output. 

 

ℒ𝐵𝐶𝐸 = −
1

𝑛
∑ (𝑦𝑖 𝑙𝑜𝑔(�̂�𝑖)  + (1 −𝑛

𝑖=1

𝑦𝑖) 𝑙𝑜𝑔(1 − �̂�𝑖))                        (2) 

 

⚫ Weighted Binary Cross Entropy (WBCE) 

function is a version of BCE where weights, 

wi are assigned to each sample, and the loss for 

each sample is determined by this weight as 

formulated in Eq. (3). This approach was 

especially helpful in cases when the distribution 

of the sample was non-uniform. 

 

ℒ𝑤𝐵𝐶𝐸 = − ∑ (𝑤𝑖𝑦𝑖 𝑙𝑜𝑔(�̂�𝑖)  + 𝑤𝑖(1 −𝑛
𝑖=1

𝑦𝑖) 𝑙𝑜𝑔(1 − �̂�𝑖))         (3) 

 

⚫ Categorical Cross Entropy Loss (CCE) function 

is used in multi-class classification scenarios to 

measure the difference between the predicted 

probability distribution and the actual 

distribution as defined in Eq. (4). This is also 

known as a negative log-likelihood loss or 

multi-class log loss. 

 

ℒ𝐶𝐶𝐸 = −
1

𝑛
∑ ∑ 𝑦𝑖,𝑗 𝑙𝑜𝑔(�̂�𝑖,𝑗) 𝑐

𝑗=1
𝑛
𝑖=1         (4) 

 

⚫ Binary Focal loss (BFL) is a modified version of 

standard cross-entropy loss that addresses class 

imbalance as in Eq. (5). This issue arises when 

the number of positive samples is significantly 

smaller than the number of negative samples, 

which causes the model to prioritize negative 

samples over positive ones, resulting in poor 

performance. Focal Loss solves this problem by 

assigning higher weights to challenging positive 

samples and lower weights to easily negative 

samples. 

 

ℒ𝐵𝐹𝐿 = − ∑ (𝛼(1 − �̂�𝑖)𝛾 𝑦𝑖𝑙𝑜𝑔(�̂�𝑖) −𝑛
𝑖=1

(1 − 𝛼) �̂�𝑖
𝛾 (1 − 𝑦𝑖)𝑙𝑜𝑔(1 − �̂�𝑖))           (5) 

 

𝛾  a focusing parameter that controls the focus on 

hard-to-classify samples. 

𝛼  Weighting parameter that controls the 

importance of each sample. 
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3.2 Autoencoder 

An AE is a type of artificial neural network 

primarily employed for unsupervised learning tasks. 

The fundamental idea behind an AE is to learn a 

compact representation or encoding of input data by 

mapping  it  to  a  lower-dimensional  space  and  then  

reconstructing the input data from this reduced 

representation.  It consists of two parts: an encoder E 

and a decoder D (see Fig. 1) [10-12, 19]. The encoder 

aims to encode input into encoding vectors using a set 

of recognition weights based on the mapping function 

f as in Eq.  (6), whereas the decoder obtains an 

approximation to the output features back from the 

encoding vector using a set of generative weights 

through mapping function g, as in Eq. (7). The 

encoder is designed so that the output produces a 

latent feature representation Z ∈ ℝdh∗n  , i.e. a 

compressed version of the input Y ∈ ℝdy∗n   . So, it is 

designed such that the inputs have much larger 

dimensions than the output. The decoder is designed 

to decompress the latent variables back to the original 

dimensions  Ŷ ∈ ℝdy∗n .  
 

𝑧 = 𝑓𝜑(𝑦) = 𝐸𝑓(𝑤𝑦 + 𝑏)              (6) 

 

where 𝑤 is a recognition weight 𝑊 ∈ ℝ𝑑𝑦∗𝑑ℎ, b 

is a bias, and Efis the encoder 𝐸 activation function 

(typically the element-wise sigmoid, hyperbolic 

tangent, or Relu non-linearity functions). 

 

�̂� = 𝑔𝜑(𝑧) = 𝐷𝑔(�̀�𝑧 + �̀�)                   (7) 

 

where ẁ is a generative weight �̀� ∈ ℝ𝑑𝑦∗𝑑ℎ , 𝑏 ̀ 
is a bias, 𝐷𝑔 is the decoder 𝐷 activation function, and 

𝜑 = {𝑤, 𝑏, �̀�, �̀�}. 

 

 

 
Figure. 1 Components of AE 

3.3 Regularization 

Regularization is used to issue overfitting by 

modifying the architecture of the model and adjusting 

the training process. There are different types of 

regularization methods including L1, L2, and dropout 

regularizations [20, 21]. 

In L1 regularization, also called Lasso regression, 

the absolute value of the weights multiplied by a 

regularizer term is used as a penalty. In L2 

regularization, also called Ridge regression, the 

squared magnitude of the weights multiplied by a 

regularizer term is used as the penalty. The main 

difference between L1 and L2 regularization is that 

L1 regularization tries to approximate the data 

median data, while L2 regularization tries to 

approximate the data mean to avoid overfitting. In 

dropout regularization, some neurons are randomly 

deactivated during training, allowing the model to 

extract more robust and useful features. Eq. (9) and 

(10) show the formulations of L1 and L2 respectively. 

 

𝐿1 = ∑ |𝑤𝑖|𝑚
𝑖=1                         (9) 

 

𝐿2 = ∑ 𝑤𝑖
2𝑚

𝑖=1                        (10) 

 

where 𝑚  is the number of features; 𝑤𝑖  is the 

model's trainable weight. 

3.4 Resampling techniques 

Sampling methods are used to address 

imbalanced dataset distributions, either by reducing 

the samples of the majority class (undersampling) or 

by increasing the samples of the minority class 

(oversampling). In the case of oversampling 

techniques, new samples that may look similar to the 

original data are generated, but these replicates may 

not be the same. Fig. 2 depicts the resampling 

techniques, on the left of the figure is undersampling, 

SMOTE in the middle, and ADASYN on the right. A 

description of each technique is presented as follows 

[14, 15, 22-24]: 

SMOTE is a data sampling technique used to 

increase the representation of minority classes in 

datasets. This is achieved by generating new 

synthetic components of the minority class based on 

those that already exist and are close to each other. 

The technique works by drawing a line between the 

data samples of the minority class and then creating a 

new data sample at a point on the line. Thus, SMOTE 

selects data samples that are close together in the 

minority class as in Eq. (11). SMOTE is an effective 

way to address the overfitting problem caused by 

random oversampling. It works particularly well for 
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small-sized datasets, although it can be slower for 

larger datasets. However, there is a risk of 

overlapping data points for the minority class in 

SMOTE, which may weaken the boundary and 

increase the possibility of misclassification of the 

boundary samples.  

 

𝑦𝑛𝑒𝑤 = 𝑦𝑖 + 𝑟𝑎𝑛𝑑(0,1) ∗ ( 𝑦𝑖𝑗 − 𝑦𝑖)       (11) 

 

where  𝑥𝑖  and 𝑥𝑗  are two minority adjacent 

samples. 

ADASYN considered as SMOTE extension that 

overcomes some of the traditional SMOTE 

limitations. ADASYN was used to address data 

imbalance by increasing the representation of 

minority classes in the datasets. This creates minority 

data samples that reflect the distributions of 

underrepresented groups to generate more data. This 

method can be used to generate data samples for 

minority-class samples that are difficult to learn. 

ADASYN's generated data points not only balance 

the dataset well but also reduce the learning bias of 

the actual dataset. However, this algorithm may 

suffer from reduced precision due to its adaptability. 

Additionally, the neighbourhoods created by 

ADASYN contain only one minority example for 

minority samples that are sparsely distributed. 

RUS is a technique that handles issues of class 

imbalance by randomly deleting instances of the 

majority class, hence bringing the number of samples 

in the majority class (i.e., legitimate transactions) 

down to match those in the minority class. However, 

the main issue with RUS is that this random removal 

of data can lead to the loss of crucial information 

contained in the removed samples. 

4.  Proposed AE credit card fraud detection 

model 

An AE is commonly used for fraud detection in 

credit card transactions and offers robust capabilities 

for identifying anomalies and learning new features. 

However, there are limitations in adopting an AE for 

fraud detection. The proposed AE model with a new 

loss function dedicated to credit card fraud detection 

aims to address limitations including sensitivity to 

anomalies that lead to distorted reconstructions and 

deter the learning process, managing imbalanced data, 

and generalization that can make the AE unable to 

identify new fraud. 

4.1 Proposed fraud-custom loss function 

BCE loss function is normally formulated with 

Eq. (2) in AE models to measure the significant 

difference between the reconstructed output and the 

input data. In this way, AE models attempt to 

accurately predict legal or fraud transactions based on 

their distinct characteristics, thus reducing BCE loss 

values. Despite their acceptable direction, they suffer 

from two main shortcomings. AE model issues are 

overfitting and failing to generalize for new 

transactions of fraud. To address this issue, this study 

integrates BCE loss function and L2 regularization 

into the training process of a new loss function, called 

Regularized BCE loss function (RBCE). The 

incorporation of BCE loss function and L2 

regularization, in turn, would likely empower the 

proposed model in twofold. First, the proposed model 

would be able to hold off irrelevant features and work 

on ranks of relevant features that are enough to 

discriminate between fraudulent and legitimate 

transactions. Second, the proposed model would be 

able to avoid overfitting that results from too tuning 

the model to normal transactions at the expense of 

fraud. Here, large weights in the proposed AE model 

are penalized with L2 regularization, letting it learn 

simpler and smoother representations. These new 

representations can help better generalize new frauds 

not seen during training. 

Figure. 2 Resampling methods [15] 
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The mathematical formulation of the proposed 

RBCE can be expressed in Eq. (12): 

 

ℒ𝑅𝐵𝐶𝐸(𝜑, 𝑦, �̂�) = ℒ𝐵𝐶𝐸(𝑦, �̂�) + 𝜆 𝐿2       (12) 

 

where 𝜆 ∈ [0, ∞)  hyperparameter weights 

measure the qualified contribution of the penalty term 

and the larger value means more regularization. The 

penalty term is computed based on the correct 

weights and is included in the computation of the 

gradients during backpropagation to decrease the 

weight magnitude and help prevent overfitting as in 

Eq. (13). 
 

ℒ𝑅𝐵𝐶𝐸 = −
1

𝑛
∑ (𝑦𝑖 𝑙𝑜𝑔(�̂�𝑖) + (1 −𝑛

𝑖=1

𝑦𝑖) 𝑙𝑜𝑔(1 − �̂�𝑖)) + 𝜆 ∑ 𝑤𝑖
2𝑚

𝑖=1          (13) 

 

The objective is to minimize  ℒBCE  on the 

training data and the weights w that are used in 

calculating the gradients during backpropagation in 𝜑, 

as formulated in Eq. (14).  

 

𝑚𝑖𝑛
𝑤

ℒ𝐵𝐶𝐸(𝑤) + 𝜆 𝐿2(𝑤)               (14) 

 

4.2 AE model for credit card fraud detection 

The AE model proposed for credit card fraud 

detection is intended to address several limitations, 

including a heightened sensitivity to anomalies that 

can result in distorted reconstructions and hinder the 

learning process, the management of imbalanced data, 

and the generalization of the AE model, which can 

lead to its identification of new fraud. The approach 

entails three stages. Initially, credit card transactions 

are pre-processed, followed by the determination of 

the optimal set of hyperparameters for the AE using 

a Bayesian hyperparameter optimization technique. 

Finally, the AE model is applied to detect credit card 

transactions. The proposed AE model for detecting 

credit card fraud is depicted in Fig. 3. 

The process of data cleaning consists of handling 

missing values, normalization, and data splitting. 

Missing values can be handled by removal or 

imputation. If the missing values percentage less than 

a pre-set threshold, the missing values will be filled 

in using the mean value of the feature. However, if 

the percentage of missing values exceeds the 

threshold, the transactions containing those missing 

values will be removed from the dataset entirely. 

Following, Z-score normalization is applied to 

improve model convergence and prevent issues 

caused by varying feature scales.  The feature values 

are standardized by setting their mean to 0 and 

standard deviation to 1. Finally, the dataset is divided 

into training and testing sets by applying stratified K-

fold cross-validation since the dataset of fraud 

transactions is imbalanced (i.e., fraudulent 

transactions are significantly more numerous than 

legitimate transactions). The dataset is divided into K 

subsets while ensuring that each subset maintains the 

percentage of samples for each class. This is 

beneficial when dealing with imbalanced datasets, 

such as fraud detection. 

The Bayesian optimization is applied in the 

second stage which involves hyperparameter tuning 

of AE model by developing a probabilistic model of 

the performance metric. The F1-score of the AE 

model, as shown in Eq. (15) [25] is used in this paper. 

 

𝐹1 𝑠𝑐𝑜𝑟𝑒 = 2 ∗ (𝐷𝑅 + 𝑃) (𝐷𝑅 + 𝑃)⁄       (15) 

 

where, DR stands for detection rate, sometimes 

known as the true positive rate (TPR), which 

indicates the proportion of fraudulent behaviour that 

the model correctly identified as fraudulent, as 

defined in Eq. (16). 

 

𝐷𝑅 =  𝑇𝑃 (𝑇𝑃 + 𝐹𝑁)⁄                  (16) 

 

𝑃 =  𝑇𝑃 (𝑇𝑃 + 𝐹𝑃)⁄                   (17) 

 

where, TP (true positive) denotes the number of 

fraudulent transactions correctly classified as 

fraudulent, TN (true negative) describes the number 

of legitimate transactions correctly classified as 

legitimate, FN (false negative) defines the number of 

fraudulent transactions misclassified as legitimate, 

and FP (false positive) is the number of legitimate 

transactions misclassified as fraud.  

The third stage uses the proposed AE with RBCE 

to detect credit fraud. The AE is trained on the 

cleaned and normalized credit card dataset, learning 

a compressed representation of the data samples 

(latent space) through learning the encoder network’s 

weight w. The latent space captures the essential 

features or patterns present in the input data in a more 

compact form. The decoder reconstructs the original 

input data from the compressed representation by 

training the decoder network’s weight  ẁ . The 

training process employs ℒRBCE, as described in Eq. 

(12), which penalizes the model for large deviations 

between the input and the reconstructed output while 

also incorporating regularization techniques. The 

unique aspect of using this custom loss function with 

an AE is its potential to enhance the model's ability 

to reconstruct data accurately and generalize well to 

unseen data, benefiting various applications such as 

feature learning, data denoising, and anomaly 
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detection. This ensures that the regularization penalty 

is applied to the weights during training, and the 

gradients of the loss function concerning the weights 

include the gradient of the regularization term. 

Consequently, during backpropagation, the 

regularization term contributes to the gradients used 

to update the weights, effectively penalizing large 

weights and preventing overfitting. 

5.  Results discussion 

The proposed AE with RBCE model is evaluated 

by comparing its effectiveness with the baseline loss 

functions including MSE, AE with BCE, and AE with 

focal loss. In addition, the experiments, which are 

conducted on two credit card fraud datasets: the 

European credit card dataset and the synthetic credit 

card dataset. Table 1 provides a detailed description 

of the two benchmark credit card fraud datasets. 

⚫ The European credit card dataset [26], 

composed of transactions made by European 

cardholders in September 2013, is used to 

evaluate fraudulent credit card transaction 

detection models. The dataset consists of 

284,807 transactions.  Each transaction has 31 

features. The dataset is highly imbalanced, with 

only 492 fraudulent transactions, which account 

for 0.172% of the total data. 

⚫ The simulated dataset is synthetic data of credit 

card transactions generated by the Sparov tool 

which was developed by Brandon Harris [27]. 

The simulation was held over two years, from 

January 1, 2019, to December 31, 2020. It 

consists of 1,842,743 legitimate transactions and 

9,651 fraudulent transactions. The performance 

of the proposed AE-RBCE model is evaluated 

with accuracy (Acc), detection rate, and AUC. 

Accuracy, as expressed in Eq. (18), measures the 

overall performance of the model, while the detection 

rate measure (Eq. 16) evaluates the model's ability to 

correctly identify fraudulent transactions. Finally, the 

overall performance of the proposed model in terms 

of AUC (Eq.  (19)) is measured to show the ability of 

the proposed model to distinguish between fraudulent 

and legitimate transactions [25, 28]. 

 

𝐴𝑐𝑐 = (𝑇𝑃 + 𝑇𝑁) (𝑇𝑃 + 𝐹𝑁 + 𝑇𝑁 + 𝐹𝑃⁄ ) (18) 

 

𝐴𝑈𝐶 = (1 +
𝑇𝑃

𝑇𝑃+𝐹𝑁
−

𝐹𝑃

𝑇𝑁+𝐹𝑃
) 2⁄            (19) 

 

The experiments are conducted on European and 

simulated credit card datasets using AE models with 

different loss functions and sampling techniques.  

From Tables 2 and 3, one can  observe  that  the  Acc,  

 

Table 1. Dataset Description 

Characteristics 
European credit 

card dataset 

Simulated 

credit card 

dataset 

Number of 

transactions 
284,807 1,852,394 

Features 31 23 

Legitimate 

transactions 
284,3150.5210 1,842,743 

Fraudulent 

transactions 
492 9,651 

Fraud Ratio 0.172% 0.521% 

 

DR, and AUC results of the proposed loss function, 

ℒRBCE, are far better than  other  loss  functions.  This 

points to  ℒRBCE has enabled the capturing of 

fraudulent transaction patterns despite class 

imbalance. Furthermore, the proposed model attains 

the highest values of AUC with SMOTE and 

ADASYN  oversampling techniques. This means that 

oversampling techniques can generate synthetic 

instances for minority class (i.e., fraud transactions), 

thereby improving the ability of the model to 

distinguish fraudulent from legitimate transactions. 

The proposed loss function, ℒRBCE, andoversampling 

harnesses the detection rate of the proposed model to 

fraudulent patterns that lead to higher AUC values. 

The higher performance of the proposed highlights 

the importance of designing a proper loss function 

considering dataset characteristics of credit card 

fraud transactions. The comparison results of the 

proposed AE-RBCE model against other works [7, 

13, 15]. The hyperparameter value for each model is 

presented in Table 4. The results, as shown in Table 

5, demonstrate the superior performance of the AE-

RBCE model across all sampling techniques. The 

accuracy ranges from approximately 95.1% to 

95.13%. In addition, fraud detection ranges from 

approximately 90.4% to 91.176% and outperforms 

other models. Moreover, the AE-RBCE model shows 

superior AUC values ranging from approximately 

92.7% to 93.156%.   results confirm its effectiveness 

in distinguishing between fraudulent and legitimate 

transactions and the superior performance of the AE-

RBCE model compared to previous studies in [7, 13, 

15] across all sampling techniques demonstrates its 

potential as an advanced solution for detecting fraud 

in credit card transactions. 

6.  Conclusion 

A new loss function called RBCE with an AE 

model for credit card fraud detection is presented in 

this paper. As AE model is designed to learn the 

condensed representation of legitimate transactions 

while effectively highlighting anomalies associated 
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with fraudulent activities. Its performance is 

enhanced by utilizing the suggested RBCE loss 

function due to its ability to capture complex patterns 

and anomalies in high-dimensional data making it 

suitable for fraud detection tasks.  

Comparing the experimental results of the 

proposed to conventional methods indicates a notable 

decrease in false positives and a considerable 

improvement in fraud detection rates on the European 

and simulated credit card datasets. The RBCE with 

AE model, which combines BCE, L2 regularization, 

and AE, exhibits the potential for developing an 

accurate and robust system that provides a promising 

method for enhancing credit card fraud detection 

systems. The result indicates that the AE with RBCE 

achieves an accuracy of 95.13%, surpassing the 

detection rate of 91.1% and attaining a higher AUC 

of 93.156%. This ensures accurate detection and 

outperforms other existing methods. Future studies 

can focus on refining the suggested model and 

exploring ways to reduce the number of features, 

enhancing its practicality in real-world applications. 

These efforts could lead to developing more efficient 

and reliable credit card fraud detection systems, 

benefiting both financial institutions and consumers. 

Figure. 3 The proposed AE with RBCE loss function block diagram 

 

 

Table 2. Performance comparison of the proposed AE with RBCE against MSE, BCE, and BFL when European credit 

cards as an evaluation dataset. 

Model Sampling Techniques Acc% DR% AUC% 

AE-MSE 

SMOTE 95.127 90.44 92.78 

ADASYN 95.127 90.44 92.788 

Undersampling 95.125 89.70 92.41 

AE-BCE 

SMOTE 95.123 88.970 92.051 

ADASYN 95.12 89.705 92.419 

Undersampling 95.125 89.70 92.41 

AE-Focal 

SMOTE 95.127 90.441 92.788 

ADASYN 95.1278 90.441 92.800 

Undersampling 95.127 90.440 92.780 

AE-RBCE 

SMOTE 95.130 91.176 93.156 

ADASYN 95.130 91.176 93.156 

Undersampling 95.127 90.441 92.788 
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Table 3. Performance comparison of the proposed AE with RBCE against MSE, BCE, and BFL when simulated credit 

card as evaluation dataset 

Model Sampling Techniques Acc% DR% AUC% 

AE-MSE 

SMOTE 93.900 40.572 67.377 

ADASYN 94.974 38.155 66.715 

Undersampling 94.876 38.325 66.751 

AE-BCE 

SMOTE 94.846 35.500 65.331 

ADASYN 94.876 43.500 69 

Undersampling 94.865 37.304 66.237 

AE-focal 

SMOTE 94.654 17.358 56.212 

ADASYN 94.752 17.120 56.142 

Undersampling 94.657 17.562 56.314 

AE-RBCE 

SMOTE 94.933 43.669 69.437 

ADASYN 94.931 43.5 69.351 

Undersampling 94.886 39.244 67.213 

 

 
Table 4. Hyperparameter  values of the proposed AE-RBCE model and the models presented in  [7, 13, 15] 

DL Sampling 

Techniques 

Hyperparameter Values 

No. of 

neurons 

per 

layer 

Batch 

size 

Optimization 

function 

Activation 

function 

Threshold 

(cut_off) 

Loss 

Function 

Learning 

rate 

Proposed 

AE-

RBCE 

SMOTE 512 64 Adam Relu 0.95 RBCE 0.0001 

ADASYN 512 64 Adam Relu 0.95 RBCE 0.0001 

Undersampling 512 128 Adam Relu 0.95 RBCE 0.001 

[7] 
SMOTE 26 64 Adam Relu 0.11 MSE - 

ADASYN 26 64 Adam Relu 0.13 MSE - 

[13] SMOTE  256 - - 0.002 MSE 0.01 

AE 

Model 

[15] 

SMOTE 512 64 Adam Relu 0.95 BFL 0.001 

ADASYN 512 64 Adam Relu 0.95 BFL 0.001 

Undersampling 512 128 Adam Relu 0.95 BCE 0.001 

 

 

Table 5. Performance comparison of the proposed AE-RBCE against [7, 13, 15] 

Model Dataset Sampling Techniques Acc% DR% AUC% 

AE-RBCE 
European credit 

card 

SMOTE 95.130 91.176 93.156 

ADASYN 95.130 91.176 93.156 

Undersampling 95.127 90.441 92.788 

[7] 
European credit 

card 

SMOTE 99.65 85.83 - 

ADASYN 99.6 86.13 - 

Undersampling - - - 

[13] 
European credit 

card 

SMOTE 93.4 - - 

ADASYN - - - 

Undersampling - - - 

AE Model [15] 
European credit 

card 

SMOTE 95.1 90.4 92.7 

ADASYN 95.1 90.4 92.8 

Undersampling 95.1 89.7 92.4 
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Notation  
Notation Description 

ℒ𝑀𝑆𝐸 
Mean Squared Error loss 

function 

ℒ𝐵𝐶𝐸 
Binary Cross Entropy loss 

function 

ℒ𝑤𝐵𝐶𝐸 
Weighted Binary Cross Entropy 

loss function 

ℒ𝐶𝐶𝐸 
Categorical Cross Entropy loss 

function 

ℒ𝐵𝐹𝐿 Binary Focal loss function 

ℒ𝑅𝐵𝐶𝐸 
Regularized Binary Cross 

Entropy loss function 

𝑚 Number of features 

𝑛 Number of dataset samples  

𝛾 Focusing parameter 

𝛼 Weighting parameter 

𝑦 Actual target value 

�̂�  Predicted output  value 

𝑍 Latent feature representation 

𝑑ℎ Hidden layer dimension 

𝑑𝑦 Input layer dimension 

𝑤 Recognition weight 

�̀� Generative weight 

𝑏 Bias parameter 

𝐸𝑓 Encoder activation function 

𝐷𝑔 Decoder activation function 

𝜑∗ Trainable parameter {w, b, ẁ, b̀} 

𝐿1 Lasso regression 

𝐿2 Ridge Regression 

𝜆 Penalty hyperparameter 

𝐷𝑅 Detection rate 

𝑃 Precision  

𝐴𝑐𝑐 Accuracy 

AUC Area under the curve  

𝑇𝑃  True positive 

𝑇𝑁 True negative 

𝐹𝑁  False negative 

𝐹𝑃 False positive 
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