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Abstract: Melanoma, the deadliest type of skin cancer in humans, poses significant challenges while diagnosing skin 

lesions through thermoscopic imaging. These challenges include issues such as hair interference, inaccurate capturing 

of skin lesion shapes, and extraction of irrelevant features. However, overfitting occurs due to oversampling, resulting 

in erroneous skin cancer captures, and failure to detect noise and unwanted hair in melanoma images. The research 

proposes the Premature Convergence Strategy with Artificial Jelly Search Optimization (PCSAJSO) algorithm and 

Convolutional Neural Network (CNN) for classifying skin cancer into melanoma and non-melanoma. Initially, images 

are obtained from ISIC2018, ISIC2019, and PH2 datasets, used to analyze the performance of the proposed method. 

The W-Net method is utilized to segment skin cancer by capturing the contextual information from various scales in 

skin cancer images. The PCS technique ensures a balance between exploration and exploitation in search space which 

helps to increase convergence speed and adjusts population size for skin cancer classification. In comparison to the 

existing techniques like Inception-ResNet and U-Net, the PCSAJSO-CNN achieves commendable accuracies of 

98.15%, 99.38%, 99.70%, 94.68%, and 97.08% respectively on the ISIC2016, ISIC2017, ISIC2018, ISIC2019 and 

PH2 datasets. 

Keywords: Artificial jelly search optimization, Convolutional neural network, Premature convergence strategy, Skin 

cancer, W-Net. 

 

 

1. Introduction 

Skin cancer a widespread condition affecting 

individuals across all age groups that poses 

significant health risks and requires timely diagnosis 

and treatment. Early detection is crucial, as 

identifying the disease in its initial stages 

significantly improves treatment outcomes. [1, 2]. In 

2018, melanoma affected both men and women, with 

5,999 cases reported in men and 3,829 cases reported 

in women [3]. Detecting skin lesions presents a 

complex challenge due to several factors, including 

irregularities in capturing images of skin cancer and 

the occurrence of unwanted hair and noise [4]. The 

classification of skin cancer is complex due to the 

similarity between melanoma and non-melanoma 

lesions, resulting in a high degree of comparability 

within the disease [5]. Improving the survival rate 

significantly relies on effectively treating skin lesions. 

However, identifying lesions during inspection can 

be challenging, and the use of thermoscopic images 

assists in this process. [6]. 

The Deep Learning (DL) is used to segment and 

classify melanoma skin cancer, providing quality 

diagnostics for related diseases and improving patient 

care [7].  In the field of medical image recognition, 

neural networks are extensively involved in 

analysing skin cancer images, which often depict 

numerous small objects on human skin [8]. However, 

accurately locating small objects within the lesion 

region from normal skin is challenging due to the 

sophisticated differences in skin color, lesion location, 

and non-uniform lighting [9]. Implementing DL 

techniques and enhancing contrast for small 

melanoma objects has improved accuracy in trained 

models, effectively addressing the issue of 

imbalanced data that impacts the model’s accuracy 
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[10].  This approach is essential for classifying skin 

lesions using deep learning techniques [11]. These 

structures are considered one of the primary keys for 

identifying and classifying melanoma or non-

melanoma diseases [12]. CNNs face challenges in the 

classification of skin lesions, prompting the need for 

hyper-tuning phases. These phases optimize model 

parameters to efficiently provide accurate diagnoses 

in real-time to a specified criteria and enhance the 

performance in medical image analysis [13, 14]. 

Implementing the proposed approaches allows for the 

early detection of skin cancer, enabling more efficient 

treatment and reducing the associated mortality rate 

[15]. In this research, hyper parameter tuning process 

is integral to the classification performed by the 

Premature Convergence Strategy with Artificial Jelly 

Search Optimization (PCSAJSO). This optimization 

technique calculates the epochs, batch size and 

iterations based on the performance and then 

classifies melanoma and non-melanoma cases. The 

optimization technique aims to improve the search 

space and handle the convergence rate to ensure 

accurate parameter settings for skin cancer 

segmentation and classification models. 

The main contributions of the research are written 

below: 

⚫ The PCS is a novel approach in skin cancer 

classification, expanding the search space and 

maximum convergence rate to improve the 

population size of hyper parameters for 

improvement. 

⚫ The CNNs possess a reduced parameter count 

compared to traditional neural networks, 

facilitating effective training of deep 

architectures with an optimized hyper 

parameter to accurately identify skin cancer. 

⚫ The PCSAJSO technique uses hyper 

parameter tuning for selecting appropriate 

values, combined with the CNN technique to 

improve the accuracy of classifying skin 

lesions as melanoma and non-melanoma.  

The paper is organized as follows: Section 2 

provides a literature review that summarizes skin 

cancer using DL techniques. Section 3 introduces the 

proposed method utilized by PCSAJSO-CNN. 

Section 4 discusses the result and comparative 

analysis, while Section 5 discusses the conclusion. 

2. Literature review 

To goal of skin lesion image segmentation is to 

extract and identify skin cancer. The relevant 

researches focused on the DL techniques for 

segmentation and classification of skin cancer are 

studied here. 

Khouloud [16] presented a DL-based skin cancer 

segmentation approach involving W-net and ResNet 

Encoder-Decoder for classifying skin cancer diseases 

by using ISIC2016, ISIC2017 & ISIC2018 dataset. 

The segmentation process identified diseased areas 

based on shape and colour, facilitating disease 

analysis. The ResNet architecture captured the 

contextual information from different scales 

independently. However, the input image often 

contained noise and inaccuracies in capturing the skin 

lesion image, leading to difficulties in segmenting 

skin lesions. 

Kaur [17] introduced a DL-based Convolutional 

Neural Network (CNN) framework for melanoma, an 

aggressive form of skin cancer by using ISIC2016, 

ISIC2017 & ISIC2018 dataset. The framework 

utilized a dilated convolutional network, leveraging 

atrous convolution in place of pooling layers. Atrous 

dilations were involved to expand the receptive field 

of the input vector without relying on pooling layers. 

The fixed-size filter slider served as the input feature, 

while the dilated CNN maintained spatial resolution 

and performed multiscale feature capture, thereby 

expanding the receptive field without introducing 

additional parameters. However, the network was 

heavy and consumed longer periods for execution 

due to numerous sampling and sampling layers. 

Midasala [18] implemented an unsupervised 

learning (USL)-based K-means clustering (KMC) 

method for thresholding skin cancer regions in image 

segmentation by using ISIC2020 dataset. The USL-

KMC approach involved thresholding skin lesion 

regions in images to segment skin cancer. This 

approach proved effective as clustering emerged as 

one of the most commonly used algorithms, reducing 

computational costs, executing faster, and simplicity, 

as opposed to other clustering methods. However, the 

clustering method caused the merging of lesions with 

the surrounding skin, while an abundance of clusters 

resulted in over-segmentation due to images with 

complex lesion shapes and overlapping segments. 

Nawaz [19] developed a DL-based approach, 

DenseNet77-UNet which extracted segmentation 

power to identify small lesions by using ISIC2019, 

ISIC2020 dataset. While minimizing both training 

and testing skin diseases, even under noise and 

blurring due to the efficient computation of 

DenseNet77-UNet. The method calculated input 

sample computations, performed down sampling to 

reduce feature size, and attained the detailed image 

information. However, the performance of skin 

lesion region segmentation considerably decreased in 

low-resolution skin lesions and low-illumination 

conditions of images. This was attributed to the 

potential loss of essential features due to the 
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bottleneck technique, leading to poor convergence 

and overfitting. 

Alsahafi [20] implemented a Residual Deep 

Convolutional Neural Network (RDCNN) for skin 

cancer segmentation by using ISIC2017, ISIC2018 

dataset, which performed convolutional filtering for 

multi-layer feature extraction. This method directly 

processed raw image data, utilizing multiple filters to 

enhance the effectiveness of skin lesion 

categorization. However, under-sampling which 

removed samples from the majority class caused the 

loss of vital information for the model. Additionally, 

skin lesions occurring in a small range were difficult 

to be captured in skin cancer due to the rise of 

overfitting issues that necessitated a large amount of 

labelled data. 

Nawaz [21] developed an automated system for 

the identification of melanoma skin cancer, 

addressing by using ISIC2017 & ISIC2018 dataset. 

Given the significant differences in mass structure 

and colour among skin lesions, they involved a Fuzzy 

K-means (FLM) clustering approach for 

segmentation. These methods effectively segmented 

skin lesion regions affected by skin cancer, 

delineating the apparent edges of the lesions and 

reducing the complexity of model training and testing. 

However, skin cancer diagnosis was often 

complicated by noise and blurring attacks, which 

further complicated the segmentation process, 

leading to challenges such as overlapping and 

reflecting complex data. 

From the overall analysis, the existing techniques 

are seen to have limitations of inaccurate capturing of 

skin cancer, and failure to detect noise and unwanted 

hair in melanoma images. This research involves the 

PCSAJSO approach combined with CNN to address 

the optimization technique required to improve the 

accuracy of analysis of skin cancer images. 

Simultaneously, it aims to eliminate unwanted hair 

and noise from the images. 

3. Proposed methodology 

In this section, PCSAJSO and CNN methods are 

proposed for efficient classification of skin cancer, 

utilizing the datasets of ISIC2016, ISIC2017 

ISIS2018, ISIC2019 & PH2. These datasets undergo 

pre-processing using the Gaussian Filter (GF) 

method and Dull Razor for the removal of hair, noise, 

marks, and stains, thereby improving the quality of 

the skin images. The pre-processed images are fed to 

segmentation for the skin lesion images by using W-

net. The improvement involves capturing 

independent paths from different scales in a distinct 

manner.  

 

 
Figure. 1 Block diagram of the proposed method 

 

The proposed method involves feature extraction 

using ResNet-50 and VGG-16, followed by the 

classification of melanoma and non-melanoma using 

Hyper Parameter Tuning techniques such as 

PCSAJSO, in combination with CNN methods. Fig. 

1 shows the block diagram of the proposed method. 

3.1 Dataset 

The skin cancer datasets used in the research are 

International Skin Imaging Collaboration (ISIC) 

datasets from 2018 and 2019, along with the Pedro 

Hispano Hospital (PH2) dataset. These datasets 

collectively contain 21,063 thermoscopic images, 

collected for training and testing purposes. Below is 

a detailed explanation of three datasets. Fig. 2 shows 

the sample image of the ISIC2016, ISIC2017, 

ISIC2018, ISIC2019 & PH2 dataset. 

3.1.1. ISIC 2016 & 2017 dataset 

The ISIC 2016 [22] & 2017 [23] dataset consists 

of 2750 skin cancer image. The image consists of 

2000 training dataset 150 test dataset and 600 

validation datasets. High resolution of images in the 

ISIC 2016 & 2017 dataset provides an advantage over 

other dermoscopic image dataset. The DL model 

achieved high success in experimental settings, 

although it achieved moderate success in the clinical 

environment.  

3.1.2. ISIC 2018 dataset 

This section focuses on the ISIC 2018 dataset [24], 

which aims to classify lesion categories into several 

classes including, Dermatofibroma (Der), Nevus 

(Nev), Melanoma (Mel), Pigmented Benign (Pig-Be), 

Keratoses (Ker), Pigmented Bowen’s (Pig-Bo), 

Vascular, and Basal Cell Carcinoma (BCC) [21]. The 

ISIC 2018 dataset comprises a total of 6296 images, 

with 2596 images allocated for training, 1002 for 

testing, 102 for validation, and 2596 for ground truth 

annotation.  
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Table 1. Dataset description ISIC 2019 

Type of skin lesion Training Validation Testing 

Mel 360 3812 350 

MN 965 1100 931 

BCC 250 2820 253 

AK 75 716 76 

BK 203 2215 206 

DF 1100 206 22 

VL 24 202 27 

SCC 42 541 45 

Total image 1930 10523 1910 

 

Figure. 2 Sample image of the ISIC2016, ISIC2017, 

ISIC2018, ISIC2019 & PH2 dataset: (a) ISIC2016 

dataset,  (b) ISIC2017 dataset, (c) ISIC2018 dataset, (d) 

ISIC2019 dataset, and (e)PH2 dataset 

 

3.1.3. ISIC 2019 dataset 

The ISIC2019 dataset [25] contains more than 

14363 images classified into 8 skin diseases, enabling 

classification. The dataset is split into three sets of 

data with a split ratio of 0.8 for training, 0.1 for 

testing, and 0.1 for validation [22]. The eight 

categories include Melanoma (Mel), Melanocytic 

nevus, Basal Cell Carcinoma (BCC), Actinic 

Keratosis (AK), Benign keratosis (BK), 

Dermatofibroma (DF), Vascular Lesion (VL), and 

Squamous Cell Carcinoma (SCC). Below is the 

dataset description for ISIC 2019 presented in Table 

1. 

3.1.4. PH2 dataset 

The PH2 dataset [26] comprises a total of 400 

images from Pedro Hispano Hospital, divided into 

two classes: Nev and Mel. The training data are split 

into 200 instances, each for training x and training y. 

There are two classes: Nevus and Melanoma. The 

total number of images is 400.  

3.2 Pre-processing 

The collective dataset images serve as input for 

Pre-processing, where GF is involved to eliminate the 

irrelevant noise. This process aims to eliminate noise 

while preserving essential image features as much as 

possible. The wiener filter shows poor performance 

because it is challenging to accurately identify and 

isolate skin cancer region. In order to address this 

issue, the lesion part with noise is removed using GF, 

as numerically formulated in Eqs. (1) and (2). 

 

ℎ𝑔(𝑛1, 𝑛2) =  𝑒
−(𝑛1

2+𝑛2
2)

2𝜎2                   (1) 

 

ℎ(𝑛1, 𝑛2) =
ℎ𝑔(𝑛1,𝑛2)

∑ ∑ ℎ𝑔𝑛2𝑛1

                    (2) 

 

In Eqs. (1) and (2), 𝑛1  and 𝑛2   represent the pixel 

values of the image, 𝜎 denotes the standard deviation, 

and  ℎ  denotes the GF values. The Dull Razor is 

involved in removing hair from the skin during this 

process. Dull Razor computation is expressed by Eq. 

(3) below. 

 

𝑉𝑟(𝑥, 𝑦) = 1, 𝑖𝑓 𝐾𝑡(𝑥, 𝑦) > 𝑇 

= 0, 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒                          (3) 

 

The final phase for the original image is formed 

by aggregating three colour channels of the hair 

masks. This aggregation process is described by Eq. 

(4) below. 

 

𝑉 = 𝑉𝑟 ∪ 𝑉𝑎 ∪ 𝑉𝑏                       (4) 

 

Refining the lesion points is a key stage in 

extracting functions for analysing and recognizing 

medical images. Techniques such as GF and the Dull 

Razor method are involved in noise removal and hair 

removal from medical images. These pre-processed 

images are then provided to the segmentation process 

for capturing lesion regions in skin cancer. 

3.3 Segmentation 

After the Pre-processing technique, the unwanted 

noise and hair is removed from the image. The goal 

of segmentation is a process of identifying lesion 

regions within the skin and distinguishing them to 

identify skin cancer. In this research, segmentation 

involves a new DL architecture called W-Net. This 

architecture focuses on dual-path semantics lesion 

region and aims to accurately extract skin cancer 

images by utilizing two mutually independent paths 

to capture contextual information at different scales. 

During up-sampling, bilinear interpolation is 

involved to reduce feature map distortion and 

integrate the differently processed skin images. W- 

Net utilizes ResNet blocks and convolutional blocks 

(a) (b) (c) 

 
(d) 

 
(e) 
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(a) 

 
(b) 

 
(c) 

Figure. 3 Sample segmented image: 

(a) ISIC2018, (b) ISIC2019, and (c) PH2 dataset 

 

for both down-sampling and up-sampling processes. 

The W-Net encoder generates input codes from 

raw skin images using an auto encoder architecture 

for segmentation. 

This process involves two steps with the decoder 

layer matching the number of encoder layers. The 

ResNet block functions as a residual unit, featuring 

two convolutional blocks that identify mapping. The 

convolutional network design follows throughout the 

down sampling path, with two 3𝑥3  convolutions. 

Skin regions are segmented for training and testing, 

with image cropping performed after manual 

segmentation to eliminate irrelevant details. Network 

performance is assessed using the Dice coefficient 

index. Attention mechanisms are integrated into the 

ResNet structure to address variations in lesion size 

and shape, thereby enhancing the network 

performance through suppression of feature 

activations. The concatenation between ResNet 

decoder and ConvNet encoder focuses on skin lesion 

regions of interest, allowing for better segmentation. 

The segmented skin lesion image is provided for 

feature extraction. Fig. 3 represents the sample 

segmented image. 

3.4 Feature extraction 

After tumor segmentation, capturing the 

boundary region of the tumor aids in the detection of 

skin cancer. The goal of the feature extraction method 

is to extract several beneficial feature vectors in skin 

cancer. Pre-trained models such as ResNet-50 and 

VGG-16 are involved for this purpose, which are then 

adapted for global classification performance. 

ResNet-50 trains the data efficiently without the 

trained data encountering the vanishing gradient 

problem, allowing it to handle complex tasks and 

extract intricate features from data. It has been 

applied to a wide range of melanoma skin cancer 

cases, achieving impressive accuracy in classifying 

skin lesions. In skin cancer analysis, VGG-16's 

simplicity and effectiveness contribute to strong 

performance in skin cancer classification tasks, with 

convolutional layers followed by max-pooling layers 

progressively increasing in depth. 

3.4.1. ResNet 50 

The ResNet-50-layer residual network's 

increased accuracy comes at the cost of higher 

computational resources. Training and inference with 

this model demand more memory and processing 

power. Due to its depth and complexity, ResNet-50 

requires longer training time when compared to 

lightweight architectures [13]. In this research, it is 

necessary to consider this trade-off when choosing a 

model. Adapting deeper networks is advantageous 

for deep learning methods, and in this case, networks 

with 20-30 layers are utilized. The residual units 

allow the training of a 152-layer model, which 

performs well on the data. There is a shallower 

learning curve due to the novel residual structure. 

3.4.2. VGG 16 

The VGG-16 architecture involves taking 

weights and parameters learned from the existing 

VGG-16 models and applying them to create new 

models better suited for skin cancer [13]. This 

approach helps achieve better results with VGG16 

models while using fewer resources. Pre-trained 

networks like VGG-16 that have already been trained 

on skin cancer image datasets, are fine-tuned by 

adding additional layers and adjusting some hyper 

parameters to make them suitable for this model. The 

features extracted are given as input to hyper 

parameter tuning using PCSAJSO with CNN 

classification for skin lesions. 

3.5 Image classification 

After feature extraction, the purpose of this 

research is to automatically diagnose melanoma 

using CNN, a DL technique. CNNs are utilized to 

collect sophisticated convolutional filters and analyse 

various picture structures in skin cancer. The feature 

extraction process aims to accurately distinguish 

across distinct classes. However, there is always the 

risk of inadequate description when using a limited 

range of traits. Hyper parameter tuning using 

PCSAJSO is then involved in classifying melanoma 

and non-melanoma cases. 

3.5.1. Hyper parameter tuning using AJSO algorithm 

Hyper parameter tuning is the process of 

optimizing the parameters that during the training 

data and hyper parameter tuning, are needed, so as to 

select appropriate values and improve the model’s 

performance by increasing accuracy. In this research, 

hyper parameter tuning using JSO and optimizing 

hyper      parameters     effectively       enhance      the  
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Figure. 4 Overall process of classification 

 

 

performance of the classification model for skin 

cancer. The optimization technique in skin cancer 

involves finding its optimal solution using a powerful 

algorithm such as the AJSO algorithm. 

The jellyfish, found in the sea, adapts to varying 

temperatures and pressures. The AJSO algorithm 

consists of three phases as described below: 

⚫ The jellyfish navigates the ocean currents, 

moving towards other jellyfish to coordinate 

their movements and reach their destination 

efficiently. 

⚫ In search of food, the jellyfish wander through 

the water, occupying areas where food is 

available.  

⚫ Once they find food, they stay there despite 

some hardship. Various activities are 

performed to search for food and determine the 

locations of large food sources. Fig. 4 

illustrates the overall process of classification. 

A detailed description of the parameters for the 

optimization method is provided below: The 

smoothing parameter 𝜎  is initially assigned 

randomly, where optimization techniques require 

solution encoding. In this solution encoding, a 

jellyfish analogy is used for each parameter, 

represented by M. The objective of the solution 

encoding procedure calculates the fitness function for 

improving the classification accuracy. After fitness 

computation, a significant number of ocean currents 

present in the jellyfish are attracted to areas at high 

levels. To exhibit behaviours resembling ocean 

currents and navigate within the swarm, the ability to 

transition between behaviours is timed-based. 

Additionally, the chaotic map is involved alongside 

more standard random methods for initialization to 

optimize the strategy in low search spaces and 

mitigate local minimum occurrences in the AJSO. 

The logistic map is mathematically represented by Eq. 

(5). 

 

𝑀𝑛+1
⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗  =  𝜂𝑀𝑛

⃗⃗ ⃗⃗  ⃗(1 − 𝑀𝑛), 0 ≤ 𝑀0
⃗⃗ ⃗⃗  ⃗ ≤ 1        (5) 

 

Where, 𝑀𝑛
⃗⃗ ⃗⃗  ⃗  denotes the vector of chaotic logistic 

values of the jellyfish. The initial values of the 

jellyfish are 𝑀0
⃗⃗ ⃗⃗  ⃗. The jellyfish are generated using the 

fitness function Eq. (4) to achieve maximum 

accuracy. The current position of each jellyfish is 

updated using the time-controlled mechanism. The 

swarm strategy involves swimming with the ocean 

currents and navigating inside the swarm. The 

mathematical description of the ocean circulation is 

given by Eq. (6). 

 

𝑀𝑛
⃗⃗ ⃗⃗  ⃗ (t + 1) = 𝑀𝑛

⃗⃗ ⃗⃗  ⃗(𝑡) + 𝑟 .∗ (𝑀∗⃗⃗ ⃗⃗  ⃗𝛽 ∗ 𝑟1 ∗ 𝜇)   (6) 

 

The variable 𝑟  is a random vector that occurs 

between 0 and 1, and each component of the vector is 
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denoted by a dot. The variable 𝑚  denotes the 

population, and 𝑟 is a random integer used for access. 

There are two types of moments: active and passive, 

as mathematically expressed in Eq. (7). 

 

𝑀𝑛
⃗⃗ ⃗⃗  ⃗ (t + 1) = 𝑀𝑛

⃗⃗ ⃗⃗  ⃗(𝑡) + 𝑟3⃗⃗  ⃗ ∗ 𝛾 ∗ (𝑈𝑏 − 𝐿𝑏)   (7) 

 

Where, the random integer 𝑟 is assigned a value 

of 3, indicating that the distance travelled in a circle 

centered on the current location is greater than 0. The 

search space is denoted by the upper and lower 

bounds, denoted as 𝑈𝑏  and 𝑈𝑙  respectively. The 

dynamic motion is represented by Eq. (8). 

 

𝑀𝑛
⃗⃗ ⃗⃗  ⃗ (t + 1) = 𝑀𝑛

⃗⃗ ⃗⃗  ⃗(𝑡) + 𝑟 ∗ �⃗⃗�                (8) 

 

Where, a random number vector ranging from 0 

to 1 is used for the current jellyfish generation. The 

movement for food search is calculated using the 

following Eq. (9). 

 

�⃗⃗� = {
𝑀𝑛
⃗⃗ ⃗⃗  ⃗(𝑡) − 𝑀𝑚

⃗⃗ ⃗⃗ ⃗⃗  (𝑡), 𝑖𝑓 𝑓(𝑀𝑛
⃗⃗ ⃗⃗  ⃗) < 𝑓(𝑀𝑚

⃗⃗ ⃗⃗ ⃗⃗  )

𝑀𝑛
⃗⃗ ⃗⃗  ⃗(𝑡) − 𝑀𝑚

⃗⃗ ⃗⃗ ⃗⃗  (𝑡),                  𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒
    (9) 

 

The randomly chosen jellyfish is indexed as m, 

and f represents the fitness function. Time control is 

considered in the function given by Eq. (10). 

 

𝑐(𝑡) = (1 −
𝑡

𝑡𝑚𝑎𝑥
) ∗ (2 ∗ 𝑟 − 1)                (10) 

 

Where, the current evaluation is denoted as (𝑟, 0), 

where 𝑟 is an integer, and 𝑠 represents the greatest 

evaluation. The jellyfish swim with the ocean current, 

exhibiting both active and passive motions within the 

swarm, depending on a randomly generated integer 

between 0 and 1. 

3.5.2. Proposed premature convergence strategy 

artificial jellyfish search optimization 

The JSO is combined to form a new approach that 

more efficiently controls variables between 

exploitation methods, aiding in the detection of skin 

cancer images and avoiding local minima. The 

initialization provides a population of 𝑛 solutions, 

where 𝑑 is the number of dimensions. After 

involving the chaotic logistic map from section 3.5.1, 

the region to be detected undergoes local exploration 

to enhance the capability of searching for the skin 

cancer images. The improved AJSO is utilized to 

classify melanoma and non-melanoma. The 

improved technique using the PCS is performed in 

the large search space to provide classified skin 

images. The PCS technique is represented by Eq. (11). 

 

𝑀𝑛
⃗⃗ ⃗⃗  ⃗ (t + 1) = 𝑀𝑛

⃗⃗ ⃗⃗  ⃗(𝑡) + 𝑟 ∗ (𝑀𝑟1
⃗⃗ ⃗⃗ ⃗⃗  ⃗(t) − 𝑀𝑟2

⃗⃗ ⃗⃗ ⃗⃗  ⃗(t)) 

+(1 − r) ∗ (M ∗ − 𝑀𝑟3
⃗⃗ ⃗⃗ ⃗⃗  ⃗ (t))              (11) 

 

The parameter 𝑟 is used with values 1, 2, and 3 in 

the random solution to perform skin cancer prediction, 

layering the image to classify and validate the cancer 

images. The AJO algorithm is initialized with PCA 

reduced set of features and updated positions of 

jellyfish, with iteration until the optimal set of 

features and hyper parameters are found. The 

population size is increased in PCS to involve skin 

cancers with many available classes, training for each 

type of skin cancer, and using the increased size to 

transfer CNN. The control parameter is set low to 

move closer to the best solution, speeding up 

convergence, while a high value updates the current 

solution. In this research, PCA combined with AJSO 

strategy, where the efficiency is improved to find 

optimal solutions with minimal resource 

consumption. 

3.5.2. Convolutional neural network 

The hyper parameter tuning provided to CNNs is 

built to incorporate spatial structure inputs, originally 

inspired by the visual system of human skin. Hyper 

parameter tuning aims to maximize the efficiency of 

computational resources. Without hyper parameter, 

the skin cancer classification process uses default 

parameter values for the CNN model, leading to 

suboptimal performance and reduced efficiency. 

Hyper parameter tuning is necessary because 

selecting appropriate values improves the accuracy of 

skin cancer classification. CNNs possess a reduced 

parameter count, when compared to traditional neural 

networks, facilitating effective training of deep 

architectures comprising more than 5 layers, 

particularly in tasks of skin cancer analysis, where 

fully connected networks struggle to perform 

efficiently.  The CNN comprises input layers, output 

layers, and several hidden layers, including 

convolutional ReLU pooling, fully connected, and 

normalization layers. At each iteration of training, 

accuracy is enhanced utilizing the optimized 

technique, followed by a reduction in training 

accuracy occurs. This process is plotted over multiple 

iterations. The model is trained for 30 epochs with a 

batch size of 32 and a dropout layer of 0.4 to avoid 

overfitting. The validation loss is monitored for 30 

epochs. Table 2 represents the Hypermeter tuning 

ranges. 
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The accuracy of the model obtained is 99.63% 

and ReLU activation function is used for training as 

in Eq. (12). 

 

𝑦 = max(0, 𝑛)                       (12) 

 

The ReLU is an interesting transformation that 

activates a node only if the input is above a certain 

threshold. When the input is below zero, the output 

remains zero, but as soon as the input rises above a 

certain threshold, the relationship becomes linear, 

with the dependent variable 𝑓(𝑥) = max (0, 𝑛). The 

softmax function is another function used to 

transform output values from the model into a 

probability distribution. The softmax function is 

defined by Eq. (13). 

 

𝜎(�⃗� )𝑖 =
𝑒𝑌𝑖

∑ 𝑒𝑌𝑖𝑉
𝑗=1

                       (13) 

 

Where,  𝜎  is indicated the softmax and input 

vector is �⃗� , an extensive analysis of skin cancer 

comparing various CNN architectures reveals that the 

ResNet-50 architecture outperforms others, offering 

superior performance with minimal computational 

demands. In this study, the variability in data is 

comparatively lower than in other skin lesion 

classifications, rendering CNNs highly efficient for 

real-time diagnosis. The chosen model strikes a 

balanced compromise between speed and accuracy, 

making it an optimal choice for the research at hand. 

4. Experimental Results 

The proposed network PCSAJSO with CNN is 

trained on a two-year dataset comprising (ISIC2016, 

ISIC2017, ISIC2018 & ISIC2019) and the PH2 

dataset to illustrate the effectiveness of the suggested 

DL technique compared to other existing methods. 

The implementation of the proposed method is 

carried out using MATLAB R2020a and the required 

system configuration includes an i6 processor, 16 GB 

of RAM, and Windows 10 Operating System. The 

performance measures used for evaluation and the 

results of the classification are explained as follows. 

The parameter metrics are defined by Eqs. (14) to 

(19). 

 

𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =
(𝑇𝑃+𝑇𝑁)

(𝑇𝑃+𝑇𝑁+𝐹𝑃+𝐹𝑁)
              (14) 

 

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =  
𝑇𝑃

(𝑇𝑃+𝐹𝑃)
                  (15) 

 

𝑆𝑝𝑒𝑐𝑖𝑓𝑖𝑐𝑖𝑡𝑦 =  
𝑇𝑃

(𝑇𝑁+𝐹𝑃)
                (16) 

 

𝑆𝑒𝑛𝑠𝑖𝑡𝑖𝑣𝑖𝑡𝑦 =  
𝑇𝑃

(𝑇𝑃+𝐹𝑁)
                 (17) 

 

𝐽𝐴𝐶 =
𝑇𝑃

𝑇𝑃+𝐹𝑃+𝐹𝑁
                     (18) 

 

𝐷𝐼𝐶𝐸 =
2∗𝑇𝑃

2∗𝑇𝑃+𝐹𝑃+𝐹𝑁
                  (19) 

 

Where TP, TN, FP, and FN respectively denote 

True Positive, True Negative, False Positive, and 

False Negatives. The proposed method involves 

classification using hyper parameter tuning PCAAJO 

algorithm with CNN methods, providing high 

classification performance. 

4.1 Performance analysis 

In this section, the performance of the 

classification process is evaluated using various 

performance metrics of Accuracy, Precision, 

Specificity, Sensitivity, Jaccard Index (JAC), and 

Dice on the ISIC2016, ISIC2017, ISIC 2018, ISIC 

2019, and PH2 datasets. The classification involves 

hyper parameter tuning using the optimization 

PCSAJSO algorithm combined with CNN methods. 

The hyper parameter configuration is used to train the 

network end-to-end. The segmentation process with 

the dataset is represented in Table 3. The 

classification process with datasets is displayed in 

tables 5 to 7, which describe the classification results. 

 
Table 3. Segmentation result 

Datasets Methods JAC DICE 

ISIC2017 ANN 0.9284 0.9472 

CapNet 0.9375 0.9536 

RNN 0.9425 0.9672 

DNN 0.9563 0.9715 

W-Net 0.9690 0.9815 

ISIC2018 ANN 0.9345 0.9425 

CapNet 0.9455 0.9535 

RNN 0.9565 0.9645 

DNN 0.9674 0.9756 

W-Net 0.9776 0.9875 

ISIC2019 ANN 0.9345 0.9425 

CapNet 0.9455 0.9545 

RNN 0.9565 0.9655 

DNN 0.9674 0.9768 

W-Net 0.9776 0.9878 

PH2 ANN 0.9325 0.9425 

CapNet 0.9454 0.9545 

RNN 0.9565 0.9655 

DNN 0.9672 0.9768 

W-Net 0.9779 0.9878 
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The performance of the W-Net segmentation 

method is evaluated based on JAC and DICE on the 

ISIC2016, ISIC2017, ISIC 2018, ISIC 2019 and PH2 

dataset, as described in Table 4. The existing methods 

using classification techniques such as Recurrent 

Neural Network (RNN), and Deep Neural Network 

(DNN) are evaluated. The W-Net method achieves a 

high JAC of 0.9774 and DICE of 0.9875. The 

classification technique is W-Net which achieves a 

high JAC, reaching 99.70% because it accurately 

captures the skin lesion region. 

The performance of the CNN classification 

method is evaluated based on accuracy, precision, 

specificity, sensitivity, on the ISIC 2018 dataset, as 

described in Table 4. The existing methods using 

classification techniques such as RNN, and DNN, are 

evaluated. The CNN method achieves a high 

accuracy of 99.70%, specificity of 99.38%, 

sensitivity of 99.48%, and precision of 98.55%. The 

classification technique CNN achieves a superior 

accuracy, reaching up to 99.70%, because it 

accurately captures the skin lesion region and then 

classifies melanoma and non-melanoma cases. 

The ISIC 2019 dataset using CNN method 

achieves a high accuracy of 94.68%, specificity of 

96.80%, sensitivity of 93.81%, and precision of 

94.58%. The classification technique CNN attains 

high specificity, reaching 96.80% because its 

specificity is referred to as the segmented proportion 

of non-lesion regions. The PH2 dataset using CNN 

method attains a high accuracy of 98.08%, specificity 

of 99.0%, sensitivity of 99.51%, and precision of 

99.54%. The classification using the CNN technique 

attains a commendable accuracy of 99.54%, due to its  
 

Table 4. Performance analysis of classification method 

Datas

ets 

Meth

ods 

Accur

acy 

(%) 

Precis

ion 

(%) 

Specifi

city 

(%) 

Sensiti

vity 

 (%) 

ISIC 

2017 

RNN 97.45 97.25 96.83 96.35 

DNN 98.52 98.14 97.26 97.83 

CNN 99.38 99.70 98.78 98.12 

ISIC2

018 

RNN 97.65 96.35 97.20 97.25 

DNN 98.69 97.45 98.25 98.35 

CNN 99.70 98.55 99.38 99.48 

ISIC2

019 

RNN 92.50 92.45 92.25 91.72 

DNN 93.60 93.50 95.75 92.77 

CNN 94.68 94.58 96.80 93.81 

PH2 RNN 96.99 97.25 97.98 97.15 

DNN 97.01 98.45 98.01 98.45 

CNN 98.08 99.54 99.05 99.51 

 

precision in accurately predicting the ratio of positive 

observations. 

4.2 Comparative analysis 

The performance of the proposed PCSAJO-CNN 

method is contrasted against the existing methods 

including Inception ResNet [16], V-Net 2D, ResNet 

2D [17], U-Net with DenseNet 77 [19], RDCNN [20], 

and FKM [21]. The comparative analysis involves 

three datasets: ISIC2016, ISIC2017, ISIC 2018, ISIC 

2019, and PH2. In this research, the proposed 

PCSAJO-CNN method attains a superior accuracy of 

98.15% on the ISIC 2016, 99.38% accuracy on the 

ISIC 2017, 99.70% accuracy on the ISIC 2018 dataset, 

94.68% accuracy on the ISIC 2019 dataset, and 

97.08% accuracy on the PH2 dataset. Table 5 

displays the comparative analysis of the proposed 

method for classification. 

 

Table 5. Comparative analysis of the proposed method for classification 

Dataset Methods Accuracy 

(%) 

Precision 

(%) 

Specificit

y (%) 

Sensitivi

ty (%) 

JAC 

(%) 

DICE 

(%) 

ISIC2016 W-Net – Inception Resnet [16] 98.01 98.1 98.1 98.1 N/A N/A 

 Proposed PCSAJSO-CNN method 98.15 98.17 98.10 98.09 0.9854 0.9542 

ISIC2017 W-Net – Inception Resnet [16] 96.97 95.71 97.81 95.15 N/A N/A 

CNN [17] N/A N/A N/A N/A 0.818 0.884 

RDCNN [20] 99.21 99.66 98.73 N/A 0.9688 0.9802 

FLM [21] 99.32 N/A N/A N/A N/A N/A 

Proposed PCSAJSO-CNN method 99.38 99.70 98.78 98.12 0.9690 0.9815 

ISIC2018 U-Net with Densenet 77 [19] 99.51 N/A 99.35 99.44 0.9771 0.9873 

RDCNN [20] N/A N/A N/A N/A 0.9688 0.9873 

FKM [21] 99.63 N/A N/A N/A N/A N/A 

Proposed PCSAJSO-CNN method 99.70 98.55 99.38 99.48 0.9775 0.9878 

ISIC2019 RDCNN [20] 94.65 72.56 96.78 70.78 N/A N/A 

Proposed PCSAJSO -CNN 

method 

94.68 94.58 96.80 93.81 0.9256 0.9125 

PH2 W-Net – Inception Resnet [16] 97.5 98.50 99.00 N/A N/A N/A 

Proposed PCSAJSO -CNN 

method 

98.08 99.54 99.05 99.51 0.9125 0.9236 
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5. Discussion 

In this section, the advantage of the proposed 

method and the limitations of existing method are 

discussed. The existing methods have certain 

limitations like: The W-Net Inception [16] input 

image often contains noise, leading to inaccurate 

segmentation and a lack of capture of the skin lesion 

image, thereby making segmenting specific object 

categories challenging. The DenseNet 77-U-Net [19] 

method for skin lesion region segmentation 

significantly decreases in low-resolution and low-

illumination images. Additionally, the potential loss 

of essential features due to the bottleneck technique 

causing poor convergence and overfitting. The 

RDCNN [20] method struggles to capture skin 

lesions occurring in a small range, making it 

challenging to detect skin cancer. This is due to 

overfitting issues and the necessity for a large amount 

of labeled data. FKM [21] performs skin cancer 

classification relatively slowly, as accessing 

centroids in the image is not efficient and data points 

are not constrained to clusters. In this research, 

hyperparameter tuning using IAJSO with CNN 

enhances the model's spatial capabilities and focuses 

on relevant skin cancer classification. This approach 

successfully avoids overfitting and improves 

accuracy. 

6. Conclusion 

In this research, PCSAJSO combined with CNN 

is suggested for the classification process to extract 

the affected areas in skin cancer images. However, 

overfitting occurs in skin cancer images where the 

convergence rates are low, resulting in inefficient 

classification of melanoma and non-melanoma 

images. The gathered images undergo pre-processing 

utilizing a Gaussian Filter to eliminate noise which 

are then subjected to the removal of unwanted hair 

using a dull razor. The input images are fed into W-

Net for segmentation of skin lesion regions with 

manual segmentation followed by image cropping to 

remove irrelevant details. Feature extraction is 

performed using pre-trained models such as ResNet-

50 and VGG-16, which are adapted for an efficacious 

global classification performance. Moreover, the 

hyperparameter tuning using the PCSAJSO 

algorithm with CNN improves the maximum 

accuracy to efficiently capture melanoma skin 

images and avoid overfitting through optimization 

techniques. In comparison to the existing techniques 

like Inception-ResNet and U-Net, the PCSAJSO-

CNN achieves commendable accuracies of 99.38%, 

99.70%, 94.68%, and 97.08% respectively on the 

ISIC2017, ISIC2018, ISIC2019 and PH2 datasets. In 

the future work, hybrid techniques in skin cancer 

classification will leverage the complementary 

strengths of traditional methods and deep learning to 

enhance feature selection, interpretability, data 

efficiency, and generalization. 

 

Notation 
Notation Description 

𝑛1 and 𝑛2 Pixel value of image 

𝜎 Standard deviation 

ℎ Gaussian values 

 𝑀𝑛
⃗⃗ ⃗⃗  ⃗ Vector of chaotic logistic value 

𝑀0
⃗⃗ ⃗⃗  ⃗ Initial values 

𝑟 Random vector 

𝑈𝑏  and 𝑈𝑙 Upper and lower bounds 

𝑟, 𝑠 Integer, greatest evaluation 

𝑓(𝑥)
= max (0, 𝑛) 

Linear dependent variable 

𝜎, �⃗� s Softmax and input vector 
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