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Abstract: In this paper, a new human-based metaheuristic algorithm called Carpet Weaving Optimization (CWO) is 

introduced, which is inspired by human skills when weaving a carpet. The main source of inspiration in the design of 

CWO is taken from the communication between the carpet weaver and the map reader who try to weave a carpet 

according to the given pattern. The theory of CWO is stated and then mathematically modeled based on the simulation 

of the carpet weaving process. The effectiveness of CWO in optimization has been assessed across twenty-three 

standard benchmark functions encompassing unimodal, high-dimensional multimodal, and fixed-dimensional 

multimodal categories. The optimization outcomes underscore CWO’s capability to yield favorable results across 

various optimization challenges, adeptly navigating between exploration, exploitation, and achieving a balanced search 

process. Comparative analysis against twelve rival algorithms demonstrates CWO’s superior performance, 

consistently outshining competitors across all twenty-three benchmark functions and securing the top rank as the 

premier optimizer. Moreover, the efficacy of CWO in real-world applications has been scrutinized through its 

optimization of four engineering design quandaries. Simulation findings corroborate CWO’s commendable 

performance in real-world and engineering contexts, as evidenced by its capacity to deliver superior values for design 

variables and objective functions compared to competing algorithms. 

Keywords: Optimization algorithm, Engineering application, Human-inspired, Carpet weaving, Exploration, 

Exploitation. 

 

 

1. Introduction 

Optimization applications are prominent in a 

wide range of sciences, mathematics, engineering, 

industry and the real world [1]. Optimization 

problems have several solvable solutions, among 

which the best solution is known as the global 

optimum [2]. Dealing with optimization problems 

has become a fundamental challenge for researchers 

to achieve the global optimal solution among all 

existing solutions [3]. Problem solving techniques to 

face optimization tasks are classified into two groups: 

deterministic and stochastic approaches. Although 

deterministic approaches are effective in dealing with 

linear and convex optimization problems, but for 

dealing with real world optimization problems which 
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are non-linear and non-convex, they stop by getting 

stuck in local optima [4, 5].  

Metaheuristic algorithms are one of the most 

prominent stochastic approaches that are able to 

provide suitable solutions for optimization problems 

without depending on derivation processes and only 

based on the concepts of random search in the 

problem solving space [6].  

The important issue is that due to the random 

nature in the performance of metaheuristic 

algorithms, achieving the global optimum is not 

guaranteed by using these algorithms [7]. However, 

because these solutions are close to the global 

optimum, they are still acceptable as quasi-optimum 

[8]. Achieving better quasi-optimal solutions closer 

to the global optimum has been the source of the main 

motivation of researchers to design numerous 

metaheuristic algorithms so far [9]. In order to 

provide effective search, metaheuristic algorithms 

should be able to scan the problem solving space at 

both global and local levels with high accuracy. 

Global search refers to the exploration ability of the 

algorithm for comprehensive scanning in the problem 

solving space with the aim of discovering the region 

containing the global optimum, while local search 

refers to the algorithm’s exploitation ability for 

detailed scanning near promising solutions with the 

aim of achieving better solutions. In addition to 

exploration and exploitation, the main key to the 

success of metaheuristic algorithms is to balance 

these two search strategies during algorithm 

iterations [10]. 

The main research question is that according to 

the existing metaheuristic algorithms, is there a need 

for newer algorithms or not? In response to this 

question, the No Free Lunch (NFL) theorem [11] 

explains that due to the random nature of the 

performance of metaheuristic algorithms, it cannot be 

claimed that a particular algorithm is the best 

optimizer for all optimization applications. Therefore, 

there is no presupposition of the result of 

implementing an algorithm on an optimization 

problem. The NFL theorem motivates researchers to 

design newer metaheuristic algorithms to achieve 

more effective solutions for optimization problems 

by managing the random search process. Motivated 

by the NFL theorem, the novelty and innovation 

aspects of this study are in designing a new 

metaheuristic algorithm called Carpet Weaving 

Optimization (CWO) to deal with optimization 

applications. The main contributions of this study are 

as follows:  

• CWO is designed to simulate the efforts of a 

carpet weaver and map reader to weave a 

traditional carpet. 

• The idea of CWO design is derived from the skill 

of a carpet weaver to weave a carpet according to 

a given pattern. 

• The theory of CWO has been described and then 

mathematically modeled to be used in solving 

optimization problems. 

• The performance of CWO has been evaluated to 

optimize twenty-three standard benchmark 

functions of unimodal and multimodal types. 

• The efficiency of CWO to address real-world 

applications is challenged to solve four 

engineering design problems. 

• The performance quality of CWO is analyzed in 

comparison with the performance of twelve well-

known metaheuristic algorithms. 

The structure of the paper is as follows: literature 

review is presented in section 2. Then Carpet 

Weaving Optimization (CWO) is introduced and 

designed in section 3. Simulation studies on CWO 

performance are reported in Section 4. Analysis of 

the performance of CWO in addressing real-world 

applications in engineering is presented in Section 5. 

Finally, conclusions and several research proposals 

for future studies are provided in Section 6. 

2. Literature review 

Metaheuristic algorithms are known as one of the 

most effective stochastic approaches to solving 

optimization problems. In their design, these 

algorithms are inspired by various natural 

phenomena, swarming behavior of living organisms 

in wildlife, topics of biology, physics, human 

behavior, games, and other evolutionary phenomena. 

Based on the source of inspiration in design, 

metaheuristic algorithms can be classified into five 

groups: swarm-based, evolutionary-based, physics-

based, human-based, and game-based methods. 

Swarm-based algorithms have been developed 

inspired by swarming behaviors among living 

organisms such as insects, birds, aquatic animals, and 

reptiles. Particle Swarm Optimization (PSO) [12] and 

Ant Colony Optimization (ACO) [13] are among the 

most famous algorithms of this group, which have 

always been of interest to researchers and have been 

widely used in optimization applications. PSO 

simulates the migration strategy of flocks of birds and 

fish that are searching for food sources. ACO draws 

inspiration in its design from the ability of ants to 

identify the optimal communication path between the 

colony and the food source. Intelligent behaviors of 

living organisms in nature such as hunting, foraging, 

digging, chasing, migration, and movement models 

have been a source of inspiration in designing 

algorithms such as: Pelican Optimization Algorithm 
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(POA) [14], Coati Optimization Algorithm (COA) 

[15], Swarm Space Hopping Algorithm (SSHA) [16], 

Wombat Optimization Algorithm (WOA) [17], 

Migration-Crossover Algorithm (MCA) [18], Walrus 

Optimization Algorithm (WaOA) [19], and Fennec 

Fox Optimization (FFO) [20]. 

Evolutionary-based algorithms are inspired by 

concepts in biology, genetics, Darwin’s theory of 

evolution, natural selection, survival of the fittest, and 

other genetic concepts. Genetic Algorithm (GA) [21] 

and Differential Evolution (DE) [22] are among the 

most prominent evolutionary-based algorithms that 

have been widely used in science. The main idea in 

the design of GA and DE is derived from the 

reproduction process, genetic concepts and the 

simulation of selection, crossover, and mutation 

operators between chromosomes. 

Physics-based algorithms are developed from 

laws, forces, transformations, processes, phenomena 

and other concepts in physics. Simulated Annealing 

(SA) [23] is considered one of the most widely used 

physics-based algorithms, which was developed with 

inspiration from the annealing process of metals. The 

simulation of physical forces and Newton’s laws of 

motion have been a source of inspiration in designing 

algorithms such as: Spring Search Algorithm (SSA) 

[24] and Momentum Search Algorithm (MSA) [25]. 
Physical concepts have also been sources of 

inspiration in designing algorithms such as: 

Propagation Search Algorithm (PSA) [26], Water 

Cycle Algorithm (WCA) [27], and Gravitational 

Search Algorithm (GSA) [28]. 

Human-based algorithms are inspired in their 

design process by simulating human behavior in 

individual and social life such as choices, 

communication, decision making, thinking, and 

cooperation. Teaching-Learning Based Optimization 

(TLBO) [29] is one of the most widely used human-

based algorithms that imitates the interaction and 

communication between students and teachers in the 

classroom environment. Mother Optimization 

Algorithm (MOA) [7] simulate the Eshrat’s attentive 

care from her children. Doctor and Patient 

Optimization (DPO) [30] is inspired by the strategies 

of medical staff and doctors to treat patients. Human 

behavior in various activities has been a source of 

inspiration for designing algorithms such as: Driving 

Training-Based Optimization (DTBO) [31], Ali Baba 

and the Forty Thieves (AFT) [32], Election-Based 

Optimization Algorithm (EBOA) [33], and 

Teamwork Optimization Algorithm (TOA) [34]. 

Game-based algorithms are developed inspired 

by players’ strategies based on the rules governing 

various individual and team games. Darts Game 

Optimizer (DGO) is one of the most popular game-

based algorithms, inspired in its design by the skill of 

darts players to collect more points from their throws 

towards the board [35]. The competition between 

players in different games in order to win the game 

has been a source of inspiration in designing 

algorithms such as: Orientation Search Algorithm 

(OSA) [36], Golf Optimization Algorithm (GOA) 

[37], Ring toss game based optimization (RTGBO) 

[38], Hide Object Game Optimizer (HOGO) [39], 

Puzzle Optimization Algorithm (POA) [40], Dice 

Game Optimizer (DGO) [41], Shell game 

optimization (SGO) [42], and Football Game Based 

Optimization (FGBO) [43]. 
Based on the best knowledge obtained from the 

literature review, no metaheuristic algorithm has 

been designed based on the simulation of the carpet 

weaving process. This is while the communication 

between the carpet weaver and the map reader in 

order to weave a carpet according to the given pattern 

is an intelligent process that can be the basis for the 

design of a new optimizer. In order to address this 

research gap in the studies of metaheuristic 

algorithms, in this paper, a new metaheuristic 

algorithm is designed based on the simulation of the 

carpet weaving process, which is discussed in the 

next section. 

3. Carpet weaving optimization 

In this section, the theory and the source of 

inspiration used in the design of Carpet Weaving 

Optimization (CWO) are described first, then the 

steps of its implementation are mathematically 

modeled. 

3.1 Inspiration of CWO 

There is no exact information about the history of 

the origin of the carpet, but according to the evidence 

of ancient works and human discoveries, arts such as 

basket weaving, and felt weaving have been 

influential in the creation of carpet weaving art. The 

designs of the first carpets that had the aspect of 

everyday use; It was simple and primitive and broken 

and mostly subjective, and researchers initially 

thought of Egypt as the cradle of carpet weaving, but 

Professor Rudenko discovered the first Pazyryk 

carpet in the mountains of Siberia in 1949 and 

invalidated other theories. According to this practical 

example, the cradle of carpet weaving moved from 

the banks of the Nile, Tigris and Euphrates rivers to 

Central Asia, and based on this, it was determined 

that the cradle of carpet weaving was in Iran. 

In addition to being considered an art, carpet 

weaving is also an attractive job to earn money. In 

traditional carpet weaving, the carpet weaver tries to 



Received:  March 30, 2024.     Revised: April 29, 2024.                                                                                                   233 

International Journal of Intelligent Engineering and Systems, Vol.17, No.4, 2024           DOI: 10.22266/ijies2024.0831.18 

 

prepare the carpet according to the given pattern. In 

this carpet weaving process, a person as a map reader 

reads the pattern of the carpet out loud and the carpet 

weaver weaves the carpet according to that pattern. 

Therefore, what is evident is that the art of carpet 

weaving is an intelligent process in which the 

communication between the carpet weaver and the 

map reader is very important for weaving a carpet 

according to the pattern. This skill of carpet weaving 

is considered as a source of basic inspiration for the 

design of CWO, which is discussed further. 

3.2 Algorithm initialization 

CWO is proposed as a population-based 

algorithm that is able to achieve suitable solutions for 

optimization problems by relying on the power of 

searching its members in the problem solving space. 

From the dualistic point of view between carpet 

weaving process and optimization process, each 

carpet as a member of CWO corresponds to a 

candidate solution for the problem. Considering this 

point of view, each CWO member is mathematically 

modeled using a vector. The initial position of the 

carpets in the solution space of the initialization 

problem is completely random using Eq. (1). The 

community of carpets together form the CWO 

population, which is mathematically modeled using a 

matrix according to Eq. (2). 
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 (1) 

 

𝑥𝑖,𝑑 = 𝑙𝑏𝑑 + 𝑟 ∙ (𝑢𝑏𝑑 − 𝑙𝑏𝑑)  (2) 

 

Where, 𝑋 is the CWO’s population matrix, 𝑋𝑖 is 

the ith carpet (i.e., candidate solution), 𝑥𝑖,𝑑 is its dth 

dimension in the search space (i.e., decision variable), 

N is the number of carpets (i.e., population size), m is 

the number of decision variables, r is a random 

number within the interval [0,1], while 𝑙𝑏𝑑 and 𝑢𝑏𝑑 

stand for the lower and upper bounds of the dth 

decision variable, respectively. 

Based on the placement of candidate solutions 

proposed by each CWO member in the objective 

function, a value is calculated. The list of evaluated 

values for the objective function can be represented 

mathematically using a vector according to Eq. (3). 
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Where, F is the vector of objective function 

values and 𝐹𝑖 is the obtained objective function value 

based on the ith CWO member. 

3.3 Mathematical modelling of CWO 

In this step, the mathematical modeling of CWO 

has been discussed. According to the traditional 

carpet weaving process, where the carpet weaver tries 

to weave the carpet based on the given pattern, the 

position of the CWO members is updated in the 

problem solving space. In the design of CWO, it is 

assumed that the carpet weaving process has two 

stages: (i) weaving the carpet based on the given 

pattern and (ii) creating creative changes in the design 

of the carpet simultaneously with the carpet weaving. 

With this point of view in the design of CWO, in each 

iteration the position of the population members is 

updated during two different phases based on the 

mathematical modeling of the mentioned stages. 

Each of these update phases is further analyzed and 

modeled. 

3.3.1 Phase 1: Carpet weaving based on the given 

pattern (exploration phase) 

An important step in the carpet weaving process 

is that the carpet weaver starts weaving the carpet 

according to the given pattern that is read out loud by 

a person called the map reader. This behavior of 

carpet weaving leads to extensive changes on the raw 

materials of carpet weaving. Simulating these 

extensive changes in the carpet weaving process 

leads to extensive changes in the position of CWO 

members in the problem solving space. As a result, 

the update phase enhances the CWO discovery 

capability to manage global search.  

In CWO design, the position of a randomly 

generated member in the problem solving space is 

considered as a carpet weaving pattern 

( 𝑋𝑃 𝑤ℎ𝑒𝑟𝑒 𝑥𝑃,𝑗 = 𝑙𝑏𝑗 + 𝑟 ∙ (𝑢𝑏𝑗 − 𝑙𝑏𝑗) ). The 

advantage of this choice is that the random member 

can direct the population of the algorithm to different 

regions of the problem solving space and increase the 

algorithm’s exploration power. Based on the 

modeling of extensive changes on the carpet material, 

a new position for each CWO member is calculated 

using Eq. (4). Then, if this new position provides a 

better value for the objective function, it replaces the 
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previous position of the corresponding member 

according to Eq. (5). 

 

𝑥𝑖,𝑗
𝑃1 = 𝑥𝑖,𝑗 + (1 − 2𝑟)  ∙ (𝑥𝑃,𝑗 − 𝐼 ∙ 𝑥𝑖,𝑗),     (4) 

 

𝑋𝑖 = {
𝑋𝑖

𝑃1, 𝐹𝑖
𝑃1 ≤ 𝐹𝑖,

𝑋𝑖, 𝑒𝑙𝑠𝑒 ,
      (5) 

 

Where, 𝑋𝑃  is the weaving pattern, 𝑥𝑃,𝑗  is its jth 

dimension, 𝑋𝑖
𝑃1  is the new position for the ith 

member based on first phase of CWO, 𝑥𝑖,𝑗
𝑃1 is its jth 

dimension, 𝐹𝑖
𝑃1 is its objective function value, 𝑟 is a 

random number drawn from the interval [0, 1], and 𝐼 

is randomly selected number, taking values of 1 or 2. 

3.3.2 Phase 2: Making creative changes to the design 

during carpet weaving (exploitation phase) 

Although a pattern is available to prepare a carpet, 

carpet weavers make small changes in the design 

while weaving according to their own creativity in 

order to increase the attractiveness and beauty of the 

carpet. This carpet weaver’s skill during carpet 

weaving leads to the creation of small changes on the 

carpet, whose simulation leads to the improvement of 

the exploitation ability of CWO in order to manage 

local search. In fact, making these small changes in 

the position of CWO members can lead to 

convergence to better solutions. In CWO design, 

based on the simulation of these creative changes, a 

new position is calculated for each member of the 

population according to Eq. (6). Then, if this new 

position is acceptable and replaces the previous 

position of the corresponding member, it improves 

the value of the objective function according to Eq. 

(7). 

 

𝑥𝑖,𝑗
𝑃2 = (1 +

(1−2 𝑟)

𝑡
) ∙  𝑥𝑖,𝑗        (6) 

 

𝑋𝑖 = {
𝑋𝑖

𝑃2, 𝐹𝑖
𝑃2 ≤ 𝐹𝑖

𝑋𝑖, 𝑒𝑙𝑠𝑒 
       (7) 

 

Where, 𝑋𝑖
𝑃2 is the new calculated position for the 

ith CWO member based on second phase of CWO, 

𝑥𝑖,𝑗
𝑃2  is the its 𝑗 th dimension, 𝐹𝑖

𝑃2  is its objective 

function value, 𝑟 is a random number drawn from the 

interval [0, 1], and 𝑡 is the iteration counter. 

3.4 Repetition process, pseudocode, and 

flowchart of CWO 

The first iteration of CWO ends when all its 

population members are updated based on the 

exploration and exploitation phases. After that, with 

the new updated values, the algorithm enters the next 

iteration and the process of updating the CWO 

members continues until the last iteration using Eqs. 

(4) to (7). At the end of each iteration, the best 

candidate solution obtained is updated and saved. 

After the full implementation of the algorithm, the 

best solution obtained during the iterations of the 

algorithm is output as the proposed solution of CWO 

for the given problem. The pseudocode of CWO 

implementation steps is presented in Algorithm 1. 

 

Algorithm 1. Pseudocode of CWO. 

Start CWO. 

1. 
Input problem information: variables, objective 

function, and  constraints. 

2. Set CWO population size (N) and iterations (T). 

3. 
Generate the initial population matrix at random 

using Eq. (2). 𝑥𝑖,𝑑 ← 𝑙𝑏𝑑 + 𝑟 ∙ (𝑢𝑏𝑑 − 𝑙𝑏𝑑) 

4. Evaluate the objective function. 

5. 

 

For 𝑡 = 1 to T 

6.  For 𝑖 = 1 to 𝑁 

7.  
Phase 1: Carpet weaving based on the given 

pattern (exploration phase) 

8.   
Determine carpet weaving pattern.  

𝑥𝑃,𝑗 ← 𝑙𝑏𝑗 + 𝑟 ∙ (𝑢𝑏𝑗 − 𝑙𝑏𝑗) 

9.   
Calculate new position of ith member using Eq. 

(4). 𝑥𝑖,𝑑
𝑃1 ← 𝑥𝑖,𝑑 + (1 − 2𝑟) ∙ (𝑥𝑃,𝑗 − 𝐼 ∙ 𝑥𝑖,𝑑) 

10.   

Update ith member using Eq. (5).  

𝑋𝑖 ← {
𝑋𝑖

𝑃1, 𝐹𝑖
𝑃1 < 𝐹𝑖

𝑋𝑖 , 𝑒𝑙𝑠𝑒
 

11.  

Phase 2: Making creative changes to the 

design during carpet weaving (exploitation 

phase) 

12.   
Calculate new position of ith member using Eq. 

(6). 𝑥𝑖,𝑑
𝑃2 ← (1 +

(1−2 𝑟)

𝑡
) ∙  𝑥𝑖,𝑗 

13.   

Update ith member using Eq. (7).  

𝑋𝑖 ← {
𝑋𝑖

𝑃2, 𝐹𝑖
𝑃2 < 𝐹𝑖

𝑋𝑖 , 𝑒𝑙𝑠𝑒
 

14.  end 

15.   Save the best candidate solution so far. 

16.  end  

17. 
 Output the best quasi-optimal solution obtained 

with the CWO. 

End CWO. 
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4. Simulation studies and results 

This section is dedicated to the performance 

analysis of CWO to handle optimization tasks. For 

this purpose, a set of twenty-three standard 

benchmark functions of unimodal, high-dimensional 

multimodal, and fixed-dimensional multimodal types 

has been selected. A detailed description and 

complete information of these benchmark functions 

is available in [44]. In order to analyze the 

performance of CWO, the obtained results have been 

compared with the performance of twelve famous 

metaheuristic algorithms: GA [21], PSO [12], GSA 

[28], TLBO [29], MVO [45], GWO [46], WO [47], 

MPA [48], TSA [49], RSA [50], AVOA [51], and 

WSO [52]. Six statistical indicators mean, best, worst, 

standard deviation (std), median, and rank have been 

used to report the simulation results. 

4.1 Evaluation of unimodal functions 

Due to the lack of local optimal solutions, 

unimodal functions are desirable options for 

analyzing the exploitation ability of metaheuristic 

algorithms in local search. For this reason, functions 

F1 to F7 have been selected as unimodal. The results 

of the implementation of CWO and competing 

algorithms on functions F1 to F7 are listed in Table 1. 

Based on these results, CWO with its high ability in 

exploitation has been able to provide the global 

optimum for functions F1 to F6. Also, in order to 

handle F7, CWO has been ranked as the first best 

optimizer. The analysis of the simulation results 

shows that CWO, with its high ability in exploitation, 

has provided superior performance for dealing with 

unimodal functions in competition with the compared 

algorithms. 

4.2 Evaluation of high-dimensional multimodal 

functions 

High-dimensional multimodal functions 

challenge the exploration ability of metaheuristic 

algorithms due to having multiple local optima in 

addition to global optima.  

 
Table 1. Optimization results of unimodal functions (F1 to F7) 

 CWO WSO AVOA RSA MPA TSA WOA GWO MVO TLBO GSA PSO GA 

F1 

mean 0 43.66812 8.15E-48 8.15E-48 8.28E-48 4.02E-47 8.15E-48 0.099143 8.15E-48 8.15E-48 8.84E-17 0.06689 20.20947 
best 0 3.508369 2.53E-51 2.53E-51 2.46E-50 1.25E-50 2.53E-51 0.069907 2.53E-51 2.53E-51 3.55E-17 0.000322 11.87772 
worst 0 158.2929 5.79E-47 5.79E-47 5.79E-47 2.86E-46 5.79E-47 0.133372 5.79E-47 5.79E-47 2.48E-16 0.926092 37.71832 
std 0 30.11298 1.51E-47 1.51E-47 1.51E-47 7.46E-47 1.51E-47 0.01584 1.51E-47 1.51E-47 4.08E-17 0.177342 5.970485 
median 0 30.09354 7.49E-49 7.49E-49 8.52E-49 3.7E-48 7.49E-49 0.099734 7.49E-49 7.49E-49 7.5E-17 0.00644 18.68357 
rank 1 10 2 2 4 5 2 8 3 2 6 7 9 

F2 

mean 0 1.417777 3.7E-29 3.7E-29 4.98E-28 1.82E-28 3.7E-29 0.171719 3.7E-29 3.7E-29 3.64E-08 0.593328 1.847484 
best 0 0.438932 3.55E-31 3.55E-31 1.26E-29 1.75E-30 3.55E-31 0.106059 3.55E-31 3.55E-31 2.31E-08 0.030002 1.156407 
worst 0 4.933104 3.19E-28 3.19E-28 3.13E-27 1.58E-27 3.19E-28 0.241511 3.19E-28 3.19E-28 8.16E-08 1.651976 2.52208 
std 0 1.012467 7.99E-29 7.99E-29 6.2E-28 3.94E-28 7.99E-29 0.035945 7.99E-29 7.99E-29 1.07E-08 0.412412 0.310876 
median 0 1.014025 3.46E-30 3.46E-30 3.08E-28 1.71E-29 3.46E-30 0.177797 3.46E-30 3.46E-30 3.4E-08 0.387045 1.81645 
rank 1 10 2 2 6 5 2 8 4 3 7 9 11 

F3 

mean 0 1183.541 2.07E-11 2.07E-11 2.24E-11 1.02E-10 13224.22 10.58332 2.08E-11 2.07E-11 315.0481 257.1612 1437.086 
best 0 689.3607 2.4E-22 2.4E-22 4.62E-19 1.19E-21 1368.111 3.958327 3.6E-17 2.4E-22 162.9663 14.42282 943.6123 
worst 0 2347.532 3.42E-10 3.42E-10 3.42E-10 1.69E-09 22983.24 32.42563 3.42E-10 3.42E-10 786.0084 679.3865 2291.759 
std 0 358.2412 6.58E-11 6.58E-11 6.54E-11 3.25E-10 4883.018 6.142817 6.58E-11 6.58E-11 125.7018 164.5889 365.031 
median 0 1032.464 1.88E-14 1.88E-14 9.54E-13 9.3E-14 13466.08 7.870749 1.91E-14 1.88E-14 265.2466 194.1601 1391.844 
rank 1 10 2 2 5 6 12 7 4 3 9 8 11 

F4 

mean 0 11.46044 0.000775 0.000775 0.000775 0.003826 34.33562 0.363274 0.000775 0.000775 0.819623 4.161587 1.875425 
best 0 7.894391 1.69E-05 1.69E-05 1.69E-05 8.35E-05 0.599382 0.176414 1.69E-05 1.69E-05 4.73E-05 1.517667 1.469686 
worst 0 15.79271 0.006278 0.006278 0.006278 0.030995 60.76349 0.639216 0.006278 0.006278 3.264962 8.852199 2.645543 
std 0 1.647695 0.001199 0.001199 0.001199 0.005919 16.89903 0.110405 0.001199 0.001199 0.791774 1.428045 0.265932 
median 0 11.7756 0.000258 0.000258 0.000258 0.001272 36.7226 0.352461 0.000258 0.000258 0.602242 3.898124 1.844987 
rank 1 10 2 2 3 5 11 6 4 2 7 9 8 

F5 

mean 0 7160.262 4.990385 13.60277 20.44396 24.63641 23.08474 68.74312 22.60233 22.73904 34.17617 3060.683 399.4701 
best 0 897.7362 4.498638 4.498599 19.69789 22.20861 22.47026 23.36725 21.99029 21.93579 21.88627 22.47057 156.6194 
worst 0 61434.92 5.063005 24.27072 20.94502 24.99485 24.0887 255.4444 23.04111 24.0718 115.8726 59686.85 1500.501 
std 0 11451.73 0.118946 8.408498 0.265515 0.58723 0.302227 57.91832 0.303102 0.566845 25.31313 11479.28 242.5391 
median 0 3721.809 5.050883 5.05951 20.46174 24.93507 22.98594 24.92492 22.43836 22.48896 22.51296 62.02653 319.929 
rank 1 13 2 3 4 8 7 10 5 6 9 12 11 

F6 

mean 0 67.50226 0.645218 4.923966 0.645218 3.185303 0.699266 0.745267 1.083072 1.480977 0.645218 0.687255 23.27003 
best 0 11.72573 0.447355 3.096115 0.447355 2.208497 0.481147 0.545819 0.653907 0.864829 0.447355 0.447715 11.09755 
worst 0 254.0519 0.838993 5.642568 0.838993 4.141928 0.939363 0.927426 1.495689 2.188011 0.838993 0.971192 42.12588 
std 0 54.51424 0.104646 0.596324 0.104646 0.516617 0.114437 0.107806 0.20176 0.31822 0.104646 0.125679 7.717934 
median 0 46.70071 0.665211 5.237235 0.665211 3.284003 0.706313 0.759652 1.102359 1.429945 0.665211 0.696413 21.61364 
rank 1 13 4 11 3 10 6 7 8 9 2 5 12 

F7 

mean 2.54E-05 0.000825 0.000807 0.000785 0.001127 0.00376 0.001612 0.00846 0.001316 0.001779 0.035754 0.12277 0.007781 
best 2.35E-06 0.000287 0.000271 0.000279 0.000337 0.001293 0.000444 0.00378 0.000646 0.000961 0.011114 0.046877 0.002781 
worst 6.89E-05 0.001775 0.001758 0.001762 0.002048 0.008634 0.004726 0.016121 0.00217 0.003036 0.064422 0.272884 0.014967 
std 1.7E-05 0.000334 0.000352 0.000356 0.000388 0.001745 0.001098 0.002909 0.000375 0.000527 0.01422 0.044979 0.002701 
median 1.83E-05 0.000676 0.000673 0.000676 0.001066 0.003225 0.001023 0.008494 0.001235 0.001639 0.034643 0.118664 0.007872 
rank 1 4 3 2 5 9 7 11 6 8 12 13 10 

Sum rank 7 70 17 24 30 48 47 57 34 33 52 63 72 
Mean rank 1 10 2.4285714 3.4285714 4.2857143 6.8571429 6.7142857 8.1428571 4.8571429 4.7142857 7.4285714 9 10.285714 
Total rank 1 12 2 3 4 8 7 10 6 5 9 11 13 
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Table 2. Optimization results of high-dimensional multimodal functions (F8 to F13) 
 CWO WSO AVOA RSA MPA TSA WOA GWO MVO TLBO GSA PSO GA 

F8 

mean -12498.6 -7774.99 -11365.7 -6704.9 -9521.61 -6996.92 -10434.4 -8292.89 -7131.21 -6812.35 -4945.83 -7441.14 -8682.84 
best -12622.8 -9233.99 -11652.6 -6939.59 -10099.4 -8029.9 -11651.8 -9341.48 -7605.9 -7797.43 -5733.65 -8302.26 -9685.05 
worst -11936.3 -6894.35 -10948.8 -6280.23 -8805.99 -5457.83 -8156.76 -7524.12 -6598.29 -6132.27 -4375.8 -6446.37 -7763.82 
std 163.9826 450.7563 156.4622 161.171 261.1113 548.6706 1028.308 435.8963 221.2246 352.5892 300.4616 406.2674 419.93 
median -12577.8 -7771.36 -11355.9 -6778.08 -9442 -6974.56 -11017.7 -8239.87 -7095.81 -6719.73 -4896.69 -7478.85 -8665.19 
rank 1 7 2 12 4 10 3 6 9 11 13 8 5 

F9 

mean 0 46.65731 30.33831 30.33831 30.33831 149.7737 30.33831 95.15657 30.33831 30.33831 49.22501 75.2033 66.56802 
best 0 33.03347 15.7269 15.7269 15.7269 77.64033 15.7269 57.69707 15.7269 15.7269 25.59002 45.36693 50.58438 
worst 0 68.2492 50.50149 50.50149 50.50149 249.315 50.50149 131.5287 50.50149 50.50149 67.64125 106.6014 84.684 
std 0 7.7613 7.69836 7.69836 7.69836 38.00514 7.69836 16.57629 7.69836 7.69836 9.839781 15.03763 8.956979 
median 0 46.05044 29.20825 29.20825 29.20825 144.1949 29.20825 95.76731 29.20825 29.20825 47.94703 75.61971 65.58362 
rank 1 4 2 2 2 9 2 8 3 2 5 7 6 

F10 

mean 8.88E-16 3.723604 0.217735 0.217735 0.217735 1.074909 0.217735 0.600629 0.217735 0.217735 0.217735 2.024696 2.58646 
best 8.88E-16 2.597422 2.13E-15 2.13E-15 4.49E-15 7.04E-15 3.38E-15 0.066654 1.28E-14 4.49E-15 3.94E-09 1.122015 1.909479 
worst 8.88E-16 5.432151 0.591165 0.591165 0.591165 2.918452 0.591165 1.666468 0.591165 0.591165 0.591165 3.350624 3.635938 
std 0 0.698384 0.236881 0.236881 0.236881 1.169428 0.236881 0.416943 0.236881 0.236881 0.236881 0.539986 0.334004 
median 8.88E-16 3.732135 4.62E-15 4.62E-15 6.98E-15 1.93E-14 8.15E-15 0.599712 1.63E-14 6.98E-15 6.26E-09 2.144645 2.586359 
rank 1 12 2 2 4 9 3 8 6 5 7 10 11 

F11 

mean 0 1.13861 0.00155 0.00155 0.00155 0.00765 0.00155 0.266359 0.002437 0.00155 4.777306 0.1243 0.977816 
best 0 0.734988 0 0 0 0 0 0.170395 0 0 1.98635 0.003314 0.855476 
worst 0 2.177837 0.003601 0.003601 0.003601 0.017776 0.003601 0.355124 0.014218 0.003601 8.37331 0.580304 1.145003 
std 0 0.309561 0.00095 0.00095 0.00095 0.004689 0.00095 0.04644 0.002764 0.00095 1.552743 0.130015 0.070753 
median 0 1.061754 0.001576 0.001576 0.001576 0.007781 0.001576 0.277646 0.001631 0.001576 4.84495 0.082142 0.961363 
rank 1 8 2 2 2 4 2 6 3 2 9 5 7 

F12 

mean 1.57E-32 3.181511 1.01513 1.888132 1.01513 5.011477 1.028445 1.621137 1.041552 1.06239 1.154293 2.009674 1.197264 
best 1.57E-32 1.233308 0.181699 1.01238 0.181699 0.89701 0.187246 0.2185 0.209187 0.241127 0.199801 0.534041 0.261227 
worst 1.57E-32 5.63923 2.477194 3.567709 2.477194 12.22937 2.479033 3.203045 2.490027 2.53303 2.558529 3.865906 2.558285 
std 2.42E-48 1.153065 0.585662 0.607317 0.585662 2.891285 0.585506 0.731719 0.580743 0.584934 0.61057 0.881824 0.59149 
median 1.57E-32 3.104608 0.754392 1.785164 0.754392 3.724272 0.758833 1.627975 0.788177 0.800374 0.960224 2.102633 0.995756 
rank 1 12 3 10 2 13 4 9 5 6 7 11 8 

F13 

mean 1.35E-32 2385.488 0.476108 0.476108 0.477764 2.350445 0.618297 0.497824 0.816547 1.20625 0.51365 2.866381 2.270217 
best 1.35E-32 9.531134 0.352662 0.352662 0.352662 1.741018 0.382823 0.360725 0.440976 0.914808 0.356234 0.476517 1.298185 
worst 1.35E-32 41186.32 0.650831 0.650831 0.650831 3.213012 0.855656 0.687444 1.249809 1.52361 1.075928 8.691423 3.093288 
std 2.42E-48 7905.609 0.084146 0.084146 0.084073 0.415412 0.101675 0.087893 0.180312 0.160116 0.144353 1.702002 0.412696 
median 1.35E-32 29.74058 0.444264 0.444264 0.448893 2.193234 0.625598 0.466166 0.826452 1.202909 0.448005 2.724755 2.335318 
rank 1 13 3 2 4 11 7 5 8 9 6 12 10 

Sum rank 6 56 14 30 18 56 21 42 34 35 47 53 47 
Mean rank 1 9.333333 2.333333 5 3 9.333333 3.5 7 5.666667 5.833333 7.833333 8.833333 7.833333 
Total rank 1 11 2 5 3 11 4 8 6 7 9 10 9 

 

 

According to this feature, functions F8 to F13 are 

selected from the high-dimensional multimodal type. 

The performance of CWO and competing algorithms 

for optimizing functions F8 to F13 is reported in 

Table 2. Based on these results, CWO with high 

exploration ability has been able to achieve the global 

optimum for F9 and F11 functions. Also, CWO was 

able to get the rank of the first best optimizer for F8, 

F10, F12, and F13 functions. Analysis of the 

simulation results shows that CWO with high power 

in exploration and local search has provided superior 

performance in dealing with high-dimensional 

multimodal functions in comparison to competing 

algorithms. 

4.3 Evaluation of fixed-dimensional multimodal 

functions 

Fixed-dimensional multimodal functions are a 

type of optimization challenges that are suitable for 

simultaneous evaluation of exploration and 

exploitation abilities in metaheuristic algorithms. 

With this point of view, functions F14 to F23 are 

selected from fixed-dimensional multimodal type. 

The performance of CWO and competing algorithms 

on functions F14 to F23 is reported in Table 3. These 

results show that CWO is able to get the rank of the 

first best optimizer in handling all ten benchmark 

functions F14 to F23. Analysis of the simulation 

results shows that CWO, with its high ability to 

balance exploration and exploitation, has been able to 

provide superior performance for handling fixed-

dimensional multimodal functions compared to 

competing algorithms. 

The performance of CWO and competing 

algorithms for optimizing benchmark functions F1 to 

F23 are drawn as boxplot diagrams in Fig. 1. 

5. CWO for real-world engineering 

applications 

The efficiency of metaheuristic algorithms in 

tackling real-world and engineering challenges 

stands as a paramount objective. To this end, the 

effectiveness of CWO and rival algorithms has been 

assessed across four engineering design domains: 

pressure vessel design (PV) [53], speed reducer 

design (SR) [54], welded beam design (WB) [47],  
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Figure. 1 boxplot diagrams of benchmark functions: (a)F1, (b)F2, (c)F3, (d)F4, (e)F5, (f)F6, (g)F7, (h)F8, (i)F9, (j)F10, 

(k)F11, (l)F12, (m)F13, (n)F14, (o)F15, (p)F16, (q)F17, (r)F18, (s)F19, (t)F20, (u)F21, (v)F22, and (w)F23 
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Table 3. Optimization results of fixed-dimensional multimodal functions (F14 to F23) 
 CWO WSO AVOA RSA MPA TSA WOA GWO MVO TLBO GSA PSO GA 

F14 

mean 0.998004 2.406166 2.406035 3.737824 2.348115 7.616808 3.381686 2.340305 4.127349 2.340306 4.038658 4.061502 2.373873 
best 0.998004 1.172197 1.172197 1.358984 1.172197 1.85796 1.172197 1.172197 1.172197 1.172197 1.172225 1.172197 1.172197 
worst 0.998004 3.5782 4.358085 9.079454 3.734221 13.57908 9.51353 3.5782 9.51354 3.5782 10.24679 10.04823 3.702104 
std 0 0.763645 0.849186 1.55558 0.775126 3.765621 1.960999 0.764752 2.362973 0.764751 1.886152 2.236951 0.798074 
median 0.998004 3.043495 2.876375 3.651804 2.876375 10.27112 3.043495 2.876375 3.310847 2.876375 3.899936 3.043495 2.880222 
rank 1 7 6 9 4 13 8 2 12 3 10 11 5 

F15 

mean 0.000307 0.003974 0.00331 0.003818 0.003874 0.014374 0.00361 0.004828 0.005304 0.003468 0.004633 0.00473 0.01327 
best 0.000307 0.00034 0.000324 0.000821 0.00039 0.000322 0.00042 0.000324 0.000324 0.000377 0.000708 0.000324 0.000812 
worst 0.000307 0.019801 0.019803 0.02044 0.020707 0.095633 0.019857 0.019985 0.019821 0.019807 0.02117 0.019801 0.048177 
std 2.19E-19 0.004926 0.004557 0.00457 0.004657 0.022386 0.004551 0.0055 0.005753 0.004516 0.00464 0.005177 0.010404 
median 0.000307 0.000855 0.000657 0.001068 0.001467 0.00088 0.000988 0.00124 0.002504 0.001075 0.002038 0.002627 0.014993 
rank 1 7 2 5 6 13 4 10 11 3 8 9 12 

F16 

mean -1.03163 -1.03097 -1.03097 -1.0295 -1.02942 -1.02994 -1.03097 -1.03097 -1.03097 -1.03097 -1.03097 -1.03097 -1.03097 
best -1.03163 -1.03163 -1.03163 -1.03161 -1.03163 -1.03163 -1.03163 -1.03163 -1.03163 -1.03163 -1.03163 -1.03163 -1.03163 
worst -1.03163 -1.02595 -1.02595 -1.01067 -1.00631 -1.00415 -1.02595 -1.02595 -1.02595 -1.02595 -1.02595 -1.02595 -1.02595 
std 1.58E-16 0.001402 0.001402 0.004102 0.004967 0.00529 0.001402 0.001402 0.001402 0.001402 0.001402 0.001402 0.001402 
median -1.03163 -1.03162 -1.03162 -1.03126 -1.03161 -1.03162 -1.03162 -1.03162 -1.03162 -1.03162 -1.03162 -1.03162 -1.03162 

rank 1 6 2 10 11 9 3 5 4 8 2 2 7 

F17 

mean 0.397887 0.397977 0.397977 0.406396 0.398318 0.397989 0.397978 0.397977 0.397978 0.398025 0.397977 0.62772 0.443121 
best 0.397887 0.397888 0.397888 0.398494 0.397888 0.397893 0.397888 0.397889 0.397889 0.397899 0.397888 0.397888 0.397899 
worst 0.397887 0.398421 0.398421 0.455791 0.400585 0.398345 0.398421 0.398421 0.398421 0.398428 0.398421 1.983607 1.295193 
std 0 0.000132 0.000132 0.01108 0.000678 0.000115 0.000132 0.000132 0.000132 0.000132 0.000132 0.404721 0.172732 
median 0.397887 0.397908 0.397908 0.401824 0.397966 0.397932 0.397909 0.397909 0.39791 0.397978 0.397908 0.397956 0.397991 
rank 1 4 2 10 9 7 5 3 6 8 2 12 11 

F18 

mean 3 5.002669 5.00267 6.841139 7.097465 10.78153 5.002687 5.002669 5.002678 5.00267 5.002669 5.002669 7.853609 
best 3 3.002261 3.002262 3.003682 3.011493 3.001886 3.002261 3.002261 3.002264 3.002262 3.002261 3.002261 3.003693 
worst 3 18.61844 18.61844 21.77546 25.26957 80.03973 18.61847 18.61844 18.61844 18.61844 18.61844 18.61844 24.28014 
std 1E-15 3.90627 3.90627 5.850069 5.487039 19.41267 3.906271 3.90627 3.906268 3.90627 3.90627 3.90627 6.538782 
median 3 3.288222 3.288223 3.369787 4.465574 3.239682 3.288223 3.288223 3.288233 3.288223 3.288222 3.288222 3.522608 
rank 1 2 6 10 11 13 9 5 8 7 4 3 12 

F19 

mean -3.86278 -3.84034 -3.84034 -3.82321 -3.74893 -3.84383 -3.83877 -3.84034 -3.83933 -3.83961 -3.84034 -3.84034 -3.84023 
best -3.86278 -3.86276 -3.86276 -3.85602 -3.86276 -3.86268 -3.86275 -3.86276 -3.86276 -3.86239 -3.86276 -3.86276 -3.86275 
worst -3.86278 -3.77036 -3.77036 -3.76512 -3.39291 -3.78586 -3.77007 -3.77036 -3.77028 -3.77019 -3.77036 -3.77036 -3.77014 
std 1.96E-15 0.019159 0.019159 0.021656 0.097578 0.015803 0.018873 0.019159 0.019074 0.018795 0.019159 0.019159 0.019238 
median -3.86278 -3.84055 -3.84055 -3.82541 -3.74975 -3.84427 -3.83941 -3.84055 -3.83989 -3.84025 -3.84055 -3.84055 -3.8405 
rank 1 3 5 11 12 2 10 6 9 8 4 4 7 

F20 

mean -3.322 -3.17041 -3.14678 -2.81334 -2.65919 -3.15761 -3.13445 -3.15065 -3.1405 -3.12972 -3.18222 -3.14421 -3.12015 
best -3.322 -3.30584 -3.23727 -3.03781 -3.24146 -3.30692 -3.30207 -3.30584 -3.30583 -3.29394 -3.30584 -3.30584 -3.20985 
worst -3.322 -3.0722 -3.02238 -2.00933 -2.05295 -3.04337 -3.00993 -2.99341 -2.94347 -2.89958 -3.0722 -2.98164 -2.95721 
std 3.82E-16 0.050862 0.057717 0.195133 0.236904 0.0575 0.066193 0.06531 0.070944 0.075213 0.045586 0.069519 0.053932 
median -3.322 -3.17917 -3.14898 -2.86078 -2.71753 -3.14247 -3.11366 -3.17201 -3.14235 -3.11401 -3.19093 -3.14217 -3.13445 
rank 1 3 6 12 13 4 9 5 8 10 2 7 11 

F21 

mean -10.1532 -7.83418 -8.99147 -5.61373 -7.27249 -6.14553 -8.48278 -8.15154 -8.48603 -6.80471 -7.0309 -5.99047 -6.41214 
best -10.1532 -10.1317 -10.1317 -6.75395 -10.0608 -10.1182 -10.1305 -10.1075 -10.1311 -9.57949 -10.1075 -10.0911 -8.87297 
worst -10.1532 -3.48276 -8.01005 -4.63231 -4.63535 -2.94362 -5.10491 -4.63534 -5.21998 -4.29046 -3.48276 -3.49838 -3.28593 
std 1.79E-15 1.963909 0.601265 0.601265 1.603656 2.456913 1.182708 1.283426 1.107686 1.401884 2.078981 1.688889 1.733226 
median -10.1532 -8.60794 -8.81858 -5.44083 -7.18006 -5.08843 -8.6075 -8.47889 -8.55018 -6.77785 -8.01157 -5.2604 -6.59672 
rank 1 6 2 13 7 11 4 5 3 9 8 12 10 

F22 

mean -10.4029 -9.15769 -9.41115 -5.88945 -7.87848 -7.04697 -7.89095 -8.10706 -9.4108 -7.7858 -9.22982 -6.74764 -7.40288 
best -10.4029 -10.3738 -10.3738 -6.85213 -10.3722 -10.2959 -10.331 -10.3337 -10.3737 -9.5917 -10.3738 -10.2616 -9.96781 
worst -10.4029 -5.26446 -8.03899 -4.51729 -4.51729 -2.27182 -2.60641 -5.00887 -8.03804 -4.53832 -6.44241 -3.24529 -3.7102 
std 3.02E-15 1.066158 0.740802 0.740801 1.849192 2.765269 1.837465 1.353916 0.740858 1.333847 0.922119 2.096623 1.375889 
median -10.4029 -9.4264 -9.47442 -5.95272 -9.05467 -7.67297 -8.25403 -8.29804 -9.47412 -8.26052 -9.4264 -5.79634 -7.72592 
rank 1 5 2 13 8 11 7 6 3 9 4 12 10 

F23 

mean -10.5364 -9.7651 -9.7651 -6.18201 -8.84878 -7.64949 -8.47114 -9.05314 -9.76479 -8.14164 -9.6001 -7.03827 -6.99808 
best -10.5364 -10.4978 -10.4978 -6.91472 -10.4401 -10.4189 -10.4971 -10.4978 -10.4976 -9.91103 -10.4978 -10.4713 -9.78384 
worst -10.5364 -8.8854 -8.8854 -5.30231 -6.06232 -3.46242 -4.26889 -5.67105 -8.88525 -5.88482 -6.99038 -3.74017 -3.92563 
std 2.38E-15 0.487289 0.487289 0.487289 0.982752 2.529413 1.809806 1.363166 0.487204 1.065584 0.711335 2.253917 1.640685 
median -10.5364 -9.66341 -9.66341 -6.08032 -9.00013 -9.72502 -9.18625 -9.51455 -9.66323 -8.39273 -9.60166 -5.57259 -7.25669 
rank 1 2 3 13 7 10 8 6 4 9 5 11 12 

Sum rank 10 45 36 106 88 93 67 53 68 74 49 83 97 
Mean rank 1 4.5 3.6 10.6 8.8 9.3 6.7 5.3 6.8 7.4 4.9 8.3 9.7 
Total rank 1 3 2 13 10 11 6 5 7 8 4 9 12 

 

 

and tension/compression spring design (TCS) [47]. 

Table 4 presents the implementation outcomes of 

both CWO and alternative algorithms across four 

distinct engineering design challenges. According to 

the optimization outcomes, CWO emerges as the top-

performing optimizer across all four engineering  
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Table 4. Optimization results of engineering applications 
 CWO WSO AVOA RSA MPA TSA WOA GWO MVO TLBO GSA PSO GA 

PV 

mean 5882.901 5882.91 6140.345 9195.018 5882.901 6120.471 7198.879 6298.193 6010.447 21998.8 16786.4 31793.66 24509.91 
best 5882.901 5882.901 5882.906 6391.304 5882.901 5901.671 6214.711 5914.45 5887.406 11350.98 6509.873 12413.07 10938.45 

worst 5882.901 5883.071 6816.175 15342.01 5882.901 6856.008 8948.232 6785.845 6725.806 32501.05 33870.41 64763.47 42708.73 
std 2.94E-12 0.060005 424.6324 3130.755 4.62E-05 442.0238 1344.419 379.4059 384.6814 9715.071 11400.35 23140.24 11805.47 

median 5882.901 5882.901 6089.378 8927.077 5882.901 5953.262 6876.877 6279.643 5898.905 21436.61 16121.84 26962.61 23644.43 
rank 1 3 6 9 2 5 8 7 4 11 10 13 12 

SR 

mean 2996.348 2996.35 2999.959 3164.16 2996.348 3020.11 3178.901 3021.806 3002.177 3.54E+13 3364.68 9.44E+13 6.39E+13 
best 2996.348 2996.348 2996.35 3066.426 2996.348 3007.971 3005.048 3002.556 2998.317 4087.581 3191.827 4267.39 3951.079 

worst 2996.348 2996.362 3005.028 3235.686 2996.348 3032.259 4084.543 3045.138 3007.071 1.62E+14 3813.392 4.57E+14 4.53E+14 
std 1.47E-12 0.00489 4.450415 66.14756 1.27E-05 9.318109 462.9391 18.42566 3.75656 6.73E+13 241.8025 2.05E+14 1.61E+14 

median 2996.348 2996.349 2999.904 3157.067 2996.348 3019.814 3092.387 3022.715 3002.128 1.84E+13 3338.86 2.68E+13 3.56E+13 
rank 1 3 4 8 2 6 9 7 5 11 10 13 12 

WB 

mean 1.724852 1.724852 1.739339 2.11188 1.724852 1.737443 2.205939 1.739271 1.726444 1.82E+13 2.141641 4.86E+13 4.05E+12 
best 1.724852 1.724852 1.724883 1.863302 1.724852 1.730394 1.77274 1.728019 1.725322 1.905296 1.75738 2.396993 2.325465 

worst 1.724852 1.724852 1.777653 3.212607 1.724852 1.74204 3.567566 1.76148 1.729193 3.07E+14 2.33882 5.88E+14 7.87E+13 
std 1.08E-15 1.07E-08 0.024987 0.450877 3.73E-08 0.005773 0.826874 0.014945 0.001797 1.08E+14 0.225575 2.2E+14 2.77E+13 

median 1.724852 1.724852 1.733503 2.051665 1.724852 1.738076 1.945769 1.736805 1.725964 3.925179 2.150119 4.127844 4.050508 

rank 1 2 7 8 3 5 10 6 4 12 9 13 11 

TCS 

mean 0.012665 0.012665 0.012895 0.016028 0.012665 0.012841 0.0132 0.015563 0.012702 0.016425 0.017545 2.59E+13 0.020511 
best 0.012665 0.012665 0.012666 0.012929 0.012665 0.012699 0.012681 0.012828 0.012681 0.016039 0.013743 0.015992 0.016453 

worst 0.012665 0.012669 0.013625 0.065421 0.012665 0.013107 0.014502 0.016198 0.012716 0.016824 0.021009 2.59E+14 0.026634 
std 1.54E-18 1.37E-06 0.000426 0.018507 4.85E-09 0.00016 0.00097 0.001601 1.22E-05 0.000371 0.003687 1.26E+14 0.004147 

median 0.012665 0.012665 0.012789 0.013057 0.012665 0.012846 0.012974 0.016012 0.012705 0.016386 0.017316 0.015992 0.019959 
rank 1 3 6 9 2 5 7 8 4 10 11 13 12 

Sum rank 4 11 23 34 9 21 34 28 17 44 40 52 47 
Mean rank 1 2.75 5.75 8.5 2.25 5.25 8.5 7 4.25 11 10 13 11.75 
Total rank 1 3 6 8 2 5 8 7 4 110 9 12 11 

 

 

design scenarios. Examination of the simulation 

findings reveals that CWO demonstrates remarkable 

efficacy in addressing optimization endeavors within 

real-world and engineering contexts, consistently 

outperforming its competitors. 

6. Conclusions and future works 

In this paper, a new metaheuristic algorithm 

called Carpet Weaving Optimization (CWO) was 

introduced to solve optimization problems. 

The main source of inspiration in the design of 

CWO comes from the human interaction between 

carpet weavers, map readers when weaving a rug 

based on a given pattern in the traditional carpet 

weaving process. The theory of CWO was stated and 

then modeled mathematically based on the 

simulation of the carpet weaving process.  

The evaluation of CWO’s performance extended 

to optimizing twenty-three standard benchmark 

functions, spanning unimodal, high-dimensional 

multimodal, and fixed-dimensional multimodal 

varieties. The optimization results underscored 

CWO’s proficiency in exploration, exploitation, and 

maintaining a balanced approach throughout the 

search process within the solution space, yielding 

commendable outcomes. To gauge CWO’s 

optimization prowess, its results were juxtaposed 

against those of twelve established algorithms. 

Simulation findings revealed CWO’s superior 

performance, securing the top rank as the foremost 

optimizer by consistently outperforming its 

competitors and delivering superior results. 

Additionally, CWO’s efficacy in real-world 

applications was assessed across four engineering 

design challenges, affirming its effectiveness in 

optimizing real-world and engineering scenarios by 

yielding superior values for design variables and 

objective functions compared to rival algorithms. 

The introduction of CWO sparks several avenues for 

future research endeavors. Notably, there’s a call for 

developing binary and multi-objective variants of 

CWO, representing significant research proposals 

outlined in this paper. Moreover, leveraging CWO to 

tackle optimization challenges across diverse 

scientific disciplines and real-world applications 

stands as another avenue for future exploration and 

study. 

Conflicts of Interest 

The authors declare no conflict of interest. 

Author Contributions 

Conceptualization, S.A.O, K.K, and I.A.F; 

methodology, TH, M.D, and K.E; software, K.E, S.G, 

I.L, K.K, and I.A.F; validation, K.E, M.D, S.G, and 

I.L; formal analysis, Z.M, M.D, K.E, and S.G; 

investigation, K.K, Z.M, I.A.F, and I.L; resources, 

S.A.O, Z.M and K.K; data curation, K.E and I.A.F; 

writing—original draft preparation, M.D, S.A.O, S.G, 

and I.L; writing—review and editing, I.A.F Z.M, and 



Received:  March 30, 2024.     Revised: April 29, 2024.                                                                                                   240 

International Journal of Intelligent Engineering and Systems, Vol.17, No.4, 2024           DOI: 10.22266/ijies2024.0831.18 

 

K.K; visualization, K.E; supervision, M.D; project 

administration, K.E, S.A.O, and S.G; funding 

acquisition, K.E. 

Acknowledgments 

Acknowledgments are to show that the article is 

supported by what organization. For example, “This 

work was supported by the National Nature Science 

Foundation under Grant No. 405”. 

References 

[1] A. A. Al-Nana, I. M. Batiha, and S. Momani, “A 

numerical approach for dealing with fractional 

boundary value problems”, Mathematics, Vol. 

11, No. 19, pp. 4082, 2023. 

[2] W. G. Alshanti, I. M. Batiha, M. m. A. Hammad, 

and R. Khalil, “A novel analytical approach for 

solving partial differential equations via a tensor 

product theory of Banach spaces”, Partial 

Differential Equations in Applied Mathematics, 

Vol. 8, pp. 100531, 2023. 

[3] A. Taheri, K. RahimiZadeh, A. Beheshti, J. 

Baumbach, R. V. Rao, S. Mirjalili, and A. H. 

Gandomi, “Partial reinforcement optimizer: An 

evolutionary optimization algorithm”, Expert 

Systems with Applications, Vol. 238, pp. 122070, 

2024/03/15/, 2024. 

[4] N. Singh, X. Cao, S. Diggavi, and T. Başar, 

“Decentralized multi-task stochastic 

optimization with compressed 

communications”, Automatica, Vol. 159, pp. 

111363, 2024. 

[5] T. Hamadneh, M. Ali, and H. AL-Zoubi, 

“Linear Optimization of Polynomial Rational 

Functions: Applications for Positivity Analysis”, 

Mathematics, Vol. 8, No. 2, pp. 283, 2020. 

[6] G. Kumar, R. Saha, M. Conti, T. Devgun, and R. 

Thomas, “GREPHRO: Nature-inspired 

optimization duo for Internet-of-Things”, 

Internet of Things, pp. 101067, 2024. 

[7] I. Matoušová, P. Trojovský, M. Dehghani, E. 

Trojovská, and J. Kostra, “Mother optimization 

algorithm: a new human-based metaheuristic 

approach for solving engineering optimization”, 

Scientific Reports, Vol. 13, No. 1, pp. 10312, 

2023/06/26, 2023. 

[8] H. Givi, M. Dehghani, and Š. Hubálovský, “Red 

Panda Optimization Algorithm: An effective 

bio-inspired metaheuristic algorithm for solving 

engineering optimization problems”, IEEE 

Access, 2023. 

[9] M. Dehghani, Z. Montazeri, A. Dehghani, H. 

Samet, C. Sotelo, D. Sotelo, A. Ehsanifar, O. P. 

Malik, J. M. Guerrero, and G. Dhiman, “DM: 

Dehghani Method for Modifying Optimization 

Algorithms”, Applied Sciences, Vol. 10, No. 21, 

pp. 7683, 2020. 

[10] M. Dehghani, Š. Hubálovský, and P. Trojovský, 

“Tasmanian Devil Optimization: A New Bio-

Inspired Optimization Algorithm for Solving 

Optimization Algorithm”, IEEE Access, 2022. 

[11] D. H. Wolpert, and W. G. Macready, “No free 

lunch theorems for optimization”, IEEE 

Transactions on Evolutionary Computation, Vol. 

1, No. 1, pp. 67-82, 1997. 

[12] J. Kennedy, and R. Eberhart, “Particle swarm 

optimization”, In: Proc. of ICNN’95-

international conference on neural networks, 

Vol. 4, ed: IEEE, pp. 1942-1948, 1995. 

[13] M. Dorigo, V. Maniezzo, and A. Colorni, “Ant 

system: optimization by a colony of cooperating 

agents”, IEEE Transactions on Systems, Man, 

and Cybernetics, Part B (Cybernetics), Vol. 26, 

No. 1, pp. 29-41, 1996. 

[14] P. Trojovský, and M. Dehghani, “Pelican 

Optimization Algorithm: A Novel Nature-

Inspired Algorithm for Engineering 

Applications”, Sensors, Vol. 22, No. 3, pp. 855, 

2022. 

[15] M. Dehghani, Z. Montazeri, E. Trojovská, and P. 

Trojovský, “Coati Optimization Algorithm: A 

new bio-inspired metaheuristic algorithm for 

solving optimization problems”, Knowledge-

Based Systems, Vol. 259, pp. 110011, 

2023/01/10/, 2023. 

[16] P. D. Kusuma, and M. Kallista, “Swarm Space 

Hopping Algorithm: A Swarm-based Stochastic 

Optimizer Enriched with Half Space Hopping 

Search”, International Journal of Intelligent 

Engineering & Systems, Vol. 17, No. 2, 2024, 

doi: 10.22266/ijies2024.0430.54. 

[17] Z. Benmamoun, K. Khlie, M. Dehghani, and Y. 

Gherabi, “WOA: Wombat Optimization 

Algorithm for Solving Supply Chain 

Optimization Problems”, Mathematics, Vol. 12, 

No. 7, pp. 1059, 2024. 

[18] P. D. Kusuma, and M. Kallista, “Migration-

Crossover Algorithm: A Swarm-based 

Metaheuristic Enriched with Crossover 

Technique and Unbalanced Neighbourhood 

Search”, International Journal of Intelligent 

Engineering & Systems, Vol. 17, No. 1, 2024, 

doi: 10.22266/ijies2024.0229.59. 

[19] P. Trojovský, and M. Dehghani, “A new bio-

inspired metaheuristic algorithm for solving 

optimization problems based on walruses 

behavior”, Scientific Reports, Vol. 13, No. 1, pp. 

8775, 2023. 



Received:  March 30, 2024.     Revised: April 29, 2024.                                                                                                   241 

International Journal of Intelligent Engineering and Systems, Vol.17, No.4, 2024           DOI: 10.22266/ijies2024.0831.18 

 

[20] E. Trojovská, M. Dehghani, and P. Trojovský, 

“Fennec Fox Optimization: A New Nature-

Inspired Optimization Algorithm”, IEEE Access, 

2022. 

[21] D. E. Goldberg, and J. H. Holland, “Genetic 

Algorithms and Machine Learning”, Machine 

Learning, Vol. 3, No. 2, pp. 95-99, 1988. 

[22] R. Storn, and K. Price, “Differential evolution–

a simple and efficient heuristic for global 

optimization over continuous spaces”, Journal 

of global optimization, Vol. 11, No. 4, pp. 341-

359, 1997. 

[23] S. Kirkpatrick, C. D. Gelatt, and M. P. Vecchi, 

“Optimization by simulated annealing”, Science, 

Vol. 220, No. 4598, pp. 671-680, 1983. 

[24] M. Dehghani, Z. Montazeri, G. Dhiman, O. 

Malik, R. Morales-Menendez, R. A. Ramirez-

Mendoza, A. Dehghani, J. M. Guerrero, and L. 

Parra-Arroyo, “A spring search algorithm 

applied to engineering optimization problems”, 

Applied Sciences, Vol. 10, No. 18, pp. 6173, 

2020. 

[25] M. Dehghani, and H. Samet, “Momentum 

search algorithm: a new meta-heuristic 

optimization algorithm inspired by momentum 

conservation law”, SN Applied Sciences, Vol. 2, 

No. 10, pp. 1-15, 2020. 

[26] M. H. Qais, H. M. Hasanien, S. Alghuwainem, 

and K. H. Loo, “Propagation Search Algorithm: 

A Physics-Based Optimizer for Engineering 

Applications”, Mathematics, Vol. 11, No. 20, pp. 

4224, 2023. 

[27] H. Eskandar, A. Sadollah, A. Bahreininejad, and 

M. Hamdi, “Water cycle algorithm–A novel 

metaheuristic optimization method for solving 

constrained engineering optimization problems”, 

Computers & Structures, Vol. 110, pp. 151-166, 

2012. 

[28] E. Rashedi, H. Nezamabadi-Pour, and S. 

Saryazdi, “GSA: a gravitational search 

algorithm”, Information Sciences, Vol. 179, No. 

13, pp. 2232-2248, 2009. 

[29] R. V. Rao, V. J. Savsani, and D. Vakharia, 

“Teaching–learning-based optimization: a novel 

method for constrained mechanical design 

optimization problems”, Computer-Aided 

Design, Vol. 43, No. 3, pp. 303-315, 2011. 

[30] M. Dehghani, M. Mardaneh, J. M. Guerrero, O. 

P. Malik, R. A. Ramirez-Mendoza, J. Matas, J. 

C. Vasquez, and L. Parra-Arroyo, “A new 

“Doctor and Patient” optimization algorithm: 

An application to energy commitment problem”, 

Applied Sciences, Vol. 10, No. 17, pp. 5791, 

2020. 

[31] M. Dehghani, E. Trojovská, and P. Trojovský, 

“A new human-based metaheuristic algorithm 

for solving optimization problems on the base of 

simulation of driving training process”, 

Scientific Reports, Vol. 12, No. 1, pp. 9924, 

2022/06/15, 2022. 

[32] M. Braik, M. H. Ryalat, and H. Al-Zoubi, “A 

novel meta-heuristic algorithm for solving 

numerical optimization problems: Ali Baba and 

the forty thieves”, Neural Computing and 

Applications, Vol. 34, No. 1, pp. 409-455, 2022. 

[33] P. Trojovský, and M. Dehghani, “A new 

optimization algorithm based on mimicking the 

voting process for leader selection”, PeerJ 

Computer Science, Vol. 8, pp. e976, 2022. 

[34] M. Dehghani, and P. Trojovský, “Teamwork 

Optimization Algorithm: A New Optimization 

Approach for Function 

Minimization/Maximization”, Sensors, Vol. 21, 

No. 13, pp. 4567, 2021. 

[35] M. Dehghani, Z. Montazeri, H. Givi, J. M. 

Guerrero, and G. Dhiman, “Darts game 

optimizer: A new optimization technique based 

on darts game”, International Journal of 

Intelligent Engineering and Systems, Vol. 13, pp. 

286-294, 2020, doi: 10.22266/ijies2020.1031.26. 

[36] M. Dehghani, Z. Montazeri, O. P. Malik, A. 

Ehsanifar, and A. Dehghani, “OSA: Orientation 

search algorithm”, International Journal of 

Industrial Electronics, Control and 

Optimization, Vol. 2, No. 2, pp. 99-112, 2019. 

[37] Z. Montazeri, T. Niknam, J. Aghaei, O. P. Malik, 

M. Dehghani, and G. Dhiman, “Golf 

Optimization Algorithm: A New Game-Based 

Metaheuristic Algorithm and Its Application to 

Energy Commitment Problem Considering 

Resilience”, Biomimetics, 2023. 

[38] S. A. Doumari, H. Givi, M. Dehghani, and O. P. 

Malik, “Ring Toss Game-Based Optimization 

Algorithm for Solving Various Optimization 

Problems”, International Journal of Intelligent 

Engineering and Systems, Vol. 14, No. 3, pp. 

545-554, 2021, doi: 10.22266/ijies2021.0630.46. 

[39] M. Dehghani, Z. Montazeri, S. Saremi, A. 

Dehghani, O. P. Malik, K. Al-Haddad, and J. M. 

Guerrero, “HOGO: Hide objects game 

optimization”, International Journal of 

Intelligent Engineering and Systems, Vol. 13, 

No. 10, 2020, doi: 10.22266/ijies2020.0831.19. 

[40] F. A. Zeidabadi, and M. Dehghani, “POA: 

Puzzle Optimization Algorithm”, International 

Journal of Intelligent Engineering and Systems, 

Vol. 15, No. 1, pp. 273-281, 2022, doi: 

10.22266/ijies2022.0228.25. 



Received:  March 30, 2024.     Revised: April 29, 2024.                                                                                                   242 

International Journal of Intelligent Engineering and Systems, Vol.17, No.4, 2024           DOI: 10.22266/ijies2024.0831.18 

 

[41] M. Dehghani, Z. Montazeri, and O. P. Malik, 

“DGO: Dice game optimizer”, Gazi University 

Journal of Science, Vol. 32, No. 3, pp. 871-882, 

2019. 

[42] M. Dehghani, Z. Montazeri, O. P. Malik, H. Givi, 

and J. M. Guerrero, “Shell game optimization: 

A novel game-based algorithm”, International 

Journal of Intelligent Engineering and Systems, 

Vol. 13, No. 3, pp. 246-255, 2020, doi: 

10.22266/ijies2020.0630.23. 

[43] M. Dehghani, M. Mardaneh, J. M. Guerrero, O. 

Malik, and V. Kumar, “Football game based 

optimization: An application to solve energy 

commitment problem”, International Journal of 

Intelligent Engineering and Systems, Vol. 13, pp. 

514-523, 2020, doi: 10.22266/ijies2020.1031.45. 

[44] X. Yao, Y. Liu, and G. Lin, “Evolutionary 

programming made faster”, IEEE Transactions 

on Evolutionary computation, Vol. 3, No. 2, pp. 

82-102, 1999. 

[45] S. Mirjalili, S. M. Mirjalili, and A. Hatamlou, 

“Multi-verse optimizer: a nature-inspired 

algorithm for global optimization”, Neural 

Computing and Applications, Vol. 27, No. 2, pp. 

495-513, 2016. 

[46] S. Mirjalili, S. M. Mirjalili, and A. Lewis, “Grey 

Wolf Optimizer”, Advances in Engineering 

Software, Vol. 69, pp. 46-61, 2014. 

[47] S. Mirjalili, and A. Lewis, “The whale 

optimization algorithm”, Advances in 

engineering software, Vol. 95, pp. 51-67, 2016. 

[48] A. Faramarzi, M. Heidarinejad, S. Mirjalili, and 

A. H. Gandomi, “Marine Predators Algorithm: 

A nature-inspired metaheuristic”, Expert 

Systems with Applications, Vol. 152, pp. 113377, 

2020. 

[49] S. Kaur, L. K. Awasthi, A. L. Sangal, and G. 

Dhiman, “Tunicate Swarm Algorithm: A new 

bio-inspired based metaheuristic paradigm for 

global optimization”, Engineering Applications 

of Artificial Intelligence, Vol. 90, pp. 103541, 

2020/04/01/, 2020. 

[50] L. Abualigah, M. Abd Elaziz, P. Sumari, Z. W. 

Geem, and A. H. Gandomi, “Reptile Search 

Algorithm (RSA): A nature-inspired meta-

heuristic optimizer”, Expert Systems with 

Applications, Vol. 191, pp. 116158, 2022. 

[51] B. Abdollahzadeh, F. S. Gharehchopogh, and S. 

Mirjalili, “African vultures optimization 

algorithm: A new nature-inspired metaheuristic 

algorithm for global optimization problems”, 

Computers & Industrial Engineering, Vol. 158, 

pp. 107408, 2021. 

[52] M. Braik, A. Hammouri, J. Atwan, M. A. Al-

Betar, and M. A. Awadallah, “White Shark 

Optimizer: A novel bio-inspired meta-heuristic 

algorithm for global optimization problems”, 

Knowledge-Based Systems, pp. 108457, 2022. 

[53] B. Kannan, and S. N. Kramer, “An augmented 

Lagrange multiplier based method for mixed 

integer discrete continuous optimization and its 

applications to mechanical design”, Journal of 

Mechanical Design, Vol. 116, No. 2, pp. 405-

411, 1994. 

[54] A. H. Gandomi, and X.-S. Yang, “Benchmark 

problems in structural optimization”, 

Computational Optimization, Methods and 

Algorithms, pp. 259-281, 2011. 

 

 

 

 


