
Received: June 21, 2024. Revised: July 15, 2024. 517

International Journal of Intelligent Engineering and Systems, Vol.17, No.5, 2024 DOI: 10.22266/ijies2024.1031.41

Indonesian News Stance Classification Based on Hybrid Bidirectional LSTM and

Transformer Based Embedding

Esther Irawati Setiawan1* Willyanto Dharmawan1 Kevin Jonathan Halim1

Joan Santoso1 FX Ferdinandus1 Kimiya Fujisawa2 Mauridhi Hery Purnomo3

1Institut Sains dan Teknologi Terpadu Surabaya, Indonesia

2Tokyo University of Technology, Japan
3Institut Teknologi Sepuluh Nopember, Indonesia
*Corresponding author’s Email: esther@istts.ac.id

Abstract: Stance classification is used to understand the relationship between sentences so that the model can

recognize the attitude of a response to a topic, where the attitudes are classified into three, namely supporting (for),

neutral (observing), and opposing (against). Furthermore, stance classification could aid the automatic fake news

detection. This research is specially made for Indonesian news titles. The proposed model used to recognize these

news attitudes is Bidirectional Long Short-Term Memory (Bi-LSTM). Thus, to obtain the word representation vector,

the pre-trained Bidirectional Encoder Representations from Transformers (BERT) embedding model from indoBERT

is used to process words in Indonesian. In Bi-LSTM, each word representation will be processed twice in a forward

and backward direction sequentially, so to get a vector representation of the sentence from the input, the output is taken

from the results of the representation process of the last word in the forward direction process and the representation

process results of the first word in the backward direction. Then the results of the two outputs are combined to serve

as a sentence representation. Based on the test results on the Indonesian news dataset, the model for stance

classification task was able to achieve an F1 score with an average of 78.30%, with an F1 score label for (supportive)

of 73.10%, label observing (neutral) of 89.57%, and label against (against) by 72.23%. The performance is on par with

the results of experiments with several Large Language Models currently available.

Keywords: BERT embedding, Bi-LSTM, Indonesian news, Stance classification, Large language models.

1. Introduction

Fake news is a big problem, especially on how to

check the validity of the data. Due to high number of

data spread online in social media and internet, it is

hard to check the validity of each news or information

that spread in various social media. This makes a

challenge on how to disseminate and get information

very quickly to obtain the factual information [1].

One of major challenge is how to find the factual

information since it is easy people to believe and

spread unverified information or news. Although it

does not pose a threat, new perceptions of the

information received can spread and influence

political and social conditions. Usually, the truth of

information on social media can be checked by

looking for related news from other sources [2, 3] to

obtain the factual judgement of new are fake or not.

One of the problems is how to find the correct

information that we receive from the information

source. Most of the user find the truth source by

finding the number of news that has the same opinion

or judgement. This problem leads a problem how to

automatically analyse large information that spread

on the internet. Because the amount of data is

growing rapidly and rapidly, it is very difficult to use

human power to do this. The best solution is to use

some machine learning approaches give an advantage

on how to process the information to find the truth of

the news offered.

The method offered to answer this problem is to

use the stance classification proposed in this research.

Utilizing stance classification for finding the

Received: June 21, 2024. Revised: July 15, 2024. 518

International Journal of Intelligent Engineering and Systems, Vol.17, No.5, 2024 DOI: 10.22266/ijies2024.1031.41

emerging information can easily identified [4].

Stance classification [5, 6] shows the position of

support or response from public opinion to the news

using classification techniques based on data or

attitudes toward a particular target [7]. The proposed

approach to stance classification analysis is to

categorize related news into three classes, namely for,

observing, and against. The meaning of for class

means supporting, observing class means neutral, and

against class means opposing [8]. If the information

we have gets a lot of responses from other news, it

means that the news we have is most likely true. If

the information we have gets a lot of observing

responses from other news, it means that the truth

cannot be known. Then if the information we have

gets a lot of against responses from other news, it

means that most likely the news we have is wrong or

a hoax [9, 10].

In this paper we propose a stance classification

model [11, 12] by utilizing Transformer based

encoding BERT and Bi LSTM as mentioned in [13,

14]. The main reason we chose this model are BERT

Embedding is a word embedding method [15] used to

represent text in vector form and Bi-LSTM is a

machine learning method used to create and train

models so that the model can capture the sequential

word order that show how the data context so it can

be applied to other applications [16].

Several works of stance classification did not

incorporate the contextual embedding of each news.

This context will help the model to understand on

how the similar from each news that take as an input

in the model. This problem was solved by utilizing

the BERT model as the embedding methodology to

obtain the contextual vector from each word.

Our works was divided into several section.

Section 1 discuss about the introduction and research

motivation of this study. Section 2 elaborates on the

literature review from related state-of-the-art-

research. Section 3 defines about the proposed

methodology and section 4 consists of the

experiments that successfully conducted by the

authors. Finally, section 5 contains the conclusion

and further works of this manuscript.

2. Literature review

Stance classification is an essential task in natural

language processing that aims to ascertain an author's

stance (neutral, supporting, or against) on a particular

subject. This section examines a variety of

methodologies that have been explored in prior

research, including the techniques employed, their

objectives, and their relevance to our work on stance

classification with BERT and BiLSTM, with a

particular focus on Indonesian language.

Nic [1] conducted a significant study that

employed data and analysis on digital news

consumption to comprehend trends in media

engagement. Although this study offers valuable

insights into news literacy and brand trust, it does not

explicitly address stance classification; rather, it

concentrates on consumption patterns. Our method is

unique in that it directly addresses stance

classification within Indonesian digital news.

In the context of social media credibility analysis,

the proposed method in [2] employed BERT

embeddings and machine learning to detect stances.

Their method emphasizes the significance of robust

embeddings in comprehending stance, a technique

that we also implement, but in the context of

Indonesian social media, and in conjunction with

BiLSTM to improve performance.

Using image-text-concept features, [3]

implemented multiview sentiment analysis in the

context of Indonesian social media. Their multimodal

approach illustrates the importance of integrating a

variety of data types, which is distinct from our text-

focused approach but serves to emphasize the

potential of advanced feature integration. Our current

proposed research concentrates on the classification

of stances using text data.

Adversarial domain adaptation for stance

detection was the primary focus of [4], which

demonstrated the efficacy of transferring knowledge

across domains. Although this contributes to our

comprehension of domain adaptation, our

methodology does not explicitly address domain

shifts; rather, it seeks to enhance the accuracy of

stance detection within a single domain.

The research framework in [5] addressed the

importance of a real-time tweet classification

framework, although they did not provide any

specifics. In addition, [6] employed a convolutional

neural network to detect tweet stances and verify the

veracity of rumors, surpassing baseline classifiers

across a variety of event data with robust F1 scores.

Our research distinguishes itself by employing

BiLSTM and BERT embeddings to more effectively

capture sequential dependencies in Indonesian

datasets.

Imron [7] implemented a combination of BERT,

LSTM, and CNN in an additional investigation to

implement aspect-based sentiment analysis of

marketplace evaluations. This illustrates the

practicality of hybrid models, which are consistent

with our utilization of BiLSTM and BERT for stance

classification. Our dataset, which is derived from

Received: June 21, 2024. Revised: July 15, 2024. 519

International Journal of Intelligent Engineering and Systems, Vol.17, No.5, 2024 DOI: 10.22266/ijies2024.1031.41

Table 1. Previous Approaches on Stance Classification

Author(s) Techniques Used Objective Disadvatages

Karande et al.

[2]

BERT embeddings, Machine Learning,

Stance Detection

Stance detection for social media

credibility analysis

High computational cost

and potential for bias in

training data

Xu et al. [4]

Adversarial Domain Adaptation,

Stance Detection Stance detection

Vulnerable to

sophisticated adversarial

attacks

Chen et al. [6]

Convolutional Neural Networks,

Stance Detection, Rumor Verification

Stance detection and rumor

verification

High dependency on

labeled data and potential

overfitting

Imron et al.

[7]

BERT, LSTM, CNN, Aspect-Based

Sentiment Analysis

Aspect-based sentiment analysis

of marketplace product reviews

Requires extensive

preprocessing and tuning

Kotonya &

Toni [9]

Gradual Argumentation Evaluation,

Stance Aggregation

Stance aggregation in fake news

detection

May not handle

contradictory evidence

effectively

Alsafad [10]

Machine Learning, Stance

Classification

Stance classification for fake news

detection

Limited interpretability of

machine learning models

Du et al. [11]

Neural Attention Networks, Stance

Classification Stance classification

Requires large annotated

datasets for training

Bar-Haim et

al. [12]

Stance Classification, Context-

Dependent Claims Analysis

Stance classification of context-

dependent claims

Difficulty in handling

ambiguous contexts

Kochkina et

al. [13]

Sequential Approach, Branch-LSTM,

Rumor Stance Classification Rumor stance classification

Complexity in capturing

long-range dependencies

Setiawan et

al. [14]

Sentence Embedding, LSTM, Stance

Analysis

Indonesian stance analysis of

healthcare news

Language-specific model

limitations

Gao et al. [15]

Contrastive Learning, Sentence

Embeddings Sentence embedding learning

May require fine-tuning

for specific tasks

Wang & Yang

[16]

Attention-Based BiLSTM, Knowledge

Distillation, BERT, Relation

Classification Relation classification

High computational cost

and complexity in model

training

Derczynski et

al. [17]

Rumor Veracity Determination,

Support Analysis

RumourEval: Determining rumour

veracity and support

Handling diverse and

noisy social media data

Gorrell et

al.[18]

Rumor Veracity Determination,

Support Analysis

RumourEval 2019: Determining

Rumour Veracity and Support

Complexity in integrating

multiple sources of

information

Li et al. [19]

Content Analysis, User Credibility,

Propagation Information Rumor detection on social media

Dependency on the quality

of user credibility data

Peshterliev et

al. [20]

Elastic-net Linear Models, Text

Classification, Named-Entity

Recognition

Text classification and named-

entity recognition

May not capture complex

patterns in data

Dey et al. [21]

Subjectivity Analysis, Sentiment

Polarity, Two-Phase Approach Twitter stance detection

High sensitivity to

subjectivity and sentiment

variations

Küçük & Can

[22]

Dataset Annotation, Named Entity

Recognition, Stance Detection Tweet dataset annotation

Dataset may not be

representative of broader

Twitter data

Heinisch [23]

Stance Classification, Argument

Search

Stance classification in argument

search

Handling complex

argument structures

Ravichandiran

[24] BERT, NLP Models

Build and train state-of-the-art

NLP models

High computational cost

and resource requirements

Liu et al. [25] Roberta, BERT Pretraining BERT pre-training approach

Resource-intensive

training process

Devlin et al.

[26]

BERT, Bidirectional Transformers,

Pre-training

Pre-training deep bidirectional

transformers

High computational cost

and potential biases in

training data

Inoue [27]

Multi-Sample Dropout, Accelerated

Training, Generalization

Accelerated training and better

generalization

Increased training

complexity

Putra et al.

[28] Multimodal Models, Open Models

Analyze stance on tweets related

to COVID-19 vaccination,

considering sentiment towards

different aspects of the vaccine

Handling multi-task

learning complexities

Received: June 21, 2024. Revised: July 15, 2024. 520

International Journal of Intelligent Engineering and Systems, Vol.17, No.5, 2024 DOI: 10.22266/ijies2024.1031.41

Indonesian social media and news, offers a distinctive

testing environment for these methodologies.

The research in [8] underscored the significance

of attention mechanisms by utilizing bidirectional

GRU and multi-level attention for targeted aspect-

based sentiment analysis. These components are also

essential to our methodology, which employs multi-

level attention mechanisms to improve classification

accuracy.

Kotonya and Toni [9] investigate the importance

of stance detection in the identification of false news

by employing a distinctive approach that applies

gradual argumentation semantics to bipolar

argumentation frameworks that are derived from

stance detection.

The authors in [10] expand upon this theme by

investigating the function of machine learning in the

classification of stances in the context of the detection

of false news. This theme is also relevant to our

examination of Indonesian social media and news, as

these studies underscore the importance of stance

detection in misinformation contexts.

Du [11] proposed a new neural network-based

model that integrates target-specific information into

stance classification. Their attention mechanism is

anticipated to identify the critical sections of the text

that pertain to the target, which is consistent with our

model's emphasis on context consideration and

attention mechanisms in Indonesian datasets.

Bar-Haim [12] introduced the Claim Stance

Classification task and presented the first benchmark

dataset for this task. Their methodology incorporates

an innovative algorithm for contrast detection that

surpasses numerous baselines and yields promising

outcomes. Our methodology is based on similar

foundational concepts, but it seeks to enhance the

approach by incorporating BERT and BiLSTM for

the Indonesian language context.

Sequential approaches and sentence embeddings

were investigated by [13, 14] for the classification of

rumor and stance. These investigations demonstrate a

variety of strategies that are used to inform our

combined BERT and BiLSTM method. By

emphasizing Indonesian datasets developed for this

investigation, our methodologies are customized to

the language's contextual and linguistic subtleties.

In order to optimize model performance,

knowledge distillation and contrastive learning are

implemented [15, 16]. Our pursuit of efficient model

training and robust embeddings is motivated by the

techniques from these studies, which are specifically

applied to our Indonesian dataset.

Dale [29] and Cui [30] respectively addressed

broader challenges in NLP and Chinese NLP, which

inspires the context of our work within the broader

language processing landscape. Nevertheless, our

attention is focused on Indonesian data, which

presents its own distinctive opportunities and

challenges.

The significance of exhaustive datasets and

veracity analysis was underscored by [17, 31], who

focused on large-scale corpus pre-training and rumor

veracity determination. We have developed an

exhaustive Indonesian dataset for stance detection

purposes, and this is pertinent to our objectives.

Gorrell [18] and Li [19] emphasized the ongoing

challenges and advancements in rumor verification

and stance analysis, building on the work of

SemEval-2017. In the same vein, our research

endeavors to improve stance classification techniques

with a particular emphasis on the Indonesian context,

thereby contributing to this discipline.

In their investigations of named entity

recognition, Gorinski [32] and Peshterliev [20]

examined methods for text classification and

Electronic Health Record (EHR) data, respectively.

These methodologies enhance our stance

classification framework by providing information

on preprocessing and feature extraction techniques

that are pertinent to our Indonesian dataset.

Dey [21] developed a two-phase feature-driven

model for Twitter stance detection that significantly

outperformed the current state of the art. In addition

to this, a research in [22] provided a Turkish tweet

dataset that was annotated for named entity and

stance information. This dataset demonstrates

practical approaches to feature extraction and dataset

construction that have an impact on our methodology.

Heinisch [23], Madry [33], and Ravichandiran

[24] analyzed the role of stance classification in

argument search, adversarial assault resistance, and

the training of state-of-the-art NLP models. Our

implementation, notably in the Indonesian context,

considers these insights into model robustness and

training strategies.

Liu [25] and Devlin [26] presented findings on

BERT pretraining, which are fundamental to our

utilization of BERT embeddings. Our research

further improves the stance classification in

Indonesian by incorporating BiLSTM into these

embeddings.

Inoue [27], Lin [34], G.Team [35, 36] discussed

the improvement of dropout techniques and

multimodal models, which contribute to our

comprehension of model design and training.

Nevertheless, our primary objective is to develop a

text-based stance classification system that is

specifically designed for Indonesian data.

A research in [28] employed sentiment analysis

and stance detection to investigate the sentiment

Received: June 21, 2024. Revised: July 15, 2024. 521

International Journal of Intelligent Engineering and Systems, Vol.17, No.5, 2024 DOI: 10.22266/ijies2024.1031.41

toward various aspects of the COVID-19 vaccine in

tweets. Their methodology underscores the

importance of rigorous evaluation in stance

classification, which is essential to our investigation

of Indonesian social media and news datasets.

Chang [37] assessed large language models

(LLMs), providing vital insights for researchers and

developers who are involved in the development of

LLMs. This is consistent with our emphasis on the

utilization of sophisticated NLP techniques,

including BERT and BiLSTM, for the purpose of

stance classification in the Indonesian context.

Zhuang et al. [38] presented a thorough analysis

of various transfer learning methods, including

inductive, transductive, and unsupervised approaches.

Their findings demonstrated that transfer learning

significantly improves model performance in

scenarios with limited training data.

Our research suggests a comprehensive stance

classification model that capitalizes on sequence

modeling capabilities and robust embeddings by

combining the advantages of these previous methods

and addressing identified deficiencies.

In contrast to previous research, our approach

incorporates BERT and BiLSTM to improve the

accuracy of stance detection within Indonesian

datasets that we have developed. Our strategy is

designed to foster a more comprehensive

comprehension of stance detection in digital

communication and to attain performance on par with

fine tuning LLMs.

2.1 Deep learning

Deep Learning is a machine learning approach

that is based on the workings of the human brain or

what is commonly called an artificial neural network.

Models in deep learning have the ability to perform

feature extraction from data automatically. So, using

deep learning [33] can get better results.

2.2 Bidirectional LSTM

Bidirectional Long Short-Term Memory is the

development of the LSTM model in which there are

two LSTMs whose processes are opposite to each

other, namely the direction of moving forward

(forward) which processes from the first word to the

last word and the direction of moving backward

(backward) which processes from the last word to the

last word. first. This model is very good for

recognizing patterns in sentences because each word

in the document is processed sequentially, and

understands the word that is in the position before or

after it.

Figure. 1 LSTM Architecture

Figure. 2 Forget Gate

Figure 1 is the architecture of the LSTM, in the

LSTM there are three gates whose job is to control

information or data, namely input gate, forget gate,

and output gate. The three gates referred to in the

LSTM are layers with sigmoid functions, the output

of the sigmoid function is a value of 0 or 1. It can be

said that if the value generated from the sigmoid

function is 0 then the data is not allowed to enter or

is not included in the calculation, and vice versa. If

the resulting value is 1, then the data is allowed to

enter or can be included in the calculation.

Figure 2 is the forget gate section which has the

purpose of erasing information or passing

information to the cell state section.

ft = σ(Wf * xt + Uf * ht-1+bf) (1)

In formula 1, it can be seen the formula of the

forget gate using sigmoid activation. There are values

of W and U which are the weight of the forget gate.

Then there is also the value of b which is the bias of

the forget gate. Then x is the input value in iteration t

and h is the output data value in the previous iteration.

Received: June 21, 2024. Revised: July 15, 2024. 522

International Journal of Intelligent Engineering and Systems, Vol.17, No.5, 2024 DOI: 10.22266/ijies2024.1031.41

Figure. 3 Input Gate and Cell State Candidate

Figure. 4 Cell State

Figure 3 is the input gate and cell state candidate,

where the input gate has the purpose of deleting

information or forwarding information to the cell

state candidate section. Then the cell state candidate

is a vector that will later be added to the cell state.

Then both the results of the gate input and the cell

state candidate are combined with the multiplication

mathematical operation which will later be used to

update the cell state.

it = σ(Wi * xt+Ui * ht-1+bi) (2)

In formula 2 can be seen the formula of the input

gate using sigmoid activation. There are values of W

and U which are the weight of the input gate. Then

there is also the value of b which is the bias of the

input gate. Then x is the input value in iteration t and

h is the output data value in the previous iteration.

Figure. 5 Output Gate

C̃t = tanh(WC̃ * xt + UC̃ * ht-1 + bC̃) (3)

In formula 3, it can be seen the formula of the cell

state candidate using tanh activation. There are W

and U values which are the weight of the cell state

candidate. Then there is also the value of b which is

the bias of the cell state candidate. Then x is the input

value in iteration t and h is the output data value in

the previous iteration.

Figure 4 is part of the cell state, after getting the

results from the forget gate, and the multiplication

between the input gate and the cell state candidate,

the cell state can be updated.

Ct = ft * Ct-1 + it * C̃t (4)

In formula 4 can be seen the formula of the cell

state. There is a forget gate value in iteration t

multiplied by the cell state value in the previous

iteration. Then there is the input gate value at iteration

t multiplied by the cell state candidate value at

iteration t. Then the two results are added to get the

cell state value.

Figure 5 is part of the output gate and the result

of the LSTM unit. Furthermore, it is necessary to

determine the results of the resulting output to be

directed to the next unit, the resulting output will be

based on the filtered cell state.

ot = σ(Wo * xt + Uo * ht-1 + bo) (5)

In formula 5 can be seen the formula of the output

gate using sigmoid activation. There are values of W

and U which are the weights of the output gate. Then

there is also the value of b which is the bias of the

gate output. Then x is the input value in iteration t and

h is the output data value in the previous iteration.

Received: June 21, 2024. Revised: July 15, 2024. 523

International Journal of Intelligent Engineering and Systems, Vol.17, No.5, 2024 DOI: 10.22266/ijies2024.1031.41

ht = ot * tanh (Ct) (6)

In formula 6, it can be seen that the formula for

the unit results, first of all, enter the cell state through

the tanh layer to change the value between -1 to 1,

then perform the multiplication operation of the gate

output result with the cell state.

2.3 BERT embedding

BERT Embedding[24, 25] is a contextual word

embedding that is based on the transformers

architectural model. Contextual here means that

BERT can understand the context of sentences[26].

For example, there are the sentences "He was bitten

by a Python snake" and "Python is his favorite

programming language", the word "Python" here has

two different meanings, the first sentence refers to the

type of snake, and the second sentence refers to the

programming language. In BERT the vector value of

the word "Python" will have a different value.

In BERT, it is necessary to change the input into

three embeddings first, namely token embedding,

segment embedding, and position embedding. Token

embedding is a tokenization process on input.

Tokenization in BERT is done by adding a “[CLS]”

token at the beginning of a sentence and a “[SEP]”

token at the separator between sentences. Then To

overcome the problem of out-of-vocabulary (OOV),

BERT performs word splitting into sub-words on

words that are not found in the vocabulary list. For

example, there is the word "work" that is not found in

the vocabulary list, then the word "work" will be split

into "be" and "##kerja"(##ing), the "#" sign indicates

that the token of this word is related to the previous

token. Figure 6 shows the input from BERT.

Segment embedding is used to distinguish tokens

from one sentence to another. Apart from the “[SEP]”

token, additional markers need to be added to

distinguish between two or more sentences. Position

embedding is used to determine the order of tokens

or words because in BERT the data is not processed

sequentially, so position embedding is needed to

arrange the output sequence according to the input.

Figure. 6 BERT Embedding Input

3. Stance classification

3.1 System architecture

The implementation process of this research

starts from collecting data from social media and

Indonesian news on the internet. Then the data

cleaning process is carried out on the data that has

been collected. Then the process of taking additional

features that may have an effect on increasing

classification accuracy is carried out. Then the word

vector formation process is carried out using BERT.

Then a classifier model is created to perform stance

classification. Figure 7 describes the flow of this

research.

In Figure 8 you can see the process that the topic

sentence and response sentence go through to get a

label for the stance classification. The sentence is first

tokenized, resulting in an array of words contained in

the sentence plus tokens that can be processed by

BERT embedding. Then the array of words or tokens

is processed with BERT embedding, so that each

word or token becomes a vector with dimensions

according to the number of hidden states in BERT

embedding. The resulting number of dimensions is

usually 768.

Figure. 7 System Architecture

Received: June 21, 2024. Revised: July 15, 2024. 524

International Journal of Intelligent Engineering and Systems, Vol.17, No.5, 2024 DOI: 10.22266/ijies2024.1031.41

Figure. 8 Flow Pipeline

Then the token or word vector is processed by Bi-

LSTM to obtain a sentence vector with dimensions

according to the number of hidden states in Bi-LSTM.

For example, the dimension of the sentence vector is

300, then it is combined with additional features. For

example, the dimension of the additional features is

3, then the resulting dimension of the combination is

303. Then the combination of sentence vectors with

additional features is processed by a dense layer. For

example, if the dimensions produced by the dense

layer are 64, then the two resulting dense layers of

sentences that have been processed are combined.

The dimension of the vector obtained from the

merger is 128. Then, from the merged vector,

processing is carried out on a dense layer with

dimension 3, namely according to the number of

labels in the stance classification and softmax

activation to obtain the probability value of the stance

classification label. From this probability value, the

highest value can be taken to become the predicted

label. For example, the resulting vector obtained is

[0.2, 0.5, 0.3] and index 0 represents the "For" label,

index 1 represents the "Observing" label, and index 2

represents the "Against" label. So, with the vector

results obtained, the label obtained is the label

"Observing".

3.2 Dataset

Data collection is done manually on social media.

The data sought is the title of the article or news,

claims or responses, the number of likes and

comments. The following in Table 2, is one example

of a pair of article titles, claims, along with the stance

of claims.

Each claim contains several article titles with at

least one “for”, “observing”, and “against” stance

each. There are two datasets used in this research, a

dataset with a total of 3378 and a dataset of a total of

3941. Statistics from the dataset can be seen in Table

3 and Table 4.

Received: June 21, 2024. Revised: July 15, 2024. 525

International Journal of Intelligent Engineering and Systems, Vol.17, No.5, 2024 DOI: 10.22266/ijies2024.1031.41

Table 2. Claims and Stance Example

Claim Article Title Stance

 Traditional

Medicine Is

Not

Necessarily

Safe

(Obat

Tradisional

Belum Tentu

Aman)

 Herbal Medicines Can

Also Be Dangerous,

These Are the

Characteristics (Obat

Herbal Juga Bisa

Berbahaya, Seperti Ini

Ciri-cirinya)

For

Are herbal medicines

safe for users?

(Apakah Obat Herbal

Aman Bagi

Penggunanya?)

Observing

 Traditional herbal

medicines have no

danger in their use

(Obat Herbal

Tradisional Tidak

Memiliki Bahaya Dalam

Penggunaannya)

Against

Table 3. Statistic Dataset 1

Stance Amount

For 1126

Observing 1126

Against 1126

Total 3378

Table 4. Statistic Dataset 2

Stance Amount

For 1391

Observing 1275

Against 1275

Total 3941

3.3 Data cleaning

Data cleaning is done by removing symbols in the

claim text and article titles that can interfere with the

classification results. In this process, the removal of

punctuation marks such as periods or commas is not

done, because removing punctuation marks can affect

BERT in understanding the context of the sentence.

In Table 5, it can be seen that given input

sentences that have symbols or punctuation marks

produce output that does not have sentence symbols

or punctuation marks. This can be done by swapping

symbols or punctuation with empty text. In this

method, we use the BERT method, which can be

done with commas to understand the context better.

Then, to delete data that has a null value, you can do

this by providing a condition on the index that deletes

the data if the condition is met.

Table 5. Statistic Dataset 1

Input Output

Viral!! Liverpool's

jersey beats MU.

(Viral!! Jersey

Liverpool Bantai MU)

Viral Liverpool jersey

beats MU

(Viral Jersey Liverpool

Bantai MU)

[Hoax] Ice Water

Causes Heart Disease

([Hoax] Air Es

Sebabkan Sakit

Jantung)

Hoax Ice Water Causes

Heart Disease

(Hoax Air Es Sebabkan

Sakit Jantung)

Hoax: Instant Noodles

+ Chocolate

(Hoax: Mie Instan +

Coklat)

Chocolate Instant Noodle

Hoax

(Hoax Mie Instan Coklat)

Table 6. Example of Stemming Data Input and Output

Input Output

Farmers work plowing

fields

(petani bekerja

membajak sawah)

Farmers work plowing

rice fields

(petani kerja bajak sawah)

Budi went to play in the

park

(budi pergi bermain di

taman)

Budi went to play in the

park

(budi pergi main di taman)

mother went shopping

at the market

(ibu pergi berbelanja ke

pasar)

mother went shopping at

the market

(ibu pergi belanja ke

pasar)

Table 7. Example of Tokenization Input and Output

Input Output

Viral Liverpools jersey

beats MU.

(Viral Jersey Liverpool

Bantai MU)

[[CLS], Viral, Jersey,

Liverpool, Bantai, MU,

[SEP]]

Ice Water Hoax Causes

Heart Disease

(Hoax Air Es Sebabkan

Sakit Jantung)

[[CLS], Hoax, Air, Es,

Sebabkan, Sakit, Jantung,

[SEP]]

Chocolate Instant

Noodle Hoax

(Hoax Mie Instan

Coklat)

[[CLS], Hoax, Mie, Instan,

Coklat, [SEP]]

In Table 6, the sentence input and sentence output

results obtained after the stemming process is

displayed, each word in the sentence becomes a base

word. To carry out the stemming process for

Indonesian, you can use the Python library from

Sastrawi. In the literary library, you can import

"StemmerFactory", then call the stem function with

sentence input. Then the function will return the

output results from the stemming process.

Table 7 displays the sentence input and output

results from the tokenization process. In the output

Received: June 21, 2024. Revised: July 15, 2024. 526

International Journal of Intelligent Engineering and Systems, Vol.17, No.5, 2024 DOI: 10.22266/ijies2024.1031.41

results there are additional tokens “[CLS]” at the

beginning and “[SEP]” at the end. In BERT

embedding the token “[CLS]” is used to indicate the

initial position of the given input, while the token

“[SEP]” is used to separate sentences. If there are two

or more sentences input, the token “[SEP]” is useful

for indicating the end of each sentence.

Then, after the tokenization process has been

carried out, you can pad the list of tokens. This causes

the list of tokens to have the same list length and can

be processed by the neural network. In BERT

embedding you can add the token “[PAD]” at the end

of the list to indicate that the token is padding. The

following is an example of the input and output

results from the padding process.

In Table 8 you can see the input tokens you have

and the output results from the padding process. By

carrying out the padding process, we get the same list

length, in this case the length of the list is 8. Then,

after the padding process is carried out, the token can

be converted into an ID token. The ID token is a

number to identify the token. This process can be

done using the function provided by BERT

embedding. The following is an example of the input

and output results from the process of converting a

token into an ID token.

In Table 9, the input token you have produces an

output list of numbers from the process of converting

it into an ID token. Then from this list of numbers it

can be input into the pretrained model from BERT

embedding to get a representation value for the word

or token which can later be processed by the neural

network. Before inputting the list of ID tokens into

the pretrained model, you need to create a list of

attention masks first. The attention mask list here

aims to show which IDs need to be processed, the

values of the attention masks are 0 and 1.

It can be said that if the ID token has a value of 0

then the value of the attention mask is 0. Then if the

value of the ID token has a value not 0 then the value

of the attention mask is 1. After creating the attention

mask list you can input the two lists into the BERT

pretrained model embedding. The following is an

example of the input and output results from the

process of getting a token or word representation.

In Table 10, it can be seen that the ID token and

attention mask input produces an output

representation of the word or sentence. The length of

the list of representations obtained depends on the

number of hidden layers in the pretrained model used.

If the number of hidden layers used is 768 then the

length of the representation list obtained is also 768.

Then the output results obtained from BERT

embedding are of two types.

Table 8. Example of Tokenization Input and Output

Input Output

Viral Liverpool Jersey

beats MU

(Viral Jersey Liverpool

Bantai MU)

[[CLS], Viral, Jersey,

Liverpool, Bantai, MU,

[SEP]]

Ice Water Hoax Causes

Heart Disease

(Hoax Air Es Sebabkan

Sakit Jantung)

[[CLS], Hoax, Air, Es,

Sebabkan, Sakit, Jantung,

[SEP]]

Chocolate Instant

Noodle Hoax

(Hoax Mie Instan

Coklat)

[[CLS], Hoax, Mie, Instan,

Coklat, [SEP]]

Table 9. Example of Input and Output for Changing ID

Tokens

Input Output

[[CLS], Viral, Jersey,

Liverpool, Bantai, MU,

[SEP], [PAD]]

[2, 19946, 11690, 9603,

1345, 1643, 3, 0]

[[CLS], Hoax, Air, Es,

Sebabkan, Sakit,

Jantung, [SEP]]

[2, 18442, 514, 1660,

21193, 1252, 2937, 3]

[[CLS], Hoax, Mie,

Instan, Coklat, [SEP],

[PAD], [PAD]]

[2, 18442, 7703, 8189,

5747, 3, 0, 0]

Table 10. Example of Input and Output Getting Word

Representation

Input Output

Token ID : [2, 19946,

11690, 9603, 1345,

1643, 3, 0]

Attention Mask : [1, 1,

1, 1, 1, 1, 1, 0]

[0.4812, 1.3011, 0.3649,

… , 0.6199]

Token ID : [2, 18442,

514, 1660, 21193, 1252,

2937, 3]

Attention Mask : [1, 1,

1, 1, 1, 1, 1, 1]

[0.5493, 0.6933, 0.3582,

… , 0.3963]

Token ID : [2, 18442,

7703, 8189, 5747, 3, 0,

0]

Attention Mask : [1, 1,

1, 1, 1, 1, 0, 0]

[0.1353, 0.8582, 0.5332,

… , 0.5948]

The first output is called sequence output and the

second output is called pooled output. The output

sequence is the representation of each token or word

entered. Pooled output is the result of the

representation of all the tokens or words entered, it

can be said to be the result of the representation of the

sentence. The following is an example of

sequence output and pooled output.

Received: June 21, 2024. Revised: July 15, 2024. 527

International Journal of Intelligent Engineering and Systems, Vol.17, No.5, 2024 DOI: 10.22266/ijies2024.1031.41

Table 11. Example of Output Sequence Results

Word Word Vector

I (Saya) [0.34, 0.42, 0.33]

take (Minum) [0.44, 0.53, 0.12]

medicine (Obat) [0.65, 0.22, 0.55]

Table 12. Example of Pooled Output Results

Sentence Sentence Vector

I take medicine

(Saya minum obat)

[0.29, 0.32, 0.54]

I take medicine

(Budi mengikuti kelas)

[0.45, 0.64, 0.22]

Adi goes to the mall

(Adi pergi ke mall)

[0.54, 0.16, 0.46]

Table 13. Example of Normalized Input and Output

Sentence Sentence Vector

I take medicine

(Saya minum obat)

[0.29, 0.32, 0.54]

Budi attends class

(Budi mengikuti kelas)

[0.45, 0.64, 0.22]

Adi goes to the mall

(Adi pergi ke mall)

[0.54, 0.16, 0.46]

Table 14. Examples of Negation Word Input and Output

Input Output

three year research from Italy

confirms that e-cigarettes are not

dangerous

(riset tiga tahun dari Italia

pastikan rokok elektrik tidak

bahaya)

1

Our focus is on BPJS policies

that are detrimental to society

(fokus kami soal kebijakan BPJS

yang merugikan masyarakat)

0

Benefits of drinking lemon

water every morning for the

body

(manfaat meminum air lemon

setiap pagi untuk tubuh)

0

In Table 11, an example of the output sequence

results from tokens or words with a total of 3 hidden

layers in BERT embedding is displayed. The greater

the number of hidden layers of BERT embedding, the

greater the word representation value obtained. If the

input from BERT embedding is a sentence with 5

words, then the number of output results produced is

5-word vector outputs and 1 sentence vector output.

Then the output result for the “[PAD]” token will

have a value of 0.

In Table 12 is displayed an example of the pooled

output results from sentences with 3 hidden layers in

BERT embedding. The pooled output value is the

output result of the “[CLS]” token. From the results

of this word or sentence representation, the neural

network will later process it to carry out the stance

classification task. Then the neural network will

produce an output label from the existing list of labels.

Extract features are the retrieval of additional

features which are expected to help determine

classification or increase the accuracy of the model to

be created. From the existing dataset, the fields that

could possibly be used are the number of likes and

comments on the topic, and the number of likes and

comments on the responses. Then you can normalize

the values in the like and comment fields, so that the

values do not have a large distance between them. In

this case, normalization is carried out, so that the

values for the number of likes and comments have a

value range between 0 and 1. The following is an

example of the input and output results from the

normalization process.

In Table 13, it can be seen that the input list of

numbers carried out by the normalization process

produces an output with values in the list of numbers

ranging from 0 to 1. Then another feature that can be

added is a status that shows the sentence on the topic

or response has the word negation. The way to

determine whether a sentence in the topic or response

has a negation word, it is necessary to make a list of

words that are negation words. The list of negation

words used are the words "not", "not", "don't", "not",

"not yet", "hoax", and "hoax".

Then, after obtaining a list of negation words,

fields can be added to accommodate the values from

checking the topic sentence and response. If the topic

sentence or response contains one of the words on the

list of negation words, it can be given a value of 1.

Then, if no negation word is found, it is given a value

of 0. The following is an example of the input and

output results from the process of checking negation

words.

In Table 14, the input sentences and output results

from the process of checking negation words from the

list of negation words created is shown. Then, from

the existing features, additional features can be

combined with the main features (representation of

topic sentences and responses). After combining the

features, the process of dividing train data, validation

data and test data can be carried out. Train data is data

that will be used for the model training process,

validation data is data that will be used to validate the

model during the training process, and test data is

data that is used to test the model when the training

process is complete.

Received: June 21, 2024. Revised: July 15, 2024. 528

International Journal of Intelligent Engineering and Systems, Vol.17, No.5, 2024 DOI: 10.22266/ijies2024.1031.41

Table 15. Examples of Sequence Output Results

Word Vector

Saya (I) [0.34, 0.21, 0.46]

Minum (Took) [0.23, 0.56, 0.77]

Obat (Medicine) [0.31, 0.54, 0.55]

Batuk (Cough) [0.32, 0.54, 0.15]

Table 16. Examples of Pooled Output Results

Word Vector

Saya (I) [0.34, 0.21, 0.46]

Minum (Took) [0.23, 0.56, 0.77]

Obat (Medicine) [0.31, 0.54, 0.55]

Batuk (Cough) [0.32, 0.54, 0.15]

3.4 Additional feature retrieval

The addition of this feature aims to help the

classifier model in classifying data. If the feature you

want to add is in the form of text or string data, it is

necessary to map the data into numbers. However, if

the added feature is in the form of numbers, the data

normalization can be done first. Another feature that

can be added besides the main feature is the number

of likes and comments.

3.5 Formation of word vector

The formation of this word vector aims to convert

text data into numeric data so that it can be processed

by the neural network. In this process, it is necessary

to change the claim text and article title text into three

embeddings first, so that they can be processed by

BERT. In this research, Indonesian pre-trained BERT

embedding from indoBERT is used. There are two

outputs from BERT, namely sequence output and

pooled output. Sequence output is the result of the

embedding of each word contained in the sentence,

while the pooled output is the result of the embedding

of the sentence. Examples of the results of sequence

output and pooled output can be seen in Table 15 and

Table 16.

3.6 Model classifier

After getting the features that will be processed,

then the process of making and training[27, 34] the

model can be done. The parameter settings used are

the pre-trained BERT layer, the Bi-LSTM layer with

the input dimensions according to the embedding

dimensions, namely 768, the linear layer with the

input dimensions 1536, and the output dimension 3.

The model is also formed with the Adam optimizer

with a learning rate of 0.00003. The algorithm is

displayed as Algorithm 1

Algorithm 1 Training Algorithm

01: FUNCTION train_epoch(model, data_loader,

loss_fn, optimizer, scheduler, n_examples):

02: SET model to training mode

03: INITIALIZE empty list for losses

04: INITIALIZE correct_predictions to 0

05: FOR each batch in data_loader:

06: GET input_ids from batch

07: GET attention_mask from

 batch

08: GET stance (labels) from

 batch

09: PASS input_ids and

 attention_mask through

model to get outputs

10: GET predicted classes (

 preds) from outputs

11: CALCULATE loss using

 loss_fn with outputs

 and stance

12: ADD to correct_predictions the

number of correct preds

13: APPEND loss value to losses list

14: BACKPROPAGATE the loss

15: CLIP gradients of model

 parameters to max_norm

of 1.0

16: PERFORM an optimization

 step

17: UPDATE the learning rate

 with scheduler

18: RESET gradients of

 optimizer

19: PRINT "Correct Predictions: " +

correct_predictions

20:RETURN correct_predictions divided by

n_examples, mean of losses list

The train_epoch function is specifically built to

manage a single epoch of training for a machine

learning model. The model requires various

parameters, including the model itself, a data loader

to supply the training data, a loss function to evaluate

prediction errors, an optimizer to update the model's

parameters, a scheduler to modify the learning rate,

and the number of examples in the training set.

The function initiates the training mode by using

model.train(), which activates training-specific

functionalities like dropout. Subsequently, it

initializes a empty list to store loss values and a

Received: June 21, 2024. Revised: July 15, 2024. 529

International Journal of Intelligent Engineering and Systems, Vol.17, No.5, 2024 DOI: 10.22266/ijies2024.1031.41

counter to keep track of accurate predictions.

Calculating the length of the data loader provides

insight into the size of the dataset being processed

during this epoch.

Subsequently, the function proceeds to iterate

through each batch of data supplied by the data loader.

For every batch of data, it retrieves the input_ids,

attention_mask, and stance (the labels). The inputs

are used as input to the model in order to produce

output logits. The function subsequently identifies

the predicting classes by selecting the highest value

along the output dimension. The loss is computed by

applying the given loss function, which involves

comparing the model's outputs with the actual labels.

The loss is added to the list of losses, and the accuracy

is updated by comparing the anticipated classes with

the actual labels.

After calculating the loss, the function carries out

backpropagation to determine the gradients of the

loss in relation to the parameters of the model.

Subsequently, the gradients are cliped to a maximum

norm of 1.0 in order to mitigate the issue of exploding

gradients, which has the potential to disrupt the

training process. The optimizer executes a process to

modify the parameters of the model, while the

scheduler adjusts the learning rate. The gradients of

the optimizer are set to zero in order to be ready for

the following iteration.

Upon completing the processing of all batches,

the function outputs the total count of accurate

predictions. Subsequently, it provides the accuracy,

which is computed by dividing the number of right

predictions by the total number of examples, as well

as the average loss for the period. This technique

guarantees that the model is trained on the complete

dataset, with its parameters adjusted to minimize the

prediction error, while also avoiding problems such

as exploding gradients and dynamically adapting the

learning rate.

3.7 Performance evaluation

Performance evaluation is carried out based on

the F1 score of each stance label and the average F1

macro.

Precision = TP / (TP+FP) (7)

Precision states how accurate the algorithm or

model is to how many positive predictions are true

positive (TP) from all positive predicted data

(TP+FP).

Recall = TP / (TP+FN) (8)

Recall states how many positive predictions are

true positive (TP) from all truly positive data

(TP+FN).

F1 Score =
2(Precision . Recall)/(Precision+Recall) (9)

F1 score is the balance value between precision

and recall. In this research, the classification_report

function from sklearn.metrics is used to get the

performance of the model.

4. Experiments

This section presents the findings of various

experiments conducted on different machine learning

models. The analysis begins with the results from the

first and second trials (Tables 17 & 18). Subsequently,

this section examines how varying the batch size

impacts the outcomes in both trials (Tables 19 & 20).

Next, the influence of stemming on the BERT

model's performance in trials one and two is explored

(Tables 21 & 22). This section then assesses the

effectiveness of Fasttext on the model's performance

in both trials (Tables 23 & 24).

Table 25 summarizes the test results obtained

using different word embedding types. Table 26

presents the outcomes of employing CNN, LSTM,

and Bi-LSTM classifier methods while utilizing

Fasttext Cc.Id.300.Bin and Wiki.Id.Bin word

embeddings.

The following tables (Tables 27-31) showcase the

results of trials conducted with various models,

including Gemini-1.0-pro-001 and RoBERTa,

alongside comparisons to fine-tuning approaches

implemented with PyTorch, Gemma, and Gemini.

Finally, Table 22 provides a comprehensive

comparison of F1 scores achieved across all the

methods explored in this section.

The distribution of the dataset used in all these

trials is 56% train data, 14% validation data, and 30%

test data. The first trial was carried out on the first

dataset by changing the dropout value to see how

much change in the accuracy results was obtained.

test results can be seen in Table 7.

In Table 17, it can be seen that the accuracy

results are quite good. Then a trial was carried out on

the second dataset with a change in the dropout value

as well. test results can be seen in Table 8.

In Table 8 it can be seen that the accuracy results

are quite good and there is a slight increase in

accuracy compared to Table 7. Then a trial was

carried out on the first dataset by changing the batch

size value to see how big the change in the accuracy

results was, the test results can be seen in table 9.

Received: June 21, 2024. Revised: July 15, 2024. 530

International Journal of Intelligent Engineering and Systems, Vol.17, No.5, 2024 DOI: 10.22266/ijies2024.1031.41

Table 17. BERT Dataset FIRST Trial Results

Metho

d

Dro

pou

t

F1 For F1

Observ

ing

F1

Against

F1

Macro

Dense

Layer

0.2 0.6765 0.8800 0.6423 0.7329

0.3 0.6921 0.8846 0.6488 0.7418

0.5 0.6706 0.8886 0.6322 0.7305

Bi-

LSTM

0.2 0.6924 0.8995 0.6673 0.7531

0.3 0.7228 0.8865 0.6945 0.7746

0.5 0.6977 0.8917 0.6628 0.7507

CNN 0.2 0.6833 0.9104 0.6950 0.7629

0.3 0.6758 0.8938 0.6498 0.7398

0.5 0.6941 0.8959 0.6610 0.7503

Table 18. BERT Dataset SECOND Trial Results

Metho

d

Dro

pou

t

F1 For F1

Observ

ing

F1

Against

F1

Macro

Dense

Layer

0.2 0.6952 0.8626 0.6843 0.7474

0.3 0.6951 0.8782 0.6595 0.7443

0.5 0.7103 0.8784 0.6808 0.7565

Bi-

LSTM

0.2 0.7310 0.8957 0.7223 0.7830

0.3 0.7041 0.9010 0.7102 0.7718

0.5 0.7150 0.8926 0.7137 0.7738

CNN

0.2 0.7125 0.8672 0.6863 0.7553

0.3 0.7062 0.8926 0.6859 0.7616

0.5 0.7107 0.8914 0.6902 0.7641

Table 19. BATCH SIZE BERT Dataset FIRST Trial

Results

Metho

d

BAT

CH

SIZ

E

F1 FOR

F1

Observ

ing

F1

Against

F1

Macro

Dense

Layer

16 0.6978 0.8839 0.6389 0.7402

32 0.6990 0.8909 0.6510 0.7470

64 0.6893 0.9041 0.6680 0.7538

Bi-

LSTM

16 0.6902 0.9057 0.6862 0.7607

32 0.6911 0.9125 0.6636 0.7557

64 0.7153 0.8981 0.6828 0.7654

CNN

16 0.6969 0.9112 0.6603 0.7561

32 0.7004 0.8895 0.6709 0.7536

64 0.6931 0.9175 0.6799 0.7635

In Table 19, it can be seen that the accuracy

results obtained have a slight decrease compared to

Table 7. Then a trial was carried out on the second

dataset with changes in the batch size value as well,

the test results can be seen in table 20.

Table 20. BATCH SIZE BERT Dataset SECOND Trial

Results

Metho

d

Batc

h

Size

F1

For

F1

Observin

g

F1

Agains

t

F1

Macr

o

Dense

Layer

16
0.704

0

0.8713 0.6911 0.7555

32
0.706

8

0.8963 0.6825 0.7619

64
0.719

1

0.8831 0.6701 0.7574

Bi-

LSTM

16
0.699

2

0.8993 0.6842 0.7609

32
0.710

9

0.9012 0.7168 0.7763

64
0.715

3

0.8910 0.7199 0.7754

CNN

16
0.708

2

0.8964 0.7016 0.7687

32
0.713

3

0.8826 0.6964 0.7641

64
0.718

1

0.8908 0.7037 0.7709

Table 21. Stemming BERT Dataset FIRST Trial Results

Method F1 FOR
F1

Observing

F1

Against

F1

Macro

Dense

0.6535 0.8353 0.6309 0.7066

Bi-

LSTM

0.6400 0.8336 0.6409 0.7048

CNN 0.6620 0.8524 0.6535 0.7226

Table 22. Stemming BERT Dataset SECOND Trial

Results

Method F1 FOR
F1

Observing

F1

Against

F1

Macro

Dense

0.6348 0.7785 0.6265 0.6799

Bi-

LSTM

0.6846 0.8355 0.6751 0.7317

CNN 0.6705 0.8362 0.6424 0.7164

In Table 20, it can be seen that the accuracy

results obtained slightly decreased compared to Table

8. Then a trial was conducted on the first dataset by

stemming with the literary python library on the

claim text and the article title text, the test results can

be seen in Table 11.

It can be seen in Table 21, there is a decrease in

accuracy compared to Table 16 or Table 19 which

does not stem the sentence. Then a trial was

conducted on the second dataset by stemming the

claim text and the article title text, the test results can

be seen in Table 22.

It can be seen in Table 22, there is a decrease in

accuracy compared to Table 18 or Table 20 which

does not stem the sentence. Then a trial was carried

Received: June 21, 2024. Revised: July 15, 2024. 531

International Journal of Intelligent Engineering and Systems, Vol.17, No.5, 2024 DOI: 10.22266/ijies2024.1031.41

out using word embedding fastText to see a

comparison of the accuracy obtained. In this trial, the

Indonesian pre-trained cc.id.300.bin provided by

fastText was used, the test results can be seen in

Table 23.

As seen in Table 23, there is a significant decrease

in accuracy compared to Table 17. Then a trial was

conducted using the word embedding fastText on the

second dataset, the test results can be seen in Table

24.

As seen in Table 24, there is an increase in

accuracy when compared to Table 23. However, the

comparison is still quite far when compared to Table

18. From all trials, it can be seen that the accuracy of

F1 observing always has the highest value in all

methods.

In Table 25 as described in the research paper

'Stance Classification Post Health in the Media Social

With FastText Embedding and Deep Learning,' it can

be seen that there is a difference in accuracy of 1.1%

between the average F1 macro model with

Word2Vec (52.7%) and the model with fastText

(53.8%). The most accurate use of Word2Vec with

LSTM only reached 55% and the most accurate use

of fastText was obtained with CNN with F1 macro

55.4%.

As seen in Table 26, tested how well a classifier

could perform using only basic summaries of

sentences, instead of adding extra details. The CNN

method achieved the best overall accuracy (with a

score of 55.4%) when it used summaries from the

'cc.id.bin' dataset. Summaries from the 'wiki.id.bin'

dataset also produced similar results.

Table 23. Fasttext BERT Dataset FIRST Trial Results

Method
F1

FOR

F1

Observing

F1

Against

F1

Macro

Dense

0.3134 0.5945 0.4575 0.4551

Bi-

LSTM

0.4296 0.6436 0.5268 0.5333

CNN 0.4579 0.6323 0.5154 0.5352

Table 24. Fasttext BERT Dataset SECOND Trial Results

Method
F1

FOR

F1

Observing

F1

Against

F1

Macro

Dense

0.5327 0.6093 0.2712 0.4711

Bi-

LSTM

0.5564 0.6928 0.4287 0.5593

CNN 0.5258 0.7217 0.4749 0.5741

Table 25. Test Results of Word Embedding Types

Approach
F1

FOR

F1

Observing

F1

Against

F1

Macro

Word2Vec

+ CNN

0.454 0.654 0.488 0.532

Word2Vec

+ LSTM

0.503 0.659 0.488 0.550

Word2Vec

+ BiLSTM

0.453 0.624 0.424 0.500

Average 0.470 0.646 0.467 0.527

fastText +

CNN

0.495 0.824 0.345 0.554

fastText +

LSTM

0.492 0.801 0.294 0.529

fastText +

Bi-

LSTM

0.441 0.817 0.391 0.530

Average 0.476 0.814 0.343 0.538

Table 26. Test Results Of CNN, LSTM, And Bi-LSTM

Classifier Methods, With Fasttext Cc.Id.300.Bin And

Wiki.Id.Bin

Classifier
F1

FOR

F1

Observing

F1

Against

F1

Macro

cc.id.300.bin

CNN 0.495 0.824 0.345 0.554

LSTM 0.492 0.801 0.294 0.529

Bi-LSTM 0.441 0.817 0.391 0.530

wiki.id.bin

CNN 0.512 0.807 0.345 0.553

LSTM 0.445 0.827 0.350 0.540

Bi-LSTM 0.496 0.834 0.315 0.547

Table 27 shows the results of a gemini-1.0-pro-

001 model that sorts data into categories. It indicates

how many items were classified correctly and breaks

down performance for two different categories

("against" and "for"). The overall accuracy is

77%[35].

Table 28 evaluates the performance of a machine

learning RoBERTa model on classification tasks.

This information can be found on Hugging Face:

https://huggingface.co/cahya/roberta-base-

indonesian-522M. It analyzes the model's ability to

categorize data points into predefined classes. For

instance, it can classify sentiment as positive ("for")

or negative ("against"). The included metrics, such as

precision (37% for "against") and recall (78% for

"observation"), assess how accurately the model

assigns data points to the correct categories.

https://huggingface.co/cahya/roberta-base-indonesian-522M
https://huggingface.co/cahya/roberta-base-indonesian-522M

Received: June 21, 2024. Revised: July 15, 2024. 532

International Journal of Intelligent Engineering and Systems, Vol.17, No.5, 2024 DOI: 10.22266/ijies2024.1031.41

Table 27. Trials with gemini-1.0-pro-001

Class Precision Recall
F1

Score
Support

against 0.75 0.79 0.77 1116

for 0.84 0.53 0.65 1111

observing 0.71 0.93 0.81 1112

accuracy - - 0.75 3339

macro

avg
0.77 0.75 0.74 3339

weighted

avg
0.74 0.75 0.74 3339

Table 28. Trials with RoBERTa

Class Precision Recall
F1-

Score
Support

against 0.37 0.46 0.41 181

for 0.55 0.48 0.51 257

observing 0.83 0.78 0.80 238

Accuracy - - 0.58 676

Macro Avg 0.58 0.57 0.58 676

Weighted

Avg

0.60 0.58 0.59 676

Table 29. Comparison with Transfer Learning with Bert

Class Precision Recall
F1-

Score
Support

against 0.63 0.56 0.59 225

for 0.63 0.69 0.66 226

observing 0.88 0.88 0.88 225

Accuracy - - 0.71 676

Macro Avg 0.71 0.71 0.71 676

Weighted

Avg

0.71 0.71 0.71 676

Table 29 shows the effectiveness of a Transfer

Learning with Bert on a classification task. It is based

on Hugging Face: https://huggingface.co/cahya/bert-

base-indonesian-522M. It leverages a pre-trained

model and tailors it to a specific dataset of labeled

examples, where each belongs to a predefined

category. The table's metrics, like precision and recall,

assess how accurately the model assigns these

examples to their correct categories[38].

Table 30 evaluates the performance of a

Gemma[36] model fine-tuned for a sentiment

analysis task. With a precision of 85% for positive

sentiment, the table indicates the model accurately

identifies 85% of truly positive reviews. However,

the model's recall for negative sentiment is 70%,

meaning it misses 30% of negative reviews.

Table 31 evaluates the performance of a

sentiment analysis model built with Gemini[37]. The

model was fine-tuned, meaning it was adapted from

a pre-trained model to classify reviews as positive or

negative. For positive sentiment, the table shows a

precision of 85%. This means out of every 100

reviews the model identifies as positive, 85 are truly

positive. However, the recall for negative sentiment

is 79%, indicating the model misses 21% of negative

reviews.

Table 32 summarizes the F1 scores achieved by

four different classification methods on a

classification task. F1 score is a crucial metric for

evaluating model performance, balancing both

precision (correctly identifying positive cases) and

recall (finding all actual positive cases).

Table 30. Comparison with Gemma finetuning

Class Precision Recall
F1-

Score
Support

against 0.85 0.70 0.77 225

for 0.69 0.92 0.79 225

observing 0.96 0.81 0.88 226

Accuracy - - 0.81 676

Macro Avg 0.83 0.81 0.81 676

Weighted

Avg

0.83 0.81 0.81 676

Table 31. Comparison with Gemini Fine Tuning

Class Precision Recall
F1-

Score
Support

against 0.90 0.79 0.84 225

for 0.87 0.83 0.85 225

observing 0.79 0.93 0.86 226

Accuracy - - 0.85 676

Macro Avg 0.86 0.85 0.85 676

Weighted

Avg

0.86 0.85 0.85 676

Table 32. Comparison of F1 Scores for Different

Methods

Method
F1

FOR

F1

Observing

F1

Against

F1

Macro

Dense

Layer

0.68

93

0.9041 0.6680 0.7538

Bi-LSTM
0.71

53

0.8981 0.6828 0.7654

CNN
0.69

31

0.9175 0.6799 0.7635

Gemini 0.65 0.81 0.77 0.74

RoBERTa 0.51 0.80 0.41 0.58

BERT 0.66 0.88 0.59 0.71

Gemma

Fine

Tuning

0.79 0.88 0.77 0.81

Gemini

Fine

Tuning

0.85 0.86 0.84 0.85

Received: June 21, 2024. Revised: July 15, 2024. 533

International Journal of Intelligent Engineering and Systems, Vol.17, No.5, 2024 DOI: 10.22266/ijies2024.1031.41

Figure. 9 Example of First Form Input and Output Results

Figure. 10 Example of Application Form

Looking at the F1 scores for identifying positive

cases, Bi-LSTM takes the lead at 0.7153, followed

closely by Dense Layer at 0.6893. This indicates that

Bi-LSTM might be slightly better at correctly

classifying positive examples in this specific task.

However, Dense Layer appears to excel in overall

classification accuracy, as reflected by its F1 score of

0.7538 for observing all classifications.

In this study, we also developed an interface

displaying the classification results for inference. The

user could choose the model, claim topic, and related

news and get the predictions as in Figure 9.

In Figure 10 you can see the appearance of the

second form, on the left there is a text box for the

output results from stance classification and on the

right, there is text input for topics and responses. In

this form, sentences will be processed by all existing

models directly. Then the number is calculated and

the highest number of predictions becomes the final

prediction. The following is an example of input and

output results from testing for stance classification

with the second form.

In Figure 11 you can see an example of the input

and output results from the third form. In this

example, predictions are made by inputting the URL

Received: June 21, 2024. Revised: July 15, 2024. 534

International Journal of Intelligent Engineering and Systems, Vol.17, No.5, 2024 DOI: 10.22266/ijies2024.1031.41

Figure. 11 Example of Third Form Input and Output Results

from "health.detik.com" regarding health news. Then

predictions are made on the title of the news obtained

using the comments on the news. In the output results

section there are tabs for each model, so you can see

the prediction results obtained by the model

regarding the comments it has on this news. Then,

from the number of existing classifications, the

highest number of classifications is calculated to be

used as the final prediction result. In this case, it can

be said that it is not about false news or a hoax, but it

can be said that many people do not support or

disagree with the price change to the "PCR price".

5. Conclusion

This section will discuss some finding from this

study. The proposed models by utilizing contextual

embedding like BERT can enhance the model

performance, achieving highest F1 Score of 77%

compared to the previous studies as the baseline and

on par with performance of publicly available LLMs

such as Gemini and Gemma. Some of the problems

rise in this study shows that shortcuts or encountering

typos can cause problems for the model by not

achieving the best performance. Furthermore,

optimization such as stemming did not worked and

cause the model failing to understand the contextual

sentence meaning.

Another experiment shows that negation in our

experiment seems fails to generalize and classify by

the models. It shows that the model performance was

decreasing due to negative words in the dataset.

Although our model incorporates transformer, it

seems that our proposed models still struggled with

long word sequences in the input.

However, from several experiments and

performance comparison based on this study, BERT

performed better than baseline methods for classify

the stance in the experiments of this study. To

improve future works, we recommend training a

BERT model and use another model representation to

address some multimodality data in stance

classification by incorporating a larger dataset to train

the model.

Notations

it input gate

Wi weight of the input gate

xt input value in iteration t

Ui weight of the input gate

ht h is the output data value

in the previous iteration t

bi bias of the input gate

WC̃ weight of the cell state

candidate

UC̃ weight of the cell state

candidate

bC̃ bias of the cell state

candidate

ft forget gate value in

iteration t

Wf weight of the forget gate

Uf weight of the forget gate

bf bias of the forget gate

Ct cell state

C̃t cell state candidate

ot gate output result

Wo weights of the output gate

Uo weights of the output gate

Received: June 21, 2024. Revised: July 15, 2024. 535

International Journal of Intelligent Engineering and Systems, Vol.17, No.5, 2024 DOI: 10.22266/ijies2024.1031.41

bo bias of the output gate

Ct cell state

TP true positive

FP false positive

FN false negative

Conflicts of Interest

The authors declare no conflict of interest.

Author Contributions

Conceptualization, Esther I. Setiawan, Willyanto

Dharmawan; methodology, Esther I. Setiawan,

Willyanto Dharmawan, Kimiya Fujisawa, Mauridhi

Hery Purnomo; software, Willyanto Dharmawan and
Kevin Jonathan; validation, Willyanto Dharmawan,

Joan Santoso; formal analysis, Esther I. Setiawan and

Kimiya Fujisawa; writing—original draft preparation,

Esther I. Setiawan, Willyanto Dharmawan; writing—

review and editing, Esther I. Setiawan, Joan Santoso,

FX Ferdinandus and Kimiya Fujisawa ; visualization,

Willyanto Dharmawan and Joan Santoso; supervision,

Esther I. Setiawan and Kimiya Fujisawa; project

administration, Esther I. Setiawan and Kimiya

Fujisawa; funding acquisition, Esther I. Setiawan, FX.

Ferdinandus, and Mauridhi Hery Purnomo.

Acknowledgments

This work was partially funded by Institut Sains

dan Teknologi Terpadu Surabaya (ISTTS) under

Institute for Research and Community Services or

Lembaga Penelitian dan Pengabdian kepada

Masyarakat (LPPM).

References

[1] N. Nic, R. Fletcher, A. Kalogeropoulos, D. A. L.

Levy, and R. K. Nielsen, “Reuters institute

digital news report 2018”, Reuters Institute for

the Study of Journalism, Vol. 39, 2018.

[2] H. Karande, R. Walambe, V. Benjamin, K.

Kotecha, and T. S. Raghu, “Stance detection

with BERT embeddings for credibility analysis

of information on social media”, PeerJ Comput

Sci, Vol. 7, p. e467, 2021.

[3] E. I. Setiawan, H. Juwiantho, J. Santoso, S.

Sumpeno, K. Fujisawa, and M. H. Purnomo,

“Multiview Sentiment Analysis with Image-

Text-Concept Features of Indonesian Social

Media Posts”, International Journal of

Intelligent Engineering & Systems, Vol. 14, No.

2, 2021, doi: 10.22266/ijies2021.0430.47.

[4] B. Xu, M. Mohtarami, and J. Glass, “Adversarial

domain adaptation for stance detection”, arXiv

preprint arXiv:1902.02401, 2019.

[5] I. Khan, S. K. Naqvi, M. Alam, and S. N. A.

Rizvi, “An efficient framework for real-time

tweet classification”, International Journal of

Information Technology, Vol. 9, pp. 215–221,

2017.

[6] Y.-C. Chen, Z.-Y. Liu, and H.-Y. Kao, “Ikm at

semeval-2017 task 8: Convolutional neural

networks for stance detection and rumor

verification”, In: Proc. of the 11th international

workshop on semantic evaluation (SemEval-

2017, pp. 465–469), 2017.

[7] S. Imron, E. I. Setiawan, J. Santoso, M. H.

Purnomo, and others, “Aspect Based Sentiment

Analysis Marketplace Product Reviews Using

BERT, LSTM, and CNN”, Jurnal RESTI

(Rekayasa Sistem dan Teknologi Informasi), Vol.

7, No. 3, pp. 586–591, 2023.

[8] E. I. Setiawan, F. Ferry, J. Santoso, S. Sumpeno,

K. Fujisawa, and M. H. Purnomo, “Bidirectional

GRU for Targeted Aspect-Based Sentiment

Analysis Based on Character-Enhanced Token-

Embedding and Multi-Level Attention.”,

International Journal of Intelligent Engineering

& Systems, Vol. 13, No. 5, 2020, doi:

10.22266/ijies2020.1031.35.

[9] N. Kotonya and F. Toni, “Gradual

argumentation evaluation for stance aggregation

in automated fake news detection”, In: Proc. of

the 6th Workshop on Argument Mining, pp. 156–

166, 2019.

[10] M. Alsafad, “Stance Classification for Fake

News Detection with Machine Learning”, The

Eurasia Proceedings of Science Technology

Engineering and Mathematics, Vol. 22, pp.

191–198, 2023.

[11] J. Du, R. Xu, Y. He, and L. Gui, “Stance

classification with target-specific neural

attention networks”, In: Proc. of 26th

International Joint Conference on Artificial

Intelligence, pp. 3988-3994, 2017.

[12] R. Bar-Haim, I. Bhattacharya, F. Dinuzzo, A.

Saha, and N. Slonim, “Stance classification of

context-dependent claims”, In: Proc. of the 15th

Received: June 21, 2024. Revised: July 15, 2024. 536

International Journal of Intelligent Engineering and Systems, Vol.17, No.5, 2024 DOI: 10.22266/ijies2024.1031.41

Conference of the European Chapter of the

Association for Computational Linguistics:

Volume 1, Long Papers, pp. 251–261, 2017.

[13] E. Kochkina, M. Liakata, and I. Augenstein,

“Turing at semeval-2017 task 8: Sequential

approach to rumour stance classification with

branch-lstm”, arXiv preprint arXiv:1704.07221,

2017.

[14] E. Irawati Setiawan et al., “Indonesian Stance

Analysis of Healthcare News using Sentence

Embedding Based on LSTM”, Jurnal Nasional

Teknik Elektro dan Teknologi Informasi, Vol. 9,

No. 1, pp. 8–17, 2020, doi:

10.22146/jnteti.v9i1.115.

[15] T. Gao, X. Yao, and D. Chen, “Simcse: Simple

contrastive learning of sentence embeddings”,

arXiv preprint arXiv:2104.08821, 2021.

[16] Z. Wang and B. Yang, “Attention-based

bidirectional long short-term memory networks

for relation classification using knowledge

distillation from BERT”, In: Proc. of 2020 IEEE

Intl Conf on Dependable, Autonomic and Secure

Computing, Intl Conf on Pervasive Intelligence

and Computing, Intl Conf on Cloud and Big

Data Computing, Intl Conf on Cyber Science

and Technology Congress

(DASC/PiCom/CBDCom/CyberSciTech), pp.

562–568, 2020.

[17] L. Derczynski, K. Bontcheva, M. Liakata, R.

Procter, G. W. S. Hoi, and A. Zubiaga,

“SemEval-2017 Task 8: RumourEval:

Determining rumour veracity and support for

rumours”, arXiv preprint arXiv:1704.05972,

2017.

[18] G. Gorrell et al., “SemEval-2019 Task 7:

RumourEval 2019: Determining Rumour

Veracity and Support for Rumours”, In: Proc. of

the 13th International Workshop on Semantic

Evaluation: NAACL HLT 2019, pp. 845–854,

2019.

[19] Q. Li, Q. Zhang, and L. Si, “eventAI at

SemEval-2019 task 7: Rumor detection on

social media by exploiting content, user

credibility and propagation information”, In:

Proc. of the 13th international workshop on

semantic evaluation, 2019, pp. 855–859.

[20] S. Peshterliev, A. Hsieh, and I. Kiss, “F10-SGD:

Fast Training of Elastic-net Linear Models for

Text Classification and Named-entity

Recognition”, arXiv preprint arXiv:1902.10649,

2019.

[21] K. Dey, R. Shrivastava, and S. Kaushik,

“Twitter stance detection—A subjectivity and

sentiment polarity inspired two-phase approach”,

In: Proc. of 2017 IEEE international conference

on data mining workshops (ICDMW), pp. 365–

372, 2017.

[22] D. Küçük and F. Can, “A tweet dataset

annotated for named entity recognition and

stance detection”, arXiv preprint

arXiv:1901.04787, 2019.

[23] P. Heinrich, “Stance Classification in Argument

Search”, M.S. thesis, Dept. Computer Science,

Univ. Paderborn, 2019.

[24] S. Ravichandiran, Getting Started with Google

BERT: Build and train state-of-the-art natural

language processing models using BERT, Packt

Publishing Ltd, 2021.

[25] Y. Liu et al., “Roberta: A robustly optimized

bert pretraining approach”, arXiv preprint

arXiv:1907.11692, 2019.

[26] J. Devlin, M.-W. Chang, K. Lee, and K.

Toutanova, “Bert: Pre-training of deep

bidirectional transformers for language

understanding”, arXiv preprint

arXiv:1810.04805, 2018.

[27] H. Inoue, “Multi-sample dropout for accelerated

training and better generalization”, arXiv

preprint arXiv:1905.09788, 2019.

[28] C. B. P. Putra, D. Purwitasari, and A. B. Raharjo,

“Stance Detection on Tweets with Multi-task

Aspect-based Sentiment: A Case Study of

COVID-19 Vaccination.”, International Journal

of Intelligent Engineering & Systems, Vol. 15,

No. 5, 2022, doi: 10.22266/ijies2022.1031.45.

[29] R. Dale, “NLP in a post-truth world”, Nat Lang

Eng, Vol. 23, No. 2, pp. 319–324, 2017.

[30] Y. Cui, W. Che, T. Liu, B. Qin, S. Wang, and G.

Hu, “Revisiting pre-trained models for Chinese

natural language processing”, arXiv preprint

arXiv:2004.13922, 2020.

[31] L. Xu, X. Zhang, and Q. Dong,

“CLUECorpus2020: A large-scale Chinese

corpus for pre-training language model”, arXiv

preprint arXiv:2003.01355, 2020.

Received: June 21, 2024. Revised: July 15, 2024. 537

International Journal of Intelligent Engineering and Systems, Vol.17, No.5, 2024 DOI: 10.22266/ijies2024.1031.41

[32] P. J. Gorinski et al., “Named entity recognition

for electronic health records: a comparison of

rule-based and machine learning approaches”,

arXiv preprint arXiv:1903.03985, 2019.

[33] A. Madry, A. Makelov, L. Schmidt, D. Tsipras,

and A. Vladu, “Towards deep learning models

resistant to adversarial attacks”, arXiv preprint

arXiv:1706.06083, 2017.

[34] T.-Y. Lin, P. Goyal, R. Girshick, K. He, and P.

Dollár, “Focal loss for dense object detection”,

In: Proc. of the IEEE international conference

on computer vision, pp. 2980–2988, 2017.

[35] G. Team et al., “Gemini: a family of highly

capable multimodal models”, arXiv preprint

arXiv:2312.11805, 2023.

[36] G. Team et al., “Gemma: Open models based on

gemini research and technology”, arXiv preprint

arXiv:2403.08295, 2024.

[37] Y. Chang et al., “A survey on evaluation of large

language models”, ACM Trans Intell Syst

Technol, Vol. 15, No. 3, pp. 1–45, 2024.

[38] F. Zhuang et al., “A comprehensive survey on

transfer learning”, Proceedings of the IEEE, Vol.

109, No. 1, pp. 43–76, 2020.

