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Abstract: In the realm of Wireless Sensor Networks (WSNs), enhancing network longevity and accurately predicting 

mobile sink trajectories are critical challenges. This research introduces ALDS-Net (Adaptive Moment Estimation 

Long Short-Term Memory DeepSink Network), a novel model specifically designed to address these challenges by 

leveraging advanced deep learning techniques. The novelty of ALDS-Net lies in its unique integration of the ADAM 

optimizer with LSTM layers, enabling it to effectively capture and model complex mobility patterns of mobile sinks. 

The ADAM optimizer is utilized to manage noisy gradients, enhancing the stability and convergence of the model, 

while LSTM layers are employed to handle the long-term dependencies in sink mobility data. A key innovation of 

ALDS-Net is its three-stage simulation methodology, which includes initializing the simulation environment, training 

the predictive model using a simulated dataset, and deploying the trained model for real-time sink trajectory prediction 

in WSNs. This comprehensive approach ensures accurate modeling of sensor node interactions and sink mobility, 

resulting in improved data routing efficiency and extended network lifetime. Our experimental results demonstrate 

that ALDS-Net outperforms existing methods such as Adjacency Based Cell Score, Differential Moth Flame 

Optimization (DMFO), and Instantaneous Clustering Algorithm (ICP) in terms of energy efficiency and network 

stability. Specifically, ALDS-Net achieves a significant extension in network operational lifetime, reaching 498.5 

seconds with 400 nodes over 750 rounds. This study highlights the potential of ALDS-Net to provide robust, efficient, 

and scalable solutions for data routing in dynamic WSN environments. 
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1. Introduction  

Wireless sensor networks (WSNs) have become 

prevalent in many areas such as environmental 

monitoring, health care and industrial automation [1-

2]. These are made up of small energy-constrained 

sensor nodes that use mobile sinks strategically 

located to collect and transfer data [3]. Therefore, due 

to this need for optimization of data collection as well 

as network performance it became necessary to 

predict the movement of these mobile sinks [4, 5] and 

their unpredictable moves. Still, few studies have 

focused on forecasting the trajectory of a moving sink 

within a WSN [6]. 

Mobile Sinks represent either vehicles or mobile 

nodes with higher processing power and storage 

capacity which are used to collect information from 

energy constrained or stationary sensors [7]. 

Accurate prediction of trajectories can greatly 

enhance efficiency in gathering intelligence leading 

to longer lifetimes for networks coupled with better 

quality collected data [8]. They play an important role 

in today’s world where real time monitoring is 

needed on critical parameters. This however depends 

on how best they can be managed within WSNs thus 

more research needs to be undertaken in this area [9]. 

Two issues drive the need for predictive models 

for mobile washbasin management; energy saving 

and route optimization.  Number one, the reason 

battery life is a big deal in most sensors is because 

they run on limited power sources [10, 11]. Number 

two, that sink passes through different locations as it 

moves around collecting data during its roving 
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period; hence some if not all parts of this information 

might be influenced by where the sink goes through. 

For this reason, forecasting trajectories of sinks is 

necessary for intelligent route planning that 

guarantees full coverage while saving energy. 

Several new features have been brought out by 

this particular research; it uses a three stage 

simulation method for WSNs involving initialization, 

training models using gathered information and then 

collecting these initially missed pieces themselves. 

The proposed ALDS-Net model uses deep learning 

techniques to accurately simulate interactions 

between sensor nodes and mobility patterns among 

sinks. Sink position prediction accuracy is enhanced 

through utilization of simulated based dataset during 

predictive modeling. Scalability evaluation 

demonstrates how suitable this framework can be for 

larger networks besides showing that it significantly 

prolongs WSN lifetime over existing methods hence 

indicating better energy efficiency and network 

survivability brought about by ALDS-Net model.   

The paper is divided into sections that build up 

towards giving an understanding on what has been 

done before and why it was necessary to undertake 

this research. Section 2 - Literature Review provides 

broad coverage of previous studies in order to set 

context for the current investigation. Section 3 - 

Methodology elaborates more on how things were 

done including detailed process flow and algorithm 

descriptions while section 4 - Experimental 

Investigations presents findings from different tests 

carried out which prove the superiority of proposed 

model. Finally, this paper concludes with a summary 

of the works carried out. 

2. Literature review 

A prominent focus of study in wireless sensor 

networks (WSNs) involves the management of 

mobile sinks and routing issues. In 2018, Sarwar et al. 

proposed distributed algorithms to calculate the 

minimum number of sinks needed for deployment in 

Wireless Sensor Networks (WSNs). It was 

discovered that the quantity of sinks is inversely 

proportional to the transmission range. Nevertheless, 

this approach relies on a fixed network structure and 

particular environmental circumstances, which may 

not consistently reflect reality due to the movement 

of nodes and obstacles in the environment. In 

practical situations, the movement of nodes can cause 

unexpected alterations in the structure of a network, 

which can affect the effectiveness of sink placement 

strategies. 

In 2018, Naween et al. [13] proposed a heuristic 

technique to optimize the placement of data 

collectors over time in a wireless sensing network. 

This approach proposed that the mobile collector 

could read different points at different times to 

maximize data collection efficiency. Nevertheless, 

this approach fails to consider the dynamic 

fluctuations in node positions or the varying densities 

of the network, resulting in suboptimal data 

collection and heightened energy consumption. The 

limitations are addressed by our proposed model 

through the dynamic prediction of sink trajectories, 

resulting in improved efficiency in data collection. 

According to Maurya S. et al. [14], the majority 

of existing routing protocols for homogeneous sensor 

networks fail to address multiple concerns at the same 

time, resulting in gaps in coverage and higher energy 

consumption. The Delay-Aware Energy-Efficient 

Reliable Routing (DAEERR) algorithm was 

suggested. However, it is not well-suited for large-

scale networks due to its high computational cost, 

despite its effectiveness. The practical applications of 

such algorithms can be limited by their computational 

complexity and energy requirements, especially in 

environments with limited resources. The integration 

of the ADAM optimizer and LSTM layers in our 

approach offers a computationally efficient solution 

without compromising prediction accuracy. 

Thomson et al. [15] created an energy 

optimization algorithm named mobility aware duty 

cycling for WSNs, which adjusts the duty cycles of 

nodes based on their movement patterns. Although 

this algorithm has the potential to be effective, it has 

demonstrated considerable latency in transmitting 

data, which can be crucial in time-sensitive 

applications. Our ALDS-Net model addresses these 

delays by utilizing LSTM layers to predict sink 

movements, guaranteeing prompt data collection and 

transmission. 

In 2020, Saunhita Sapre and S. Mini [24] 

proposed the use of Differential Moth Flame 

Optimisation (DMFO) to enhance the placement of 

mobile sinks. This approach resulted in an improved 

network lifetime, although it did lead to an increase 

in communication overhead. Elie et al. [25] 

introduced an instant clustering algorithm (ICP) that 

increased the lifespan of the network but also resulted 

in substantial communication overhead during its 

execution. These methods emphasize the balance 

between the long-term sustainability of the network 

and the efficiency of communication. Our model 

accurately predicts sink positions, which reduces the 

need for frequent re-clustering and communication 

overhead. This improves both the network's lifetime 

and efficiency. 

Al-kaseem et al. [18] devised a heuristic 

clustering method to enhance energy efficiency. This 
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method involves the utilization of multiple mobile 

sinks and an optimized path planning strategy. 

Nevertheless, the intricacy of this method and the 

requirement for precise real-time network data can 

restrict its efficacy. The ALDS-Net model we 

propose streamlines this process by employing a 

predictive methodology for sink mobility, thereby 

diminishing the reliance on real-time data and 

simplifying path planning. 

Furthermore, apart from the literature review 

mentioned earlier, other works were also examined, 

such as the Adjacency Based Cell Score (ABCS) 

technique [23]. This technique aims to optimize the 

placement of mobile sinks in Wireless Sensor 

Networks (WSNs) by minimizing the distance 

traveled by the sink. However, its static nature 

restricts its effectiveness in dynamic environments. 

The Differential Moth Flame Optimization (DMFO) 

algorithm [24] improves the lifespan of a network by 

optimizing the paths of the sink nodes. However, it 

has drawbacks such as increased communication 

overhead and high computational expenses, which 

make it less suitable for large-scale networks. The 

Instantaneous Clustering Algorithm (ICP) [25] 

clusters nodes in order to optimize the placement of 

the sink and enhance the lifespan of the network. 

However, it results in significant communication 

overhead during the clustering process and lacks the 

ability to adapt to real-time changes. The Clustered 

DVGOR [26] algorithm integrates geographical 

opportunistic routing with clustering. It performs 

efficiently in static scenarios but is less effective in 

dynamic networks due to its inflexible clustering 

approach. The Stochastic Bat Algorithm [27] uses a 

probabilistic method to optimize routing. It achieves 

high packet delivery ratios but has drawbacks in 

terms of computational complexity and energy 

consumption. Hybrid Optimization [28] combines 

various methods to improve throughput but requires 

substantial computational resources and faces 

challenges when network conditions change. Finally, 

the Greedy Strategy [29] prioritizes optimizing 

energy usage at each hop, which reduces immediate 

energy consumption but may result in less optimal 

global routing paths and higher overall energy usage. 

To summarize, previous research has investigated 

different approaches to enhance the positioning and 

routing of mobile sinks in wireless sensor networks 

(WSNs), each with its own disadvantages and 

constraints. The ALDS-Net model we propose 

overcomes these limitations by incorporating 

sophisticated deep learning methods to forecast the 

trajectories of mobile sinks, optimize data routing, 

and improve the longevity of the network. The 

comprehensive demonstrations and data presented in 

our research offer compelling evidence of these 

enhancements and emphasize the scientific 

contributions of our work. 

3. Methodology 

The block diagram shown in Figure 1 illustrates 

the three-stage WSN simulation methodology for 

mobile sink prediction. The first stage configures the 

simulation environment with essential information, 

variables, and mobility settings. It also sets up the 

network topology for later simulations, initializes the 

parameters of the simulation as well as those related 

to mobility especially needed by mobile sinks. The 

second stage deals with gathering data and creating 

models. The data is collected and trained on an 

ALDS-Net deep learning model that uses the ADAM 

optimizer and LSTM layers to model sensor node 

interactions with sink mobility. Once trained, this 

model is saved for use in simulations. The actual 

WSN simulation occurs in Stage 3. It involves 

network setup, sensor nodes addition, mobile sinks 

addition then running the simulation where key 

parameters such as dead nodes, operating nodes, 

contact time etc are visualized for analysis. Finally, 

exporting simulation data in a suitable format for 

further analysis or storage. This three-stage process 

uses data-driven modeling and visualization to create 

an inclusive framework of studying and 

understanding WSN behavior and performance. 

 Let us elaborate the discussion with necessary 

equations. 

– Initialize the simulation environment by 

clearing any existing figures or data and starting a 

timer to measure the execution time of the simulation. 

 

 

 
Figure. 1 Proposed Block Diagram 
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– Display a welcome message to let user know 

that WSN simulation has started. 

Number of Nodes – N, Number of Mobile Sinks 

- SN , Number of Training Rounds – T, Number of 

Rounds per Simulation – R, Bits Transmitted per 

Packet – K, Number of Clusters – C. 

- Initialize various parameters and configurations 

required for the WSN simulation. These parameters 

include values related to the network's dimensions, 

energy levels, mobility parameters, and simulation 

settings. 

Let us give notations for the Initialization 

parameters  

• Maximum Dimension of the WSN Plot - D 

• Initial Node Energy – 𝑬𝒊𝒏𝒊𝒕 ,  

• Energy Required for Transmission and 

Receiving of Packet (Transceiver Energy) 

– 𝑬𝒕𝒓𝒙 ,  

• Amplification Energy – 𝑬𝒂𝒎𝒑 , 

Aggregation Energy -𝑬𝒂𝒈𝒈 

Initialize dimension and Energy related values by 

following equation 

 

𝑃𝐷𝐸 =  [𝑑𝑖𝑚𝑠, 𝑒𝑛𝑒𝑟] =
 𝐼𝑛𝑖𝑡𝑝𝑎𝑟𝑎𝑚𝑒𝑡𝑒𝑟𝑠(𝐷, 𝐸𝑖𝑛𝑖𝑡 , 𝐸𝑡𝑟𝑥 , 𝐸𝑎𝑔𝑔, 𝐸𝑎𝑚𝑝)              (1) 

 

- Use the `init_mobility_params` function to 

initialize mobility-related parameters. These 

parameters include: 

- 𝑴𝒅: Minimum mobility for sensor nodes  

- 𝑴𝒙: Maximum mobility for sensor nodes  

- 𝑴𝒔𝒎𝒊𝒏
 : minimum mobility for sink nodes  

- 𝑴𝒔𝒎𝒂𝒙
: Maximum mobility for sink nodes  

- 𝑽𝒎𝒊𝒏 Minimum distance to affirm visitation by 

sink nodes (mobile sinks) (in meters). 

- These parameters control how nodes move 

within the WSN during simulation. 

- Utilize the data Gathering function to collect 

data for training predictive models of mobile sink 

positions. This step is crucial for the accuracy of the 

simulation. 

- Displays a message indicating the start of data 

gathering. 

 

𝐺(𝑡) = "𝑆𝑡𝑎𝑟𝑡 𝑜𝑓 𝐷𝑎𝑡𝑎 𝐺𝑎𝑡ℎ𝑒𝑟𝑖𝑛𝑔 𝑎𝑡 𝑡𝑖𝑚𝑒 𝑡       (2) 

 

Here, G(t) symbolizes the process of starting data 

gathering at time t. 

- Initializes the WSN with sensor nodes and 

mobile sinks. 

- Group the WSN into clusters. 

 

𝐶𝑔(𝑛𝑖) = 𝑘𝑗                                       (3) 

 

This equation states that a node n_i is assigned to 

a cluster k_j by the function C_g. 

     - Simulates multiple rounds of node 

movement and data collection. 

 

𝑆𝑟(𝑡, 𝑛, 𝑀, 𝐾) = 

{
𝑁𝑒𝑤 𝑃𝑜𝑠𝑖𝑡𝑖𝑜𝑛(𝑛, 𝑡, 𝑀),
𝐷𝑎𝑡𝑎 𝐶𝑜𝑙𝑙𝑒𝑐𝑡𝑒𝑑(𝑛, 𝑡, 𝐾)

}                             (4) 

 

• t is the current round of the simulation, 

ranging from 1 to R (the total number of 

rounds per simulation). 

• n is a node in the set of all nodes N. 

• M represents the mobility parameters, 

potentially including M_d, M_x, 

M_(s_min), and M_(s_max). 

• K is the number of bits transmitted per packet. 

     - Collects data regarding the positions of 

mobile sinks and store it in a structured format and 

it is given by equation 

 

𝐷𝑠(𝑡, 𝑆𝑁, 𝑃) = {(𝑠𝑛𝑖, 𝑃(𝑡, 𝑠𝑛𝑖)) ∣ 𝑠𝑛𝑖 ∈ 𝑆𝑁       (5) 

 

• SN represents the set of all mobile sinks, 

where SN = {sn_1, sn_2, ..., sn_{SN}}. 

• P is a function that gives the position of a 

mobile sink at time t, such that P(t, sn_i) 

gives the position of sink sn_i at time t. 

- Depending on the availability of pretrained 

models, the simulation either loads the existing 

models or creates new predictive models for mobile 

sink positions. 

- The predictive model is trained using the data 

collected during the data gathering step. Displays a 

message to indicate the start of model training. 

Configures a neural network model for regression, 

specifying architecture, hyperparameters, and 

training options. Prepares the training data extracted 

from the collected data. Trains separate models for 

predicting the X and Y positions of mobile sinks. 

Saves the trained models for future use and the Model 

for Mobile Sink Poitions can be given by following 

equation 

 

𝑠𝑛𝑚𝑜𝑑𝑒𝑙 = 

 𝑚𝑜𝑑𝑒𝑙𝑡𝑟𝑎𝑖𝑛𝑖𝑛𝑔(𝐷𝑠(𝑡, 𝑆𝑁, 𝑃), 𝑇, 𝑆𝑁)                 (6) 

 

- Check if pretrained predictive models for 

mobile sink positions exist.  
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- Attempts to load a pretrained model for X-

coordinates and Y-coordinates of mobile sinks. 

- Initialize the WSN by creating sensor nodes as 

given below. 

For Network Creation (𝐶𝑅𝑛𝑒𝑡𝑤𝑜𝑟𝑘- Function to 

create newtork):  

 

𝑊𝑆𝑁 =  𝐶𝑅𝑛𝑒𝑡𝑤𝑜𝑟𝑘(𝑁, 𝐷, 𝐸_𝑖𝑛𝑖𝑡, 𝑅)                 (7) 

 

Building the Sensor Nodes of the WSN 

Let us say 

Sensor Node ID (id): 

 

𝑆𝑁. 𝑛(𝑖). 𝑖𝑑 =  𝑖                                  (8) 

 

Maximum Dimension of the WSN Plot (D): 

 

𝑑𝑖𝑚𝑠 =  [𝑥𝑚𝑖𝑛, 𝑦𝑚𝑖𝑛, 𝑥𝑚𝑎𝑥 , 𝑦𝑚𝑎𝑥]                   (9) 

 

X-axis coordinates of Sensor Node (x): 

 

𝑆𝑁. 𝑛(𝑖). 𝑥 = 

 𝑑𝑖𝑚𝑠(′𝑥𝑚𝑖𝑛
′ ) +  𝑟𝑎𝑛𝑑(1,1) ∗ 

 (𝑑𝑖𝑚𝑠(′𝑥𝑚𝑎𝑥
′ ) −  𝑑𝑖𝑚𝑠(′𝑥𝑚𝑖𝑛

′ ))                    (10) 

 

Y-axis coordinates of Sensor Node (y) : 

 

𝑆𝑁. 𝑛(𝑖). 𝑦 = 

 𝑑𝑖𝑚𝑠(′𝑦_𝑚𝑖𝑛′)  +  𝑟𝑎𝑛𝑑(1,1)  ∗ 

 (𝑑𝑖𝑚𝑠(′𝑦𝑚𝑎𝑥
′ ) −  𝑑𝑖𝑚𝑠(′𝑦𝑚𝑖𝑛

′ ))                (11) 

 

- Create vehicular sink nodes (mobile sinks) 

within the WSN using the following function. 

For Vehicular Sink Node Creation: 

 

𝑉𝑆𝑁(𝑆𝑁, 𝐷, 𝑀_𝑠_𝑚𝑖𝑛, 𝑀_𝑠_𝑚𝑎𝑥) = {(𝑠𝑛𝑖
, 𝑃_𝑖𝑛𝑖𝑡(𝑠𝑛𝑖), 𝑀(𝑠𝑛𝑖)) ∣ 𝑖 = 1,2, . . . , 𝑆𝑁}               (12) 

 

Where: 

• sn_i represents the ith mobile sink. 

• P_{init}(sn_i) denotes the initial position of 

sink sn_i, where each position is determined 

within the bounds of D, ensuring that 

x_{init} ∈ [x_min, x_max] and y_{init} ∈ 

[y_min, y_max]. 

• M(sn_i) represents the mobility range for 

sink sn_i, bounded by [M_{s_min}, 

M_{s_max}]. 

-The above equationidentifies suitable locations 

for mobile sinks and assigns specific attributes to 

these nodes and vehicular sink nodes (mobile sinks) 

to the WSN and returns their IDs in msids. Mobile 

sinks are placed strategically within the WSN based 

on their roles and directions and its algorithm in 

stepwise manner is provided below. 

 

Algorithm1: Creation of the Vehicular 

Sinks 

 Function createVehicularSinks(SN, dims): 

    // Step 1: Determine Sink Placement 

    For i from 1 to 4: 

        // Calculate axis mid-point and 

comparison operator based on i 

        If (i mod 2 == 0):        axis_mid = dims.x 

/ 2 

            op = "<=" if i <= 2 else ">=" 

        Else: 

            axis_mid = dims.y / 2 

            op = "<=" if i <= 2 else ">=" 

        // Find eligible sensor nodes and their 

distances from axis mid-point 

        eligible_nodes = [(j, abs(SN.n(j).x - 

axis_mid if 'x' in locals() else SN.n(j).y - 

axis_mid)) for j in SN if SN.n(j).role == 'N' 

and (SN.n(j).y op axis_mid if 'y' in locals() 

else SN.n(j).x op axis_mid)] 

        // Step 2: Find Closest Node 

        I = min(eligible_nodes, key=lambda x: 

x[1])[0] 

        // Set properties for the selected node 

        SN.n(I).E = float('inf') 

        SN.n(I).role = 'S' 

        SN.n(I).cluster = NaN 

        SN.n(I).col = "k" 

        SN.n(I).size = 30 

        SN.n(I).alpha = 1 

        // Step 3: Set Sink Direction 

        if (i mod 2 == 0): 

            SN.n(I).direction = 'down' if i <= 2 else 

'up' 

            SN.n(I).direction_moved = 1 

        else: 

            SN.n(I).direction = 'left' if i <= 2 else 

'right' 

            SN.n(I).direction_moved = 1 if i <= 2 

else -1 

        // Store Sink ID 

        ms_ids[1, i] = I 

    Return SN, ms_ids 

End Function 
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- Conduct the core simulation process, which 

includes multiple rounds of communication, data 

exchange, and data aggregation among nodes. 

• The simulation process performs  for a 

specified number of rounds and it iterates 

through each round and performs various 

operation  

Let us initiate process 

for round=1 to rounds ‘R’ 

i. Reset sensor node roles to normal and sink  

 

𝑅𝑒𝑠𝑒𝑡𝑆𝑁 =  [𝑆𝑁] = 𝑟𝑒𝑠𝑒𝑡𝑊𝑆𝑁(𝑆𝑁)       (13) 

 

ii. Appoint Priority Nodes 

 

𝑃𝑟𝑖𝑜𝑟𝑖𝑡𝑦𝑁 = [𝑆𝑁,  𝑝𝑛𝑖𝑑𝑠] = 

𝑝𝑟𝑖𝑜𝑟𝑖𝑡𝑦𝑛𝑜𝑑𝑒𝑠𝑒𝑙𝑒𝑐𝑡𝑖𝑜𝑛 (
𝑆𝑁, 𝑚𝑠𝑖𝑑𝑠 , 𝑠𝑛𝑚𝑜𝑑𝑒𝑙 ,

𝑝𝑎𝑠𝑡𝑑𝑎𝑡𝑎
) (14) 

 

iii. Simulate packet transfer and energy 

dissipation and Update various simulation 

parameters, including dead nodes, operating 

nodes, total energy, packets, stability period, 

lifetime, stability period round, lifetime round, 

contact time, and interconnect time. 

- Now once data is collected, visualize various 

aspects of the simulation results. These aspects 

include the number of dead nodes, operating nodes, 

total energy, packets, contact time, and interconnect 

time per round. 

i. Dead Nodes (DNo): 

 

𝐷𝑁𝑜𝑛𝑒𝑤 = 

 𝐷𝑁𝑜𝑜𝑙𝑑 +  𝐶𝐷𝑁(𝑆𝑁) +  𝐶𝐷𝑁(𝑉𝑆𝑁)      (15) 

 

• Where 𝐷𝑁𝑜𝑜𝑙𝑑 is the count of dead nodes from 

the previous round. 

• 𝐶𝐷𝑁(𝑆𝑁) 𝑎𝑛𝑑 𝐶𝐷𝑁(𝑉𝑆𝑁)represent the count of 

dead nodes in the sets SN and 𝑉𝑆𝑁, respectively. 

ii. Operating Nodes (ON): 

 

𝑂𝑁𝑛𝑒𝑤 =  𝑁 −  𝐷𝑁𝑛𝑒𝑤                     (16) 

 

Where N is the total number of nodes. 

iii. Total Energy (𝐸𝑡𝑜𝑡𝑎𝑙𝑛𝑒𝑤) 

 

𝐸𝑡𝑜𝑡𝑎𝑙𝑛𝑒𝑤 =  𝑠𝑢𝑚(𝑒𝑛𝑒𝑟𝑔𝑖𝑒𝑠(𝑆𝑁)) + 

 𝑠𝑢𝑚(𝑒𝑛𝑒𝑟𝑔𝑖𝑒𝑠(𝑉𝑆𝑁))             (17) 

 

Where energies(nodes) is a function that 

calculates the total energy of the given set of 

nodes. 

iv. Packets Received (𝑃𝑟𝑐𝑣𝑑𝑛): 

 

𝑃𝑟𝑐𝑣𝑑𝑛 =  

𝑠𝑢𝑚(𝑃𝑟𝑐𝑣𝑑(𝑆𝑁)) +  𝑠𝑢𝑚(𝑃𝑟𝑐𝑣𝑑(𝑉𝑆𝑁))                  (18) 

 

Where 𝑃𝑟𝑐𝑣𝑑(𝑛𝑜𝑑𝑒𝑠) is a function that calculates 

the total received packets for the given set of 

nodes. 

v. Contact Time (CT): 

 

𝐶𝑇 =  𝐶𝑜𝑚𝑝𝐶𝑇(𝑆𝑁, 𝑉𝑆𝑁)                   (19) 

 

Where 𝐶𝑜𝑚𝑝𝐶𝑇(𝑛𝑜𝑑𝑒1 , 𝑛𝑜𝑑𝑒2) is a function 

that calculates the total contact time between the 

two sets of nodes. 

vi. Interconnect Time (ICT): 

 

𝐼𝐶𝑇 =  𝐶𝑜𝑚𝑝𝐼𝐶𝑇(𝑆𝑁,𝑉𝑆𝑁)                    (20) 

 

The function 𝐶𝑜𝑚𝑝𝐶𝑇(𝑛𝑜𝑑𝑒1 , 𝑛𝑜𝑑𝑒2)  is 

responsible for calculating the sum of all 

interconnection times between two groups of nodes. 

This important data can contain network settings, 

energy levels, movement parameters as well as any 

other necessary details. 

- Use this function to determine how long it took 

to run the whole simulation. 

 

𝐸𝑙𝑎𝑝𝑠𝑒𝑑 𝑇𝑖𝑚𝑒 (𝛥𝑡) = 

𝐸𝑛𝑑𝑖𝑛𝑔 𝑇𝑖𝑚𝑒 (𝑡𝑒𝑛𝑑) − 

𝑆𝑡𝑎𝑟𝑡𝑖𝑛𝑔 𝑇𝑖𝑚𝑒 (𝑡𝑠𝑡𝑎𝑟𝑡)                 (21) 

 

WhereΔt is the elapsed time, 𝑡𝑒𝑛𝑑 is the ending 

time and 𝑡𝑠𝑡𝑎𝑟𝑡is the starting time.   

The core parts of the proposed ALDS-Net model 

are well reflected in its name which is also known as 

Adaptive Moment Estimation Long Short-Term 

Memory DeepSink Network. This indicates about the 

first component as Adaptive moment Estimation and 

it has Adam optimization process induced in the 

beginning so as to eliminate the noisy gradients 

which are unwanted.  Secondly, the term “Long 

Short-Term Memory (LSTM)” is added into the 

model where it works mainly in the situations where 

long term dependencies arise as this network leans 

the components in a sequential manner. 
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Figure. 2 Proposed Model Architecture 

 

Additionally, ‘DeepSink Network’ refers to 

problems associated with mobile sinks within 

wireless sensor networks; based on deep learning 

approach should accurately predict direction and 

position of such mobile sinks. Here organization 

coverage and also the routing efficiency are covered.   

   ADAM optimizer and LSTM layers are used in 

combination as shown in figure 2 in a manner of  self-

transferred by sensor nodes interacting with mobile 

sinks for achieving better results with ALDS-Net 

than any other system. Therefore ALDS-Net can 

make accurate decisions thereby enhancing overall 

performance of a WSN. In short, ‘ALDS-Net’ 

implies breakthroughs so big they will surmount 

bottlenecks thus promoting growths within WSNs. 

The algorithm of the proposed model ALDS-Net 

is provided below which contains the main 

components of Adam Optimization and then LSTM 

network which works on Long term dependencies. 

The algorithm is provided in step by step procedure 

providing insights into each stage operation in a clear 

manner. 
 

Algorithm 2 : Proposed ALDS-Net Model 

% Step 1: Setup 

clear; close all; clc; rng('default'); % Clear 

environment, set seed 

% Step 2: Define Model 

inputSize = [features, timesteps]; 

layers = [sequenceInputLayer(inputSize), 

lstmLayer(128, 'OutputMode', 'sequence'),  

          lstmLayer(64), fullyConnectedLayer(2), 

regressionLayer]; 

% Step 3: Training Options 

options = trainingOptions('adam', 

'MaxEpochs', 100, 'MiniBatchSize', 32,  

                          'InitialLearnRate', 0.001, 

'GradientThreshold', 1,  

       'Shuffle', 'never', 'Plots', 'training-

progress'); 

% Step 4: Train Model 

model = trainNetwork(XTrain, YTrain, layers, 

options); 

% Step 5: Evaluate Model 

YPred = predict(model, XTest); % Predict with 

test data 

% Step 6: Save Model 

save('ALDS_Net_Model.mat', 'model'); 

 

4. Result and analysis 

The Dead Nodes Per Round plot in Figure 3 

demonstrates how well the ALDS-Net can keep 

nodes alive over a long time. Until about round 

number 400, we see that there are no dead nodes, 

which means energy management is strong and the 

network is working well. But after 400 rounds this 

changes dramatically with node failures happening 

per round.   

This plateau in Figure 4 shows a network that has 

a lot of operational nodes over many rounds. The 

result is an illustration of resilience and strong 

operational capacity since all the nodes are working. 

This part of the chart represents what can be known 

as the peak or highest point for any given system; 

everything after it will be downhill. 

 

 
Figure. 3 Dead Nodes Per Round 

 

 
Figure. 4 Live Nodes Per Round 
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Figure. 5 Packets Transmission per Round 

 

 
Figure. 6 Total Energy per Round 

 

 
Figure. 7 Interconnect Time per Round 

 

 
Figure. 8WSN Mobility at the initial rounds 

 
Figure. 9 WSN Mobility of 4 Mobile Sinks 

 

In the given plot, Figure 5, it can be seen that as 

time goes by, more packets are being sent per round. 

The chart shows a rising trend of activity in the 

network which means that this system can process 

larger amounts of information with each passing 

moment.  

In Figure 6, the total energy usage each round in 

a network is shown. This shows that after an initial 

increase, energy consumption stabilizes significantly. 

The graph flattens at about 90 units of energy 

meaning the network can achieve power parity. 

Between rounds 400 and 1000 inclusive there is no 

change in energy use this implies that the network can 

sustain itself without increasing its budget for power 

consumption over time.   

In this network, the duration of connection per 

round is shown by Figure 7. It implies that as time 

goes by, the time taken to connect linearly increases. 

This duration of interconnectivity starts at zero and 

then rises up to about 700 units at the 1000th round. 

The graph’s linearity means that there will be an 

expected growth in how long nodes stay connected 

together hence showing that more communication 

can take place through the network over an extended 

period without any abrupt spikes or dips.  

The figure 8 is about how a wireless sensor 

network (WSN) operates at its initial stages with 

respect to mobility where nodes are represented by 

blue diamonds and mobile sinks by red squares. Four 

mobile sinks are spread over one hundred units wide 

by one hundred units high area together with a 

hundred nodes which are uniformly distributed 

across it implying evenness of coverage and 

connection throughout the region. Figure 9 shows 

how four mobile sinks moved over a wireless sensor 

network during 1000 rounds on a unit grid measuring 

100x100. The red squares represent the positions of  



Received:  May 16, 2024.     Revised: August 29, 2024.                                                                                                   256 

International Journal of Intelligent Engineering and Systems, Vol.17, No.6, 2024           DOI: 10.22266/ijies2024.1231.20 

 

Table 1. Life Time assessment 

Techniques used  Life Time 

(Secs) 

Adjacency Based Cell Score 

(ABCS) [23] 

111 

DMFO [24] 102.86 

ICP [25] 107.135 

Proposed Method (ALDS-Net) 498.5 

 

 
Figure. 10 Comparison of Lifetime for 400 Nodes 

 

Table 2. Average Packet Delivery Ratio 

Techniques used  PDR % 

Clustered DVGOR [26] 85 

Stochastic Bat [27] 92 

Greedy [22] 91.3 

Proposed Method (ALDS-Net) 93.2 

 

 

the mobile sinks which are deployed throughout the 

network for data collection efficiency and coverage 

maximization. Placing them strategically after heavy 

activity on the network shows how adaptable it is in 

terms of reallocating its resources where necessary.   

Table 1 provides an assessment on the lifetime of 

different techniques employed in wireless sensor 

networks with respect to how long they can function 

effectively before their nodes fail. Three methods are 

shown by this table; ALDS-Net, proposed method 

and their lifetimes given in seconds. Adjacency 

Based Cell Score method lasts for 111s, while DMFO 

(Differential Mutation Flower Optimization) lasts for 

102.86s and ICP (Inductive Charging Protocol) lasts 

for 107.135s . Compared to these numbers, ALDS-

Net has been able to operate up to 498.5 seconds 

more. ALDS-Nets’ significant increase in operational 

lifetime points out at enhanced efficacy as well as 

management of resources within networks such as 

this one here being considered.   

The bar plot in Figure 10, based on data from 

Table 1, compares lifetimes of different network 

techniques. The Adjacency Based Cell Score, DMFO, 

ICP, and the proposed ALDS-Net method were used 

as techniques. The lifetime of each technique is 

indicated below: Adjacency Based Cell Score at 111 

seconds, DMFO at 102.86 seconds, ICP at 107.135 

seconds and proposed ALDS-Net method at 498.5 

seconds. It can be seen clearly from this diagram that 

ALDS-Net method has longer life than any other 

methods. 

In wireless sensor networks, Table 2 presents 

different techniques used with their average packet 

delivery ratio (PDR) which is a fundamental 

evaluative measure for the efficiency of transmitting 

packets from source to destination. Some of the 

techniques highlighted are Clustered DVGORs that 

have 85% PDR and show good performances in 

delivering packets. Stochastic Bat technique and 

Greedy technique perform better than this with 92% 

and 91.3% PDRs respectively thus indicating more 

stable transmission of packets across the network. 

The proposed ALDS-Net method has a better 

performance than all these methods as it achieves 

PDR of 93.2%, which is the highest among them. 

This shows that ALDS-Net can route most packets 

correctly to their intended destinations because of its 

high delivery rate. Also it means that this algorithm 

has stronger routing abilities than any other one 

included here. Such high PDR percentage indicates 

great improvement on reliability and efficiency in 

communication within networks by ALDS-Net 

thereby positioning it as one of the best solutions for 

critical applications demanding higher rates of packet 

delivery throughputs. 

The figure 11 bar chart shows different methods’ 

average packet delivery ratio (PDR). The Proposed 

Method (ALDS-Net) has the highest PDR of 93.2%. 

This diagram makes a clear comparison between each 

method’s PDR performances and underscores that 

ALDS-Net is better at ensuring successful packet 

delivery in wireless sensor networks.  

 

 

 
Figure. 11 Comparison of PDR 
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Table 3. Throughput 

Techniques used  Throughput (bps) 

ACO [29] 1150 

Stochastic Bat [27] 1450 

Hybrid Optimization [28] 1285 

Proposed Method (ALDS-Net) 1620 

 

 
Figure. 12 Comparison of Throughput 

 

3 compares the throughput capacities of different 

routing techniques in a wireless sensor network, 

measured in bits per second (bps). The Ant Colony 

Optimization (ACO) technique attains a capable 

throughput of 1150 bps thus setting up the foundation 

for network performance improvement. 

Comparatively, Stochastic Bat algorithm performs 

far much better with 1450 bps throughput while 

Hybrid Optimization gives us1285bps. However, the 

proposed method ALDS-Net has shown great 

improvement in terms of throughput which peaked at 

1620 bps. This is very high given that the size of data 

packets is only about 200 KB. It therefore indicates 

that ALDS-Net can deliver data fast and efficiently 

within the network. Figure 12 shows the data of 

throughputs from Table 3 highlighting different 

routing methods by means of their data forwarding 

capabilities. ALDS-Net proposed method records the 

highest throughput (1620 bps) followed by Stochastic 

Bat technique having 1450bps, Hybrid Optimization 

with 1285 bps and ACO at 1150 bps among others. 

Such a diagram clearly demonstrates that ALDS-Net 

has competitive advantage over other approaches 

when it comes to smoothness of information traffic 

within wireless sensor networks. 

5. Conclusion and summary 

This research study examined Wireless Sensor 

Networks (WSNs) through a three-stage 

methodology for the prediction of mobile sink. This 

work includes specifying the network topology, 

configuring simulation parameters, and tuning 

mobility settings particularly for mobile sinks which 

serve as our groundwork for subsequent simulations 

to ensure accurate representation of WSN scenarios. 

The second stage of our methodology involves data 

collection and modeling. Here we collect required 

data then apply ALDS-Net deep learning model 

which consists ADAM optimizer and LSTM layers. 

This provides accurate views about sensor node 

interactions with sink mobility hence enhancing 

predictability. Trained models are saved cautiously 

for future simulations. Stage 3 is where actual WSN 

simulation occurs; creation of network setup, sensor 

nodes deployment, mobile sinks deployment, 

simulation running. It visualizes key parameters such 

as active nodes, dead nodes, contact time etc., thus 

enabling deeper understanding on how networks 

behave. It is observed that in a 400-node WSN over 

750 simulation rounds ALDS-Net lifetime was 498.5 

seconds while Adjacency Based Cell Score had a 

Lifetime of less than or equal to 15 seconds (DMFO), 

ICP lifetime was less than or equal to 6 seconds. 

These results indicate that if implemented well this 

technique could lead to higher sustainability rates 

within networks compared to other alternatives 

currently available. In addition, the findings open up 

new areas for investigation in relation with WSNs. 

However, it should be noted that adaptive routing 

may still pose some challenges even after applying 

machine learning methods like ALDS-Net which is a 

clear indication that more needs to be done towards 

developing energy efficient protocols for data 

aggregation within these kinds of networks.  

 
Notations List: 

• D: Maximum Dimension of the WSN Plot. 

• Einit: Initial Node Energy. 

• Etrx: Energy Required for Transmission and 

Receiving of Packet (Transceiver Energy). 

• Eagg: Aggregation Energy. 

• Eamp: Amplification Energy. 

• Md: Minimum mobility for sensor nodes. 

• Mx: Maximum mobility for sensor nodes. 

• Msmin: Minimum mobility for sink nodes 

(mobile sinks). 

• Msmax: Maximum mobility for sink nodes 

(mobile sinks). 

• Vmin: Minimum distance to affirm visitation by 

sink nodes (mobile sinks). 

• G(t): Start of Data Gathering at time 𝑡t. 

• N: Number of Nodes. 

• SN: Number of Mobile Sinks. 

• T: Number of Training Rounds. 

• R: Number of Rounds per Simulation. 

• K: Bits Transmitted per Packet. 

• C: Number of Clusters.  

• DNo: Number of Dead Nodes. 
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• ONo: Number of Operating Nodes. 

• Etotal_new: Total Energy. 

• Prcvd: Packets Received. 

• CT: Contact Time. 

• ICT: Interconnect Time. 

• Δt: Elapsed Time. 
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