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Abstract: Stance classification is used to understand the relationship between sentences so that the model can 

recognize the attitude of a response to a topic, where the attitudes are classified into three, namely supporting (for), 

neutral (observing), and opposing (against). Furthermore, stance classification could aid the automatic fake news 

detection. This research is specially made for Indonesian news titles. The proposed model used to recognize these 

news attitudes is Bidirectional Long Short-Term Memory (Bi-LSTM). Thus, to obtain the word representation vector, 

the pre-trained Bidirectional Encoder Representations from Transformers (BERT) embedding model from indoBERT 

is used to process words in Indonesian. In Bi-LSTM, each word representation will be processed twice in a forward 

and backward direction sequentially, so to get a vector representation of the sentence from the input, the output is taken 

from the results of the representation process of the last word in the forward direction process and the representation 

process results of the first word in the backward direction. Then the results of the two outputs are combined to serve 

as a sentence representation. Based on the test results on the Indonesian news dataset, the model for stance 

classification task was able to achieve an F1 score with an average of 78.30%, with an F1 score label for (supportive) 

of 73.10%, label observing (neutral) of 89.57%, and label against (against) by 72.23%. The performance is on par with 

the results of experiments with several Large Language Models currently available. 

Keywords: BERT embedding, Bi-LSTM, Indonesian news, Stance classification, Large language models. 

 

 

1. Introduction  

Fake news is a big problem, especially on how to 

check the validity of the data. Due to high number of 

data spread online in social media and internet, it is 

hard to check the validity of each news or information 

that spread in various social media. This makes a 

challenge on how to disseminate and get information 

very quickly to obtain the factual information [1]. 

One of major challenge is how to find the factual 

information since it is easy people to believe and 

spread unverified information or news. Although it 

does not pose a threat, new perceptions of the 

information received can spread and influence 

political and social conditions. Usually, the truth of 

information on social media can be checked by 

looking for related news from other sources [2, 3] to 

obtain the factual judgement of new are fake or not.   

One of the problems is how to find the correct 

information that we receive from the information 

source. Most of the user find the truth source by 

finding the number of news that has the same opinion   

or judgement. This problem leads a problem how to 

automatically analyse large information that spread 

on the internet. Because the amount of data is 

growing rapidly and rapidly, it is very difficult to use 

human power to do this. The best solution is to use 

some machine learning approaches give an advantage 

on how to process the information to find the truth of 

the news offered.  

The method offered to answer this problem is to 

use the stance classification proposed in this research. 

Utilizing stance classification for finding the 
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emerging information can easily identified [4].  

Stance classification [5, 6] shows the position of 

support or response from public opinion to the news 

using classification techniques based on data or 

attitudes toward a particular target [7]. The proposed 

approach to stance classification analysis is to 

categorize related news into three classes, namely for, 

observing, and against. The meaning of for class 

means supporting, observing class means neutral, and 

against class means opposing [8]. If the information 

we have gets a lot of responses from other news, it 

means that the news we have is most likely true. If 

the information we have gets a lot of observing 

responses from other news, it means that the truth 

cannot be known. Then if the information we have 

gets a lot of against responses from other news, it 

means that most likely the news we have is wrong or 

a hoax [9, 10].  

In this paper we propose a stance classification 

model [11, 12] by utilizing Transformer based 

encoding BERT and Bi LSTM as mentioned in [13, 

14]. The main reason we chose this model are BERT 

Embedding is a word embedding method [15] used to 

represent text in vector form and Bi-LSTM is a 

machine learning method used to create and train 

models so that the model can capture the sequential 

word order that show how the data context so it can 

be applied to other applications [16]. 

Several works of stance classification did not 

incorporate the contextual embedding of each news. 

This context will help the model to understand on 

how the similar from each news that take as an input 

in the model. This problem was solved by utilizing 

the BERT model as the embedding methodology to 

obtain the contextual vector from each word. 

Our works was divided into several section. 

Section 1 discuss about the introduction and research 

motivation of this study. Section 2 elaborates on the 

literature review from related state-of-the-art-

research. Section 3 defines about the proposed 

methodology and section 4 consists of the 

experiments that successfully conducted by the 

authors. Finally, section 5 contains the conclusion 

and further works of this manuscript. 

2. Literature review  

Stance classification is an essential task in natural 

language processing that aims to ascertain an author's 

stance (neutral, supporting, or against) on a particular 

subject. This section examines a variety of 

methodologies that have been explored in prior 

research, including the techniques employed, their 

objectives, and their relevance to our work on stance 

classification with BERT and BiLSTM, with a 

particular focus on Indonesian language. 

Nic [1] conducted a significant study that 

employed data and analysis on digital news 

consumption to comprehend trends in media 

engagement. Although this study offers valuable 

insights into news literacy and brand trust, it does not 

explicitly address stance classification; rather, it 

concentrates on consumption patterns. Our method is 

unique in that it directly addresses stance 

classification within Indonesian digital news.  

In the context of social media credibility analysis, 

the proposed method in [2] employed BERT 

embeddings and machine learning to detect stances. 

Their method emphasizes the significance of robust 

embeddings in comprehending stance, a technique 

that we also implement, but in the context of 

Indonesian social media, and in conjunction with 

BiLSTM to improve performance.  

Using image-text-concept features, [3] 

implemented multiview sentiment analysis in the 

context of Indonesian social media. Their multimodal 

approach illustrates the importance of integrating a 

variety of data types, which is distinct from our text-

focused approach but serves to emphasize the 

potential of advanced feature integration. Our current 

proposed research concentrates on the classification 

of stances using text data.  

Adversarial domain adaptation for stance 

detection was the primary focus of [4], which 

demonstrated the efficacy of transferring knowledge 

across domains. Although this contributes to our 

comprehension of domain adaptation, our 

methodology does not explicitly address domain 

shifts; rather, it seeks to enhance the accuracy of 

stance detection within a single domain. 

The research framework in [5] addressed the 

importance of a real-time tweet classification 

framework, although they did not provide any 

specifics. In addition, [6] employed a convolutional 

neural network to detect tweet stances and verify the 

veracity of rumors, surpassing baseline classifiers 

across a variety of event data with robust F1 scores. 

Our research distinguishes itself by employing 

BiLSTM and BERT embeddings to more effectively 

capture sequential dependencies in Indonesian 

datasets.  

Imron [7] implemented a combination of BERT, 

LSTM, and CNN in an additional investigation to 

implement aspect-based sentiment analysis of 

marketplace evaluations. This illustrates the 

practicality of hybrid models, which are consistent 

with our utilization of BiLSTM and BERT for stance 

classification. Our dataset, which is derived from  
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Table 1. Previous Approaches on Stance Classification 

Author(s) Techniques Used Objective Disadvatages 

Karande et al. 

[2] 

BERT embeddings, Machine Learning, 

Stance Detection 

Stance detection for social media 

credibility analysis 

High computational cost 

and potential for bias in 

training data 

Xu et al. [4] 

Adversarial Domain Adaptation, 

Stance Detection Stance detection 

Vulnerable to 

sophisticated adversarial 

attacks 

Chen et al. [6] 

Convolutional Neural Networks, 

Stance Detection, Rumor Verification 

Stance detection and rumor 

verification 

High dependency on 

labeled data and potential 

overfitting 

Imron et al. 

[7] 

BERT, LSTM, CNN, Aspect-Based 

Sentiment Analysis 

Aspect-based sentiment analysis 

of marketplace product reviews 

Requires extensive 

preprocessing and tuning 

Kotonya & 

Toni [9] 

Gradual Argumentation Evaluation, 

Stance Aggregation 

Stance aggregation in fake news 

detection 

May not handle 

contradictory evidence 

effectively 

Alsafad [10] 

Machine Learning, Stance 

Classification 

Stance classification for fake news 

detection 

Limited interpretability of 

machine learning models 

Du et al. [11] 

Neural Attention Networks, Stance 

Classification Stance classification 

Requires large annotated 

datasets for training 

Bar-Haim et 

al. [12] 

Stance Classification, Context-

Dependent Claims Analysis 

Stance classification of context-

dependent claims 

Difficulty in handling 

ambiguous contexts 

Kochkina et 

al. [13] 

Sequential Approach, Branch-LSTM, 

Rumor Stance Classification Rumor stance classification 

Complexity in capturing 

long-range dependencies 

Setiawan et 

al. [14] 

Sentence Embedding, LSTM, Stance 

Analysis 

Indonesian stance analysis of 

healthcare news 

Language-specific model 

limitations 

Gao et al. [15] 

Contrastive Learning, Sentence 

Embeddings Sentence embedding learning 

May require fine-tuning 

for specific tasks 

Wang & Yang 

[16] 

Attention-Based BiLSTM, Knowledge 

Distillation, BERT, Relation 

Classification Relation classification 

High computational cost 

and complexity in model 

training 

Derczynski et 

al. [17] 

Rumor Veracity Determination, 

Support Analysis 

RumourEval: Determining rumour 

veracity and support 

Handling diverse and 

noisy social media data 

Gorrell et 

al.[18] 

Rumor Veracity Determination, 

Support Analysis 

RumourEval 2019: Determining 

Rumour Veracity and Support 

Complexity in integrating 

multiple sources of 

information 

Li et al. [19] 

Content Analysis, User Credibility, 

Propagation Information Rumor detection on social media 

Dependency on the quality 

of user credibility data 

Peshterliev et 

al. [20] 

Elastic-net Linear Models, Text 

Classification, Named-Entity 

Recognition 

Text classification and named-

entity recognition 

May not capture complex 

patterns in data 

Dey et al. [21] 

Subjectivity Analysis, Sentiment 

Polarity, Two-Phase Approach Twitter stance detection 

High sensitivity to 

subjectivity and sentiment 

variations 

Küçük & Can 

[22] 

Dataset Annotation, Named Entity 

Recognition, Stance Detection Tweet dataset annotation 

Dataset may not be 

representative of broader 

Twitter data 

Heinisch [23] 

Stance Classification, Argument 

Search 

Stance classification in argument 

search 

Handling complex 

argument structures 

Ravichandiran 

[24] BERT, NLP Models 

Build and train state-of-the-art 

NLP models 

High computational cost 

and resource requirements 

Liu et al. [25] Roberta, BERT Pretraining BERT pre-training approach 

Resource-intensive 

training process 

Devlin et al. 

[26] 

BERT, Bidirectional Transformers, 

Pre-training 

Pre-training deep bidirectional 

transformers 

High computational cost 

and potential biases in 

training data 

Inoue [27] 

Multi-Sample Dropout, Accelerated 

Training, Generalization 

Accelerated training and better 

generalization 

Increased training 

complexity 

Putra et al. 

[28] Multimodal Models, Open Models 

Analyze stance on tweets related 

to COVID-19 vaccination, 

considering sentiment towards 

different aspects of the vaccine 

Handling multi-task 

learning complexities 
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Indonesian social media and news, offers a distinctive 

testing environment for these methodologies.  

The research in [8] underscored the significance 

of attention mechanisms by utilizing bidirectional 

GRU and multi-level attention for targeted aspect-

based sentiment analysis. These components are also 

essential to our methodology, which employs multi-

level attention mechanisms to improve classification 

accuracy.  

Kotonya and Toni [9] investigate the importance 

of stance detection in the identification of false news 

by employing a distinctive approach that applies 

gradual argumentation semantics to bipolar 

argumentation frameworks that are derived from 

stance detection.  

The authors in [10] expand upon this theme by 

investigating the function of machine learning in the 

classification of stances in the context of the detection 

of false news. This theme is also relevant to our 

examination of Indonesian social media and news, as 

these studies underscore the importance of stance 

detection in misinformation contexts.  

Du [11] proposed a new neural network-based 

model that integrates target-specific information into 

stance classification. Their attention mechanism is 

anticipated to identify the critical sections of the text 

that pertain to the target, which is consistent with our 

model's emphasis on context consideration and 

attention mechanisms in Indonesian datasets.  

Bar-Haim [12] introduced the Claim Stance 

Classification task and presented the first benchmark 

dataset for this task. Their methodology incorporates 

an innovative algorithm for contrast detection that 

surpasses numerous baselines and yields promising 

outcomes. Our methodology is based on similar 

foundational concepts, but it seeks to enhance the 

approach by incorporating BERT and BiLSTM for 

the Indonesian language context.  

Sequential approaches and sentence embeddings 

were investigated by [13, 14] for the classification of 

rumor and stance. These investigations demonstrate a 

variety of strategies that are used to inform our 

combined BERT and BiLSTM method. By 

emphasizing Indonesian datasets developed for this 

investigation, our methodologies are customized to 

the language's contextual and linguistic subtleties.  

In order to optimize model performance, 

knowledge distillation and contrastive learning are 

implemented [15, 16]. Our pursuit of efficient model 

training and robust embeddings is motivated by the 

techniques from these studies, which are specifically 

applied to our Indonesian dataset.  

Dale [29] and Cui [30] respectively addressed 

broader challenges in NLP and Chinese NLP, which 

inspires the context of our work within the broader 

language processing landscape. Nevertheless, our 

attention is focused on Indonesian data, which 

presents its own distinctive opportunities and 

challenges.  

The significance of exhaustive datasets and 

veracity analysis was underscored by [17, 31], who 

focused on large-scale corpus pre-training and rumor 

veracity determination. We have developed an 

exhaustive Indonesian dataset for stance detection 

purposes, and this is pertinent to our objectives. 

Gorrell [18] and Li [19] emphasized the ongoing 

challenges and advancements in rumor verification 

and stance analysis, building on the work of 

SemEval-2017. In the same vein, our research 

endeavors to improve stance classification techniques 

with a particular emphasis on the Indonesian context, 

thereby contributing to this discipline.  

In their investigations of named entity 

recognition, Gorinski [32] and Peshterliev [20] 

examined methods for text classification and 

Electronic Health Record (EHR) data, respectively. 

These methodologies enhance our stance 

classification framework by providing information 

on preprocessing and feature extraction techniques 

that are pertinent to our Indonesian dataset.  

Dey [21] developed a two-phase feature-driven 

model for Twitter stance detection that significantly 

outperformed the current state of the art. In addition 

to this, a research in [22] provided a Turkish tweet 

dataset that was annotated for named entity and 

stance information. This dataset demonstrates 

practical approaches to feature extraction and dataset 

construction that have an impact on our methodology.  

Heinisch [23], Madry [33], and Ravichandiran 

[24] analyzed the role of stance classification in 

argument search, adversarial assault resistance, and 

the training of state-of-the-art NLP models. Our 

implementation, notably in the Indonesian context, 

considers these insights into model robustness and 

training strategies. 

Liu [25] and Devlin [26] presented findings on 

BERT pretraining, which are fundamental to our 

utilization of BERT embeddings. Our research 

further improves the stance classification in 

Indonesian by incorporating BiLSTM into these 

embeddings. 

Inoue [27], Lin [34], G.Team [35, 36] discussed 

the improvement of dropout techniques and 

multimodal models, which contribute to our 

comprehension of model design and training. 

Nevertheless, our primary objective is to develop a 

text-based stance classification system that is 

specifically designed for Indonesian data.  

A research in [28] employed sentiment analysis 

and stance detection to investigate the sentiment 
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toward various aspects of the COVID-19 vaccine in 

tweets. Their methodology underscores the 

importance of rigorous evaluation in stance 

classification, which is essential to our investigation 

of Indonesian social media and news datasets. 

Chang [37] assessed large language models 

(LLMs), providing vital insights for researchers and 

developers who are involved in the development of 

LLMs. This is consistent with our emphasis on the 

utilization of sophisticated NLP techniques, 

including BERT and BiLSTM, for the purpose of 

stance classification in the Indonesian context.  

Zhuang et al. [38] presented a thorough analysis 

of various transfer learning methods, including 

inductive, transductive, and unsupervised approaches. 

Their findings demonstrated that transfer learning 

significantly improves model performance in 

scenarios with limited training data. 

Our research suggests a comprehensive stance 

classification model that capitalizes on sequence 

modeling capabilities and robust embeddings by 

combining the advantages of these previous methods 

and addressing identified deficiencies.  

In contrast to previous research, our approach 

incorporates BERT and BiLSTM to improve the 

accuracy of stance detection within Indonesian 

datasets that we have developed. Our strategy is 

designed to foster a more comprehensive 

comprehension of stance detection in digital 

communication and to attain performance on par with 

fine tuning LLMs. 

2.1 Deep learning  

Deep Learning is a machine learning approach 

that is based on the workings of the human brain or 

what is commonly called an artificial neural network. 

Models in deep learning have the ability to perform 

feature extraction from data automatically. So, using 

deep learning [33] can get better results. 

2.2 Bidirectional LSTM  

Bidirectional Long Short-Term Memory is the 

development of the LSTM model in which there are 

two LSTMs whose processes are opposite to each 

other, namely the direction of moving forward 

(forward) which processes from the first word to the 

last word and the direction of moving backward 

(backward) which processes from the last word to the 

last word. first. This model is very good for 

recognizing patterns in sentences because each word 

in the document is processed sequentially, and 

understands the word that is in the position before or 

after it. 

 

 
Figure. 1 LSTM Architecture 

 

 

 
Figure. 2 Forget Gate 

 

 

Figure 1 is the architecture of the LSTM, in the 

LSTM there are three gates whose job is to control 

information or data, namely input gate, forget gate, 

and output gate. The three gates referred to in the 

LSTM are layers with sigmoid functions, the output 

of the sigmoid function is a value of 0 or 1. It can be 

said that if the value generated from the sigmoid 

function is 0 then the data is not allowed to enter or 

is not included in the calculation, and vice versa. If 

the resulting value is 1, then the data is allowed to 

enter or can be included in the calculation. 

Figure 2 is the forget gate section which has the 

purpose of erasing information or passing 

information to the cell state section. 

 

ft = σ( Wf * xt + Uf * ht-1+bf ) (1) 

 

In formula 1, it can be seen the formula of the 

forget gate using sigmoid activation. There are values 

of W and U which are the weight of the forget gate. 

Then there is also the value of b which is the bias of 

the forget gate. Then x is the input value in iteration t 

and h is the output data value in the previous iteration. 
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Figure. 3 Input Gate and Cell State Candidate 

 

 
Figure. 4 Cell State 

 

 

Figure 3 is the input gate and cell state candidate, 

where the input gate has the purpose of deleting 

information or forwarding information to the cell 

state candidate section. Then the cell state candidate 

is a vector that will later be added to the cell state. 

Then both the results of the gate input and the cell 

state candidate are combined with the multiplication 

mathematical operation which will later be used to 

update the cell state. 

 

it = σ( Wi * xt+Ui * ht-1+bi ) (2) 

 

In formula 2 can be seen the formula of the input 

gate using sigmoid activation. There are values of W 

and U which are the weight of the input gate. Then 

there is also the value of b which is the bias of the 

input gate. Then x is the input value in iteration t and 

h is the output data value in the previous iteration. 

 
Figure. 5 Output Gate 

 

C̃t = tanh( WC̃ * xt + UC̃ * ht-1 + bC̃ ) (3) 

 

In formula 3, it can be seen the formula of the cell 

state candidate using tanh activation. There are W 

and U values which are the weight of the cell state 

candidate. Then there is also the value of b which is 

the bias of the cell state candidate. Then x is the input 

value in iteration t and h is the output data value in 

the previous iteration. 

Figure 4 is part of the cell state, after getting the 

results from the forget gate, and the multiplication 

between the input gate and the cell state candidate, 

the cell state can be updated. 

 

Ct = ft * Ct-1 + it * C̃t (4) 

 

In formula 4 can be seen the formula of the cell 

state. There is a forget gate value in iteration t 

multiplied by the cell state value in the previous 

iteration. Then there is the input gate value at iteration 

t multiplied by the cell state candidate value at 

iteration t. Then the two results are added to get the 

cell state value. 

Figure 5 is part of the output gate and the result 

of the LSTM unit. Furthermore, it is necessary to 

determine the results of the resulting output to be 

directed to the next unit, the resulting output will be 

based on the filtered cell state. 

 

ot = σ( Wo * xt + Uo * ht-1 + bo)  (5) 
 

In formula 5 can be seen the formula of the output 

gate using sigmoid activation. There are values of W 

and U which are the weights of the output gate. Then 

there is also the value of b which is the bias of the 

gate output. Then x is the input value in iteration t and 

h is the output data value in the previous iteration. 
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ht = ot * tanh (Ct) (6) 

 

In formula 6, it can be seen that the formula for 

the unit results, first of all, enter the cell state through 

the tanh layer to change the value between -1 to 1, 

then perform the multiplication operation of the gate 

output result with the cell state. 

2.3 BERT embedding  

BERT Embedding[24, 25] is a contextual word 

embedding that is based on the transformers 

architectural model. Contextual here means that 

BERT can understand the context of sentences[26]. 

For example, there are the sentences "He was bitten 

by a Python snake" and "Python is his favorite 

programming language", the word "Python" here has 

two different meanings, the first sentence refers to the 

type of snake, and the second sentence refers to the 

programming language. In BERT the vector value of 

the word "Python" will have a different value. 

In BERT, it is necessary to change the input into 

three embeddings first, namely token embedding, 

segment embedding, and position embedding. Token 

embedding is a tokenization process on input. 

Tokenization in BERT is done by adding a “[CLS]” 

token at the beginning of a sentence and a “[SEP]” 

token at the separator between sentences. Then To 

overcome the problem of out-of-vocabulary (OOV), 

BERT performs word splitting into sub-words on 

words that are not found in the vocabulary list. For 

example, there is the word "work" that is not found in 

the vocabulary list, then the word "work" will be split 

into "be" and "##kerja"(##ing), the "#" sign indicates 

that the token of this word is related to the previous 

token. Figure 6 shows the input from BERT. 

Segment embedding is used to distinguish tokens 

from one sentence to another. Apart from the “[SEP]” 

token, additional markers need to be added to 

distinguish between two or more sentences. Position 

embedding is used to determine the order of tokens 

or words because in BERT the data is not processed 

sequentially, so position embedding is needed to 

arrange the output sequence according to the input. 

 

 

 
Figure. 6 BERT Embedding Input 

3. Stance classification  

3.1 System architecture  

The implementation process of this research 

starts from collecting data from social media and 

Indonesian news on the internet. Then the data 

cleaning process is carried out on the data that has 

been collected. Then the process of taking additional 

features that may have an effect on increasing 

classification accuracy is carried out. Then the word 

vector formation process is carried out using BERT. 

Then a classifier model is created to perform stance 

classification. Figure 7 describes the flow of this 

research. 

In Figure 8 you can see the process that the topic 

sentence and response sentence go through to get a 

label for the stance classification. The sentence is first 

tokenized, resulting in an array of words contained in 

the sentence plus tokens that can be processed by 

BERT embedding. Then the array of words or tokens 

is processed with BERT embedding, so that each 

word or token becomes a vector with dimensions 

according to the number of hidden states in BERT 

embedding. The resulting number of dimensions is 

usually 768.  

 

 

 
Figure. 7 System Architecture 
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Figure. 8 Flow Pipeline 

 

 

Then the token or word vector is processed by Bi-

LSTM to obtain a sentence vector with dimensions 

according to the number of hidden states in Bi-LSTM. 

For example, the dimension of the sentence vector is 

300, then it is combined with additional features. For 

example, the dimension of the additional features is 

3, then the resulting dimension of the combination is 

303. Then the combination of sentence vectors with 

additional features is processed by a dense layer. For 

example, if the dimensions produced by the dense 

layer are 64, then the two resulting dense layers of 

sentences that have been processed are combined.  

The dimension of the vector obtained from the 

merger is 128. Then, from the merged vector, 

processing is carried out on a dense layer with 

dimension 3, namely according to the number of 

labels in the stance classification and softmax 

activation to obtain the probability value of the stance 

classification label. From this probability value, the 

highest value can be taken to become the predicted 

label. For example, the resulting vector obtained is 

[0.2, 0.5, 0.3] and index 0 represents the "For" label, 

index 1 represents the "Observing" label, and index 2 

represents the "Against" label. So, with the vector 

results obtained, the label obtained is the label 

"Observing". 

3.2 Dataset  

Data collection is done manually on social media. 

The data sought is the title of the article or news, 

claims or responses, the number of likes and 

comments. The following in Table 2, is one example 

of a pair of article titles, claims, along with the stance 

of claims. 

Each claim contains several article titles with at 

least one “for”, “observing”, and “against” stance 

each. There are two datasets used in this research, a 

dataset with a total of 3378 and a dataset of a total of 

3941. Statistics from the dataset can be seen in Table 

3 and Table 4. 
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Table 2. Claims and Stance Example 

Claim Article Title Stance 

 Traditional 

Medicine Is 

Not 

Necessarily 

Safe  

(Obat 

Tradisional 

Belum Tentu 

Aman) 

 Herbal Medicines Can 

Also Be Dangerous, 

These Are the 

Characteristics (Obat 

Herbal Juga Bisa 

Berbahaya, Seperti Ini 

Ciri-cirinya) 

For 

Are herbal medicines 

safe for users? 

(Apakah Obat Herbal 

Aman Bagi 

Penggunanya?) 

Observing 

 Traditional herbal 

medicines have no 

danger in their use  

(Obat Herbal 

Tradisional Tidak 

Memiliki Bahaya Dalam 

Penggunaannya) 

Against 

 
Table 3. Statistic Dataset 1 

Stance Amount 

For 1126 

Observing 1126 

Against 1126 

Total 3378 

 

Table 4. Statistic Dataset 2 

Stance Amount 

For 1391 

Observing 1275 

Against 1275 

Total 3941 

 

3.3 Data cleaning  

Data cleaning is done by removing symbols in the 

claim text and article titles that can interfere with the 

classification results. In this process, the removal of 

punctuation marks such as periods or commas is not 

done, because removing punctuation marks can affect 

BERT in understanding the context of the sentence. 

In Table 5, it can be seen that given input 

sentences that have symbols or punctuation marks 

produce output that does not have sentence symbols 

or punctuation marks. This can be done by swapping 

symbols or punctuation with empty text. In this 

method, we use the BERT method, which can be 

done with commas to understand the context better. 

Then, to delete data that has a null value, you can do 

this by providing a condition on the index that deletes 

the data if the condition is met. 

Table 5. Statistic Dataset 1 

Input Output 

Viral!! Liverpool's 

jersey beats MU. 

(Viral!! Jersey 

Liverpool Bantai MU) 

Viral Liverpool  jersey 

beats MU 

(Viral Jersey Liverpool 

Bantai MU) 

[Hoax] Ice Water 

Causes Heart Disease 

([Hoax] Air Es 

Sebabkan Sakit 

Jantung) 

Hoax Ice Water Causes 

Heart Disease 

(Hoax Air Es Sebabkan 

Sakit Jantung) 

Hoax: Instant Noodles 

+ Chocolate 

(Hoax: Mie Instan + 

Coklat) 

Chocolate Instant Noodle 

Hoax 

(Hoax Mie Instan Coklat) 

 
Table 6. Example of Stemming Data Input and Output 

Input Output 

Farmers work plowing 

fields 

(petani bekerja 

membajak sawah) 

Farmers work plowing 

rice fields 

(petani kerja bajak sawah) 

Budi went to play in the 

park  

(budi pergi bermain di 

taman) 

Budi went to play in the 

park 

(budi pergi main di taman) 

mother went shopping 

at the market  

(ibu pergi berbelanja ke 

pasar) 

mother went shopping at 

the market  

(ibu pergi belanja ke 

pasar) 

 
Table 7. Example of Tokenization Input and Output 

Input Output 

Viral Liverpools jersey 

beats MU. 

(Viral Jersey Liverpool 

Bantai MU) 

[[CLS], Viral, Jersey, 

Liverpool, Bantai, MU, 

[SEP]] 

Ice Water Hoax Causes 

Heart Disease 

(Hoax Air Es Sebabkan 

Sakit Jantung) 

[[CLS], Hoax, Air, Es, 

Sebabkan, Sakit, Jantung, 

[SEP]] 

Chocolate Instant 

Noodle Hoax 

(Hoax Mie Instan 

Coklat) 

[[CLS], Hoax, Mie, Instan, 

Coklat, [SEP]] 

 

In Table 6, the sentence input and sentence output 

results obtained after the stemming process is 

displayed, each word in the sentence becomes a base 

word. To carry out the stemming process for 

Indonesian, you can use the Python library from 

Sastrawi. In the literary library, you can import 

"StemmerFactory", then call the stem function with 

sentence input. Then the function will return the 

output results from the stemming process. 

Table 7 displays the sentence input and output 

results from the tokenization process. In the output 
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results there are additional tokens “[CLS]” at the 

beginning and “[SEP]” at the end. In BERT 

embedding the token “[CLS]” is used to indicate the 

initial position of the given input, while the token 

“[SEP]” is used to separate sentences. If there are two 

or more sentences input, the token “[SEP]” is useful 

for indicating the end of each sentence. 

Then, after the tokenization process has been 

carried out, you can pad the list of tokens. This causes 

the list of tokens to have the same list length and can 

be processed by the neural network. In BERT 

embedding you can add the token “[PAD]” at the end 

of the list to indicate that the token is padding. The 

following is an example of the input and output 

results from the padding process. 

In Table 8 you can see the input tokens you have 

and the output results from the padding process. By 

carrying out the padding process, we get the same list 

length, in this case the length of the list is 8. Then, 

after the padding process is carried out, the token can 

be converted into an ID token. The ID token is a 

number to identify the token. This process can be 

done using the function provided by BERT 

embedding. The following is an example of the input 

and output results from the process of converting a 

token into an ID token. 

In Table 9, the input token you have produces an 

output list of numbers from the process of converting 

it into an ID token. Then from this list of numbers it 

can be input into the pretrained model from BERT 

embedding to get a representation value for the word 

or token which can later be processed by the neural 

network. Before inputting the list of ID tokens into 

the pretrained model, you need to create a list of 

attention masks first. The attention mask list here 

aims to show which IDs need to be processed, the 

values of the attention masks are 0 and 1.  

It can be said that if the ID token has a value of 0 

then the value of the attention mask is 0. Then if the 

value of the ID token has a value not 0 then the value 

of the attention mask is 1. After creating the attention 

mask list you can input the two lists into the BERT 

pretrained model embedding. The following is an 

example of the input and output results from the 

process of getting a token or word representation. 

In Table 10, it can be seen that the ID token and 

attention mask input produces an output 

representation of the word or sentence. The length of 

the list of representations obtained depends on the 

number of hidden layers in the pretrained model used. 

If the number of hidden layers used is 768 then the 

length of the representation list obtained is also 768. 

Then the output results obtained from BERT 

embedding are of two types.  

 

Table 8. Example of Tokenization Input and Output 

Input Output 

Viral Liverpool Jersey 

beats MU 

(Viral Jersey Liverpool 

Bantai MU) 

[[CLS], Viral, Jersey, 

Liverpool, Bantai, MU, 

[SEP]] 

Ice Water Hoax Causes 

Heart Disease 

(Hoax Air Es Sebabkan 

Sakit Jantung) 

[[CLS], Hoax, Air, Es, 

Sebabkan, Sakit, Jantung, 

[SEP]] 

Chocolate Instant 

Noodle Hoax 

(Hoax Mie Instan 

Coklat) 

[[CLS], Hoax, Mie, Instan, 

Coklat, [SEP]] 

 

 
Table 9. Example of Input and Output for Changing ID 

Tokens 

Input Output 

[[CLS], Viral, Jersey, 

Liverpool, Bantai, MU, 

[SEP], [PAD]] 

[2, 19946, 11690, 9603, 

1345, 1643, 3, 0] 

[[CLS], Hoax, Air, Es, 

Sebabkan, Sakit, 

Jantung, [SEP]] 

[2, 18442, 514, 1660, 

21193, 1252, 2937, 3] 

[[CLS], Hoax, Mie, 

Instan, Coklat, [SEP], 

[PAD], [PAD]] 

[2, 18442, 7703, 8189, 

5747, 3, 0, 0] 

 

 
Table 10. Example of Input and Output Getting Word 

Representation 

Input Output 

Token ID : [2, 19946, 

11690, 9603, 1345, 

1643, 3, 0] 

Attention Mask : [1, 1, 

1, 1, 1, 1, 1, 0] 

[0.4812, 1.3011, 0.3649, 

… , 0.6199] 

Token ID : [2, 18442, 

514, 1660, 21193, 1252, 

2937, 3] 

Attention Mask : [1, 1, 

1, 1, 1, 1, 1, 1] 

[0.5493, 0.6933, 0.3582, 

… , 0.3963] 

Token ID : [2, 18442, 

7703, 8189, 5747, 3, 0, 

0] 

Attention Mask : [1, 1, 

1, 1, 1, 1, 0, 0] 

[0.1353, 0.8582, 0.5332, 

… , 0.5948] 

 

The first output is called sequence output and the 

second output is called pooled output. The output 

sequence is the representation of each token or word 

entered. Pooled output is the result of the 

representation of all the tokens or words entered, it 

can be said to be the result of the representation of the  

sentence. The following is an example of 

sequence output and pooled output. 
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Table 11. Example of Output Sequence Results 

Word Word Vector 

I (Saya) [0.34, 0.42, 0.33] 

take (Minum) [0.44, 0.53, 0.12] 

medicine (Obat) [0.65, 0.22, 0.55] 

 

 
Table 12. Example of Pooled Output Results 

Sentence Sentence Vector 

I take medicine 

(Saya minum obat) 

[0.29, 0.32, 0.54] 

I take medicine 

(Budi mengikuti kelas) 

[0.45, 0.64, 0.22] 

Adi goes to the mall 

(Adi pergi ke mall) 

[0.54, 0.16, 0.46] 

 

 
Table 13. Example of Normalized Input and Output 

Sentence Sentence Vector 

I take medicine 

(Saya minum obat) 

[0.29, 0.32, 0.54] 

Budi attends class  

(Budi mengikuti kelas) 

[0.45, 0.64, 0.22] 

Adi goes to the mall 

(Adi pergi ke mall) 

[0.54, 0.16, 0.46] 

 

 
Table 14. Examples of Negation Word Input and Output 

Input Output 

three year research from Italy 

confirms that e-cigarettes are not 

dangerous 

(riset tiga tahun dari Italia 

pastikan rokok elektrik tidak 

bahaya) 

1 

Our focus is on BPJS policies 

that are detrimental to society 

(fokus kami soal kebijakan BPJS 

yang merugikan masyarakat) 

0 

Benefits of drinking lemon 

water every morning for the 

body 

(manfaat meminum air lemon 

setiap pagi untuk tubuh) 

0 

 

In Table 11, an example of the output sequence 

results from tokens or words with a total of 3 hidden 

layers in BERT embedding is displayed. The greater 

the number of hidden layers of BERT embedding, the 

greater the word representation value obtained. If the 

input from BERT embedding is a sentence with 5 

words, then the number of output results produced is 

5-word vector outputs and 1 sentence vector output. 

Then the output result for the “[PAD]” token will 

have a value of 0. 

In Table 12 is displayed an example of the pooled 

output results from sentences with 3 hidden layers in 

BERT embedding. The pooled output value is the 

output result of the “[CLS]” token. From the results 

of this word or sentence representation, the neural 

network will later process it to carry out the stance 

classification task. Then the neural network will 

produce an output label from the existing list of labels. 

Extract features are the retrieval of additional 

features which are expected to help determine 

classification or increase the accuracy of the model to 

be created. From the existing dataset, the fields that 

could possibly be used are the number of likes and 

comments on the topic, and the number of likes and 

comments on the responses. Then you can normalize 

the values in the like and comment fields, so that the 

values do not have a large distance between them. In 

this case, normalization is carried out, so that the 

values for the number of likes and comments have a 

value range between 0 and 1. The following is an 

example of the input and output results from the 

normalization process. 

In Table 13, it can be seen that the input list of 

numbers carried out by the normalization process 

produces an output with values in the list of numbers 

ranging from 0 to 1. Then another feature that can be 

added is a status that shows the sentence on the topic 

or response has the word negation. The way to 

determine whether a sentence in the topic or response 

has a negation word, it is necessary to make a list of 

words that are negation words. The list of negation 

words used are the words "not", "not", "don't", "not", 

"not yet", "hoax", and "hoax".  

Then, after obtaining a list of negation words, 

fields can be added to accommodate the values from 

checking the topic sentence and response. If the topic 

sentence or response contains one of the words on the 

list of negation words, it can be given a value of 1. 

Then, if no negation word is found, it is given a value 

of 0. The following is an example of the input and 

output results from the process of checking negation 

words. 

In Table 14, the input sentences and output results 

from the process of checking negation words from the 

list of negation words created is shown. Then, from 

the existing features, additional features can be 

combined with the main features (representation of 

topic sentences and responses). After combining the 

features, the process of dividing train data, validation 

data and test data can be carried out. Train data is data 

that will be used for the model training process, 

validation data is data that will be used to validate the 

model during the training process, and test data is 

data that is used to test the model when the training 

process is complete. 
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Table 15. Examples of Sequence Output Results 

Word Vector 

Saya (I) [0.34, 0.21, 0.46] 

Minum (Took) [0.23, 0.56, 0.77] 

Obat (Medicine) [0.31, 0.54, 0.55] 

Batuk (Cough) [0.32, 0.54, 0.15] 

 

 
Table 16. Examples of Pooled Output Results 

Word Vector 

Saya (I) [0.34, 0.21, 0.46] 

Minum (Took) [0.23, 0.56, 0.77] 

Obat (Medicine) [0.31, 0.54, 0.55] 

Batuk (Cough) [0.32, 0.54, 0.15] 

 

 

3.4 Additional feature retrieval  

The addition of this feature aims to help the 

classifier model in classifying data. If the feature you 

want to add is in the form of text or string data, it is 

necessary to map the data into numbers. However, if 

the added feature is in the form of numbers, the data 

normalization can be done first. Another feature that 

can be added besides the main feature is the number 

of likes and comments. 

3.5 Formation of word vector  

The formation of this word vector aims to convert 

text data into numeric data so that it can be processed 

by the neural network. In this process, it is necessary 

to change the claim text and article title text into three 

embeddings first, so that they can be processed by 

BERT. In this research, Indonesian pre-trained BERT 

embedding from indoBERT is used. There are two 

outputs from BERT, namely sequence output and 

pooled output. Sequence output is the result of the 

embedding of each word contained in the sentence, 

while the pooled output is the result of the embedding 

of the sentence. Examples of the results of sequence 

output and pooled output can be seen in Table 15 and 

Table 16. 

3.6 Model classifier  

After getting the features that will be processed, 

then the process of making and training[27, 34] the 

model can be done. The parameter settings used are 

the pre-trained BERT layer, the Bi-LSTM layer with 

the input dimensions according to the embedding 

dimensions, namely 768, the linear layer with the 

input dimensions 1536, and the output dimension 3. 

The model is also formed with the Adam optimizer 

with a learning rate of 0.00003. The algorithm is 

displayed as Algorithm 1 

 

Algorithm 1 Training Algorithm 

01: FUNCTION train_epoch(model, data_loader, 

loss_fn, optimizer, scheduler, n_examples): 

02:    SET model to training mode 

03:    INITIALIZE empty list for  losses 

04:    INITIALIZE correct_predictions  to 0 

05:  FOR each batch in data_loader: 

06:      GET input_ids from batch 

07:      GET attention_mask from  

 batch 

08:      GET stance (labels) from  

  batch 

09:    PASS input_ids and   

 attention_mask    through 

model to get   outputs 

10:       GET predicted classes (  

 preds) from outputs 

11:     CALCULATE loss using    

 loss_fn with outputs   

 and stance 

12:        ADD to correct_predictions   the 

number of correct   preds 

13:        APPEND loss value to losses   list 

14:       BACKPROPAGATE the loss 

15:      CLIP gradients of model  

 parameters to    max_norm 

of 1.0 

16:    PERFORM an optimization  

 step 

17:     UPDATE the learning rate  

 with scheduler 

18:       RESET gradients of   

 optimizer 

19:   PRINT "Correct Predictions: " + 

correct_predictions 

20:RETURN correct_predictions divided by 

n_examples, mean of losses list 

 

The train_epoch function is specifically built to 

manage a single epoch of training for a machine 

learning model. The model requires various 

parameters, including the model itself, a data loader 

to supply the training data, a loss function to evaluate 

prediction errors, an optimizer to update the model's 

parameters, a scheduler to modify the learning rate, 

and the number of examples in the training set. 

The function initiates the training mode by using 

model.train(), which activates training-specific 

functionalities like dropout. Subsequently, it 

initializes a empty list to store loss values and a 
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counter to keep track of accurate predictions. 

Calculating the length of the data loader provides 

insight into the size of the dataset being processed 

during this epoch. 

Subsequently, the function proceeds to iterate 

through each batch of data supplied by the data loader. 

For every batch of data, it retrieves the input_ids, 

attention_mask, and stance (the labels). The inputs 

are used as input to the model in order to produce 

output logits. The function subsequently identifies 

the predicting classes by selecting the highest value 

along the output dimension. The loss is computed by 

applying the given loss function, which involves 

comparing the model's outputs with the actual labels. 

The loss is added to the list of losses, and the accuracy 

is updated by comparing the anticipated classes with 

the actual labels. 

After calculating the loss, the function carries out 

backpropagation to determine the gradients of the 

loss in relation to the parameters of the model. 

Subsequently, the gradients are cliped to a maximum 

norm of 1.0 in order to mitigate the issue of exploding 

gradients, which has the potential to disrupt the 

training process. The optimizer executes a process to 

modify the parameters of the model, while the 

scheduler adjusts the learning rate. The gradients of 

the optimizer are set to zero in order to be ready for 

the following iteration. 

Upon completing the processing of all batches, 

the function outputs the total count of accurate 

predictions. Subsequently, it provides the accuracy, 

which is computed by dividing the number of right 

predictions by the total number of examples, as well 

as the average loss for the period. This technique 

guarantees that the model is trained on the complete 

dataset, with its parameters adjusted to minimize the 

prediction error, while also avoiding problems such 

as exploding gradients and dynamically adapting the 

learning rate. 

3.7 Performance evaluation  

Performance evaluation is carried out based on 

the F1 score of each stance label and the average F1 

macro. 

 

Precision = TP / (TP+FP) (7) 

 

Precision states how accurate the algorithm or 

model is to how many positive predictions are true 

positive (TP) from all positive predicted data 

(TP+FP). 

 

Recall = TP / (TP+FN) (8) 

 

Recall states how many positive predictions are 

true positive (TP) from all truly positive data 

(TP+FN). 

 

F1 Score = 
2(Precision . Recall )/(Precision+Recall)    (9) 

 

F1 score is the balance value between precision 

and recall. In this research, the classification_report 

function from sklearn.metrics is used to get the 

performance of the model. 

4. Experiments  

This section presents the findings of various 

experiments conducted on different machine learning 

models. The analysis begins with the results from the 

first and second trials (Tables 17 & 18). Subsequently, 

this section examines how varying the batch size 

impacts the outcomes in both trials (Tables 19 & 20). 

Next, the influence of stemming on the BERT 

model's performance in trials one and two is explored 

(Tables 21 & 22). This section then assesses the 

effectiveness of Fasttext on the model's performance 

in both trials (Tables 23 & 24). 

Table 25 summarizes the test results obtained 

using different word embedding types. Table 26 

presents the outcomes of employing CNN, LSTM, 

and Bi-LSTM classifier methods while utilizing 

Fasttext Cc.Id.300.Bin and Wiki.Id.Bin word 

embeddings. 

The following tables (Tables 27-31) showcase the 

results of trials conducted with various models, 

including Gemini-1.0-pro-001 and RoBERTa, 

alongside comparisons to fine-tuning approaches 

implemented with PyTorch, Gemma, and Gemini. 

Finally, Table 22 provides a comprehensive 

comparison of F1 scores achieved across all the 

methods explored in this section. 

The distribution of the dataset used in all these 

trials is 56% train data, 14% validation data, and 30% 

test data. The first trial was carried out on the first 

dataset by changing the dropout value to see how 

much change in the accuracy results was obtained. 

test results can be seen in Table 7. 

In Table 17, it can be seen that the accuracy 

results are quite good. Then a trial was carried out on 

the second dataset with a change in the dropout value 

as well. test results can be seen in Table 8. 

In Table 8 it can be seen that the accuracy results 

are quite good and there is a slight increase in 

accuracy compared to Table 7. Then a trial was 

carried out on the first dataset by changing the batch 

size value to see how big the change in the accuracy 

results was, the test results can be seen in table 9. 
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Table 17. BERT Dataset FIRST Trial Results 

Metho

d 

Dro

pou

t 

F1 For F1 

Observ

ing 

F1 

Against 

F1 

Macro 

Dense 

Layer 

0.2 0.6765 0.8800 0.6423 0.7329 

0.3 0.6921 0.8846 0.6488 0.7418 

0.5 0.6706 0.8886 0.6322 0.7305 

Bi-

LSTM 

0.2 0.6924 0.8995 0.6673 0.7531 

0.3 0.7228 0.8865 0.6945 0.7746 

0.5 0.6977 0.8917 0.6628 0.7507 

CNN 0.2 0.6833 0.9104 0.6950 0.7629 

0.3 0.6758 0.8938 0.6498 0.7398 

0.5 0.6941 0.8959 0.6610 0.7503 

 

 
Table 18. BERT Dataset SECOND Trial Results 

Metho

d 

Dro

pou

t 

F1 For F1 

Observ

ing 

F1 

Against 

F1 

Macro 

Dense 

Layer 

 

0.2 0.6952 0.8626 0.6843 0.7474 

0.3 0.6951 0.8782 0.6595 0.7443 

0.5 0.7103 0.8784 0.6808 0.7565 

Bi-

LSTM 

 

0.2 0.7310 0.8957 0.7223 0.7830 

0.3 0.7041 0.9010 0.7102 0.7718 

0.5 0.7150 0.8926 0.7137 0.7738 

CNN 

 

0.2 0.7125 0.8672 0.6863 0.7553 

0.3 0.7062 0.8926 0.6859 0.7616 

0.5 0.7107 0.8914 0.6902 0.7641 

 

 
Table 19. BATCH SIZE BERT Dataset FIRST Trial 

Results 

Metho

d 

BAT

CH 

SIZ

E 

F1 FOR 

F1 

Observ

ing 

F1 

Against 

F1 

Macro 

Dense 

Layer 

16 0.6978 0.8839 0.6389 0.7402 

32 0.6990 0.8909 0.6510 0.7470 

64 0.6893 0.9041 0.6680 0.7538 

Bi-

LSTM 

16 0.6902 0.9057 0.6862 0.7607 

32 0.6911 0.9125 0.6636 0.7557 

64 0.7153 0.8981 0.6828 0.7654 

CNN 

16 0.6969 0.9112 0.6603 0.7561 

32 0.7004 0.8895 0.6709 0.7536 

64 0.6931 0.9175 0.6799 0.7635 

 

 

In Table 19, it can be seen that the accuracy 

results obtained have a slight decrease compared to 

Table 7. Then a trial was carried out on the second 

dataset with changes in the batch size value as well, 

the test results can be seen in table 20. 

Table 20. BATCH SIZE BERT Dataset SECOND Trial 

Results 

Metho

d 

Batc

h 

Size 

F1 

For 

F1 

Observin

g 

F1 

Agains

t 

F1 

Macr

o 

Dense 

Layer 

16 
0.704

0 

0.8713 0.6911 0.7555 

32 
0.706

8 

0.8963 0.6825 0.7619 

64 
0.719

1 

0.8831 0.6701 0.7574 

Bi-

LSTM 

16 
0.699

2 

0.8993 0.6842 0.7609 

32 
0.710

9 

0.9012 0.7168 0.7763 

64 
0.715

3 

0.8910 0.7199 0.7754 

CNN 

16 
0.708

2 

0.8964 0.7016 0.7687 

32 
0.713

3 

0.8826 0.6964 0.7641 

64 
0.718

1 

0.8908 0.7037 0.7709 

 
Table 21. Stemming BERT Dataset FIRST Trial Results 

Method F1 FOR 
F1 

Observing 

F1 

Against 

F1 

Macro 

Dense 

 
0.6535 0.8353 0.6309 0.7066 

Bi-

LSTM 

 

0.6400 0.8336 0.6409 0.7048 

CNN 0.6620 0.8524 0.6535 0.7226 

 
Table 22. Stemming BERT Dataset SECOND Trial 

Results 

Method F1 FOR 
F1 

Observing 

F1 

Against 

F1 

Macro 

Dense 

 

0.6348 0.7785 0.6265 0.6799 

Bi-

LSTM 

 

0.6846 0.8355 0.6751 0.7317 

CNN 0.6705 0.8362 0.6424 0.7164 

 

In Table 20, it can be seen that the accuracy 

results obtained slightly decreased compared to Table 

8. Then a trial was conducted on the first dataset by 

stemming with the literary python library on the 

claim text and the article title text, the test results can 

be seen in Table 11. 

It can be seen in Table 21, there is a decrease in 

accuracy compared to Table 16 or Table 19 which 

does not stem the sentence. Then a trial was 

conducted on the second dataset by stemming the 

claim text and the article title text, the test results can 

be seen in Table 22. 

It can be seen in Table 22, there is a decrease in 

accuracy compared to Table 18 or Table 20 which 

does not stem the sentence. Then a trial was carried 
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out using word embedding fastText to see a 

comparison of the accuracy obtained. In this trial, the 

Indonesian pre-trained cc.id.300.bin provided by 

fastText was used, the test results can be seen in 

Table 23. 

As seen in Table 23, there is a significant decrease 

in accuracy compared to Table 17. Then a trial was 

conducted using the word embedding fastText on the 

second dataset, the test results can be seen in Table 

24. 

As seen in Table 24, there is an increase in 

accuracy when compared to Table 23. However, the 

comparison is still quite far when compared to Table 

18. From all trials, it can be seen that the accuracy of 

F1 observing always has the highest value in all 

methods. 

In Table 25 as described in the research paper 

'Stance Classification Post Health in the Media Social 

With FastText Embedding and Deep Learning,' it can 

be seen that there is a difference in accuracy of 1.1% 

between the average F1 macro model with 

Word2Vec (52.7%) and the model with fastText 

(53.8%). The most accurate use of Word2Vec with 

LSTM only reached 55% and the most accurate use 

of fastText was obtained with CNN with F1 macro 

55.4%. 

As seen in Table 26, tested how well a classifier 

could perform using only basic summaries of 

sentences, instead of adding extra details. The CNN 

method achieved the best overall accuracy (with a 

score of 55.4%) when it used summaries from the 

'cc.id.bin' dataset. Summaries from the 'wiki.id.bin' 

dataset also produced similar results. 

 

 
Table 23. Fasttext BERT Dataset FIRST Trial Results 

Method 
F1 

FOR 

F1 

Observing 

F1 

Against 

F1 

Macro 

Dense 

 

0.3134 0.5945 0.4575 0.4551 

Bi-

LSTM 

 

0.4296 0.6436 0.5268 0.5333 

CNN 0.4579 0.6323 0.5154 0.5352 

 

 
Table 24. Fasttext BERT Dataset SECOND Trial Results 

Method 
F1 

FOR 

F1 

Observing 

F1 

Against 

F1 

Macro 

Dense 

 

0.5327 0.6093 0.2712 0.4711 

Bi-

LSTM 

 

0.5564 0.6928 0.4287 0.5593 

CNN 0.5258 0.7217 0.4749 0.5741 

 

Table 25. Test Results of Word Embedding Types 

Approach 
F1 

FOR 

F1 

Observing 

F1 

Against 

F1 

Macro 

Word2Vec 

+ CNN 

0.454 0.654 0.488 0.532 

Word2Vec 

+ LSTM 

0.503 0.659 0.488 0.550 

Word2Vec 

+ BiLSTM 

0.453 0.624 0.424 0.500 

Average 0.470 0.646 0.467 0.527 

fastText + 

CNN 

0.495 0.824 0.345 0.554 

fastText + 

LSTM 

0.492 0.801 0.294 0.529 

fastText + 

Bi- 

LSTM 

0.441 0.817 0.391 0.530 

Average 0.476 0.814 0.343 0.538 

 

 
Table 26. Test Results Of CNN, LSTM, And Bi-LSTM 

Classifier Methods, With Fasttext Cc.Id.300.Bin And 

Wiki.Id.Bin 

Classifier 
F1 

FOR 

F1 

Observing 

F1 

Against 

F1 

Macro 

cc.id.300.bin 

CNN  0.495  0.824  0.345  0.554  

LSTM  0.492  0.801  0.294  0.529  

Bi-LSTM  0.441  0.817  0.391  0.530  

wiki.id.bin 

CNN  0.512  0.807  0.345  0.553  

LSTM  0.445  0.827  0.350  0.540  

Bi-LSTM  0.496  0.834  0.315  0.547  

 

 

Table 27 shows the results of a gemini-1.0-pro-

001 model that sorts data into categories. It indicates 

how many items were classified correctly and breaks 

down performance for two different categories 

("against" and "for"). The overall accuracy is 

77%[35]. 

Table 28 evaluates the performance of a machine 

learning RoBERTa model on classification tasks. 

This information can be found on Hugging Face: 

https://huggingface.co/cahya/roberta-base-

indonesian-522M. It analyzes the model's ability to 

categorize data points into predefined classes. For 

instance, it can classify sentiment as positive ("for") 

or negative ("against"). The included metrics, such as 

precision (37% for "against") and recall (78% for 

"observation"), assess how accurately the model 

assigns data points to the correct categories. 

https://huggingface.co/cahya/roberta-base-indonesian-522M
https://huggingface.co/cahya/roberta-base-indonesian-522M


Received:  June 21, 2024.     Revised: July 15, 2024.                                                                                                        532 

International Journal of Intelligent Engineering and Systems, Vol.17, No.5, 2024           DOI: 10.22266/ijies2024.1031.41 

 

Table 27. Trials with gemini-1.0-pro-001 

Class Precision Recall 
F1 

Score 
Support 

against 0.75 0.79 0.77 1116 

for 0.84 0.53 0.65 1111 

observing 0.71 0.93 0.81 1112 

accuracy - - 0.75 3339 

macro 

avg 
0.77 0.75 0.74 3339 

weighted 

avg 
0.74 0.75 0.74 3339 

 
Table 28. Trials with RoBERTa 

Class Precision Recall 
F1-

Score 
Support 

against 0.37 0.46 0.41 181 

for 0.55 0.48 0.51 257 

observing 0.83 0.78 0.80 238 

Accuracy - - 0.58 676 

Macro Avg 0.58 0.57 0.58 676 

Weighted 

Avg 

0.60 0.58 0.59 676 

 
Table 29. Comparison with Transfer Learning with Bert 

Class Precision Recall 
F1-

Score 
Support 

against 0.63 0.56 0.59 225 

for 0.63 0.69 0.66 226 

observing 0.88 0.88 0.88 225 

Accuracy - - 0.71 676 

Macro Avg 0.71 0.71 0.71 676 

Weighted 

Avg 

0.71 0.71 0.71 676 

 

Table 29 shows the effectiveness of a Transfer 

Learning with Bert on a classification task. It is based 

on Hugging Face: https://huggingface.co/cahya/bert-

base-indonesian-522M. It leverages a pre-trained 

model and tailors it to a specific dataset of labeled 

examples, where each belongs to a predefined 

category. The table's metrics, like precision and recall, 

assess how accurately the model assigns these 

examples to their correct categories[38]. 

Table 30 evaluates the performance of a 

Gemma[36] model fine-tuned for a sentiment 

analysis task. With a precision of 85% for positive 

sentiment, the table indicates the model accurately 

identifies 85% of truly positive reviews. However, 

the model's recall for negative sentiment is 70%, 

meaning it misses 30% of negative reviews.  

Table 31 evaluates the performance of a 

sentiment analysis model built with Gemini[37]. The 

model was fine-tuned, meaning it was adapted from 

a pre-trained model to classify reviews as positive or 

negative. For positive sentiment, the table shows a 

precision of 85%. This means out of every 100 

reviews the model identifies as positive, 85 are truly 

positive. However, the recall for negative sentiment 

is 79%, indicating the model misses 21% of negative 

reviews.  

Table 32 summarizes the F1 scores achieved by 

four different classification methods on a 

classification task. F1 score is a crucial metric for 

evaluating model performance, balancing both 

precision (correctly identifying positive cases) and 

recall (finding all actual positive cases). 

 
Table 30. Comparison with Gemma finetuning 

Class Precision Recall 
F1-

Score 
Support 

against 0.85 0.70 0.77 225 

for 0.69 0.92 0.79 225 

observing 0.96 0.81 0.88 226 

Accuracy - - 0.81 676 

Macro Avg 0.83 0.81 0.81 676 

Weighted 

Avg 

0.83 0.81 0.81 676 

 
Table 31. Comparison with Gemini Fine Tuning 

Class Precision Recall 
F1-

Score 
Support 

against 0.90 0.79 0.84 225 

for 0.87 0.83 0.85 225 

observing 0.79 0.93 0.86 226 

Accuracy - - 0.85 676 

Macro Avg 0.86 0.85 0.85 676 

Weighted 

Avg 

0.86 0.85 0.85 676 

 
Table 32. Comparison of F1 Scores for Different 

Methods 

Method 
F1 

FOR 

F1 

Observing 

F1 

Against 

F1 

Macro 

Dense 

Layer 

0.68

93 

0.9041 0.6680 0.7538 

Bi-LSTM 
0.71

53 

0.8981 0.6828 0.7654 

CNN 
0.69

31 

0.9175 0.6799 0.7635 

Gemini 0.65 0.81 0.77 0.74 

RoBERTa 0.51 0.80 0.41 0.58 

BERT 0.66 0.88 0.59 0.71 

Gemma 

Fine 

Tuning 

0.79 0.88 0.77 0.81 

Gemini 

Fine 

Tuning 

0.85 0.86 0.84 0.85 
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Figure. 9 Example of First Form Input and Output Results 

 

 

 
Figure. 10 Example of Application Form 

 

 

Looking at the F1 scores for identifying positive 

cases, Bi-LSTM takes the lead at 0.7153, followed 

closely by Dense Layer at 0.6893. This indicates that 

Bi-LSTM might be slightly better at correctly 

classifying positive examples in this specific task. 

However, Dense Layer appears to excel in overall 

classification accuracy, as reflected by its F1 score of 

0.7538 for observing all classifications. 

In this study, we also developed an interface 

displaying the classification results for inference. The 

user could choose the model, claim topic, and related 

news and get the predictions as in Figure 9. 

In Figure 10 you can see the appearance of the 

second form, on the left there is a text box for the 

output results from stance classification and on the 

right, there is text input for topics and responses. In 

this form, sentences will be processed by all existing 

models directly. Then the number is calculated and 

the highest number of predictions becomes the final 

prediction. The following is an example of input and 

output results from testing for stance classification 

with the second form.  

In Figure 11 you can see an example of the input 

and output results from the third form. In this 

example, predictions are made by inputting the URL 
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Figure. 11 Example of Third Form Input and Output Results 

 

from "health.detik.com" regarding health news. Then 

predictions are made on the title of the news obtained 

using the comments on the news. In the output results 

section there are tabs for each model, so you can see 

the prediction results obtained by the model 

regarding the comments it has on this news. Then, 

from the number of existing classifications, the 

highest number of classifications is calculated to be 

used as the final prediction result. In this case, it can 

be said that it is not about false news or a hoax, but it 

can be said that many people do not support or 

disagree with the price change to the "PCR price". 

5. Conclusion  

This section will discuss some finding from this 

study. The proposed models by utilizing contextual 

embedding like BERT can enhance the model 

performance, achieving highest F1 Score of 77% 

compared to the previous studies as the baseline and 

on par with performance of publicly available LLMs 

such as Gemini and Gemma. Some of the problems 

rise in this study shows that shortcuts or encountering 

typos can cause problems for the model by not 

achieving the best performance. Furthermore, 

optimization such as stemming did not worked and 

cause the model failing to understand the contextual 

sentence meaning. 

Another experiment shows that negation in our 

experiment seems fails to generalize and classify by 

the models. It shows that the model performance was 

decreasing due to negative words in the dataset. 

Although our model incorporates transformer, it 

seems that our proposed models still struggled with 

long word sequences in the input.  

However, from several experiments and 

performance comparison based on this study, BERT 

performed better than baseline methods for classify 

the stance in the experiments of this study. To 

improve future works, we recommend training a 

BERT model and use another model representation to 

address some multimodality data in stance 

classification by incorporating a larger dataset to train 

the model. 

 
Notations 

it input gate 

Wi  weight of the input gate 

xt input value in iteration t 

Ui weight of the input gate 

ht h is the output data value 

in the previous iteration t 

bi bias of the input gate 

WC̃ weight of the cell state 

candidate 

UC̃ weight of the cell state 

candidate 

bC̃ bias of the cell state 

candidate 

ft forget gate value in 

iteration t 

Wf weight of the forget gate 

Uf  weight of the forget gate 

bf  bias of the forget gate 

Ct cell state 

C̃t cell state candidate 

ot gate output result 

Wo weights of the output gate 

Uo weights of the output gate 



Received:  June 21, 2024.     Revised: July 15, 2024.                                                                                                        535 

International Journal of Intelligent Engineering and Systems, Vol.17, No.5, 2024           DOI: 10.22266/ijies2024.1031.41 

 

bo bias of the output gate 

Ct cell state 

TP true positive 

FP false positive 

FN false negative 
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