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Abstract: Speaker diarization is crucial for enhancing speech communication across various domains, including 

broadcast news, meetings, conferences featuring multiple speakers. Nevertheless, real-time diarization applications 

face persistent challenges due to overlapping speech and varying acoustic conditions. To address these challenges, 

End-to-End Neural Diarization (EEND) has demonstrated superior performance compared to traditional clustering-

based methods. Conventional neural techniques often rely on fixed datasets, which can hinder their ability to generalize 

across different speech patterns and real-world environments. Therefore, this research proposes an EEND model 

utilizing a Multi-Scale approach to compute optimal weights, essential for generating speaker labels across multiple 

scales. The Multi-Scale Diarization Decoder (MSDD) approach accommodates a flexible number of speakers, overlap-

aware diarization, and integrates a pre-trained speaker embedding model. The investigation included different 

languages and datasets, such as the proposed Myanmar M-Diarization dataset and the English AMI meeting corpus. 

Notably, many benchmark multi-speaker datasets for speaker diarization include no more than 8 speakers per audio 

and have fixed-length speakers per audio. Hence, this study developed its own dataset featuring up to 15 speakers with 

flexible number of speakers. Furthermore, the study demonstrates language-independence, underscoring its efficacy 

across diverse linguistic contexts. Comparative analysis revealed that the proposed model outperformed clustering 

baseline methods (i-vectors and x-vectors) and single-scale EEND approaches in both languages regarding Diarization 

Error Rate (DER). Additionally, proposed M-Diarization dataset included audio of varying lengths and scenarios with 

an overlap ratio of 10%. The model was validated on the M-Diarization dataset, demonstrating its capability to handle 

flexible speaker counts and audio durations efficiently. This experiment marks the first implementation of an EEND 

with a Multi-Scale approach on a fixed-speaker English language corpus and the variable-speaker M-Diarization 

dataset. It achieved notable results: 44.63% for i-vectors, 47.38% for x-vectors, 19% for the EEND single-scale 

approach, and 4.37% for the EEND MSDD approach on overlap ratio 3.31% on the M-Diarization dataset. The 

experimental outcomes clearly indicate that the proposed method significantly enhances diarization performance, 

particularly in scenarios involving varying numbers of speakers and diverse audio conversation lengths. 

Keywords: End-to-End Neural diarization, Overlap speech conversations, Speaker diarization, Multi-scale approach, 

diarization error rate. 

 

 

1. Introduction 

The primary function of speaker diarization is to 

accurately assign speech segments to specific 

speakers, enhancing communication fidelity in 

environments with dynamic interactions and varying 

speaker conditions [1, 2]. 

A standard diarization system follows a 

clustering-based methods (i-vectors and x-vectors) [3, 

4]. Nevertheless, clustering-based methods that 

cannot be directly optimized to minimize diarization 

errors and have difficulty handling speaker overlaps 

[5]. 

To address these challenges, many researchers 

proposed EEND. It can effectively handle speaker 

overlaps during both training and inference by 

employing a multi-label classification framework [5]. 

However, they are prone to overfitting if the training 

data lacks diversity, leading to poor generalization on 

new, unseen data. Applying single-scale and multi-
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scale segmentation approaches to neural diarization 

can significantly impact the performance and 

robustness, particularly in scenarios with long audio 

recordings and multiple speakers. Single-scale 

segmentation is efficient but may struggle with 

varying speaker activity and rapid changes. In 

contrast, multi-scale segmentation, which analyses 

audio at multiple temporal resolutions, can better 

capture speaker turn changes and transitions, 

reducing errors caused by missed speaker turns or 

overlapping speech. 

Therefore, the proposed model employs two 

types of multi-scale segmentation 5-scale and 6-scale 

on two different corpora: the AMI meeting corpus 

[13] and the M-Diarization dataset [10, 11]. The M-

Diarization dataset represents a significant 

advancement in the field of Myanmar Language 

Speech Conversation, providing a valuable resource 

for research and development in the area, updated 

with natural, real-time speech. The dataset includes 

audio recordings with a variable number of speakers. 

A clustering-based approach using i-vectors and x-

vectors serves as the baseline. Traditional end-to-end 

neural diarization with single segmentation is 

compared against the proposed multi-scale method. 

The emphasis is on handling overlapping speech and 

employing convolutional neural networks for 

weighting schemes. The proposed multi-scale end-to-

end neural diarization method excels by managing 

overlapping speech, leveraging convolutional neural 

networks for precise weighting, and demonstrating 

superior performance across variable speaker 

numbers and diverse languages. 

The contributions of this experiment, as 

highlighted below, are:  

1. Enhancing the M-Diarization dataset with 

real-time multi-speaker conversations in the 

Myanmar language. 

2. Focusing on speaker embedding features, the 

study examines i-vectors and x-vectors clustering-

based methods as baselines, and end-to-end methods, 

compared to traditional single-scale and multi-scale 

approaches. 

3. Proposing an end-to-end neural diarization 

method utilizing multi-scale segmentation with two 

different scales to manage a variable number of 

speakers. 

4. Performing evaluations on two distinct 

language corpora: the AMI meeting corpus and the 

M-Diarization dataset. 

The rest sections of the paper are structured as 

follows: Section 2 is provided a comprehensive 

review of existing research on i-vectors, x-vectors, 

and EEND. Section 3 is introduced the EEND 

approach is developed in this study, while Section 4 

is presented the proposed methodology in detail. The 

M-Diarization dataset is described in Section 5. 

Section 6 is detailed the implementation of the 

proposed model, and Sections 7 and 8 is evaluated the 

proposed method compared to i-vectors, x-vectors, 

and single-scale EEND on two distinct datasets, 

respectively. Finally, Section 9 is offered a summary 

of the research findings. This paper is part of the 

ASEAN IVO 2023 project, ‘Spoof Detection for 

Automatic Speaker Verification,’ which aims to 

enhance the reliability of features and datasets for 

speaker verification in the Myanmar language. 

2. Related works 

In speaker diarization, extracting speaker 

embeddings is crucial for accurately clustering 

speech segments. This section reviews related work 

on speaker embedding extraction, highlighting key 

techniques that have advanced diarization 

performance. 

Early approaches for speaker diarization utilized 

i-vectors to represent segmented speech, applying 

cosine similarity for scoring and clustering with K-

means or spectral clustering. Experimental results 

with i-vector features often involved scenarios such 

as telephone conversations with two speakers in clean 

environments [3]. However, i-vectors are sensitive to 

channel and noise variability, which limits their 

robustness in diverse acoustic conditions. 

To address these limitations, [4] introduced the x-

vector system, which employs a Deep Neural 

Network (DNN) architecture to replace traditional i-

vectors. The x-vector approach learns fixed-

dimensional embeddings for acoustic segments of 

varying lengths and incorporates a scoring metric. 

Despite these advancements, both i-vectors and x-

vectors still rely on clustering-based methodologies. 

Building on this, [5] proposed the EEND model, 

which directly minimizes diarization errors and can 

handle overlapping speech. However, the single-

scale approach used in EEND, which was trained 

with an overlap ratio of 5.8%, struggled with 

performance variations under different overlap 

conditions, particularly due to the significant 

discrepancy between training and test set overlap 

ratios. The highlighted the challenge of adapting end-

to-end models to varying overlap ratios in practice. 

In our work, we proposed a multi-scale approach 

for segmentation, speaker embedding extraction, and 

clustering in End-to-End Neural Diarization. This 

approach balances temporal resolution between short 

and long segments to enhance speaker diarization 

accuracy, particularly in real-time scenarios with 

unseen data. Short segments (0.5–1.0 seconds) enable 
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rapid updates to speaker profiles during dynamic 

conversations, while longer segments (2–3 seconds) 

provide a comprehensive view of speaker 

characteristics over extended periods.  

Our experiments demonstrate the effectiveness of 

multi-scale approach. We compared two techniques: 

the 5-scale method, which adapts well to short 

segments and facilitates rapid updates [16], and the 

6-scale method, which excels in analysing longer 

segments. The 6-scale approach outperformed other 

methods in handling lengthy audio meetings from 

two different datasets. Specifically, the 6-scale 

method reduced diarization errors in long meetings 

compared to uniform segmentation approaches, and 

improved clustering accuracy on short segments. The 

empirical evidence supports the significant 

contribution of our multi-scale method, 

demonstrating its robustness and adaptability in 

diverse speech contexts. 

3. End-To-End neural diarization 

It utilizes a neural network that takes audio 

features as input and produces a unified 

representation of speech activities involving multiple 

speakers [5]. The model is trained to include non-

speech segments and speaker overlaps, to minimize 

diarization errors. EEND method for speaker 

diarization task can be formulated as a multi-label 

classification problem, as follows [6], Let 

 

𝑋 = (𝑥𝑡  ∈  ℝ𝐹|𝑡 = 1, … … , 𝑇)                           (1) 

 

𝑌 = (𝑦𝑡|𝑡 = 1, … … , 𝑇)                                       (2) 

 

𝑦𝑡 = [𝑦𝑡,𝑐  ∈ {0,1}|𝑐 = 1, … . . 𝐶]                        (3) 

 

𝑆 = (𝑠𝑡|𝑡 = 1, … . , 𝑇)                                          (4) 

 

𝑆𝑡 = [𝑆𝑡,𝑛  ∈ {0,1}|𝑛 = 1, … . 𝑁]                        (5) 

 

In the EEND framework, we have the following 

formulas to compute the estimated output, H: 

 

𝐻 = (ℎ𝑡  ∈  ℝ𝐷|𝑡 = 1, … , 𝑇) 
     = 𝐸𝑛𝑐𝑜𝑑𝑒𝑟 (𝑋) ∈  ℝ𝐷×𝑇                               (6) 

 

𝑌̂ = (𝑦̂𝑡 ∈  ℝ𝐶|𝑡 = 1, … . , 𝑇) 
    =  𝜎 (𝐿𝑖𝑛𝑒𝑎𝑟 (𝐻)𝜖 ℝ𝐶×𝑇)                               (7) 

 

Then the PIT loss in written as follows: 

 

𝐿𝑅 =  
1

𝑇𝐶
 min
∅ ∈𝑝𝑒𝑟𝑚(𝑐)

∑ 𝐵𝐶𝐸(1𝑡
∅, 𝑦̂𝑡)𝑡                        (8) 

 

Table 1. Nomenclature section of the paper 
Notation Definition 

X The sequence of input features 

𝑥𝑡 
The feature vector at time step t, with xt 

being a F-dimensional vector 

T 
The total number of time steps in the 

sequence 

ℝ𝐹 The F-dimensional feature space 

Y 
The sequence of ground-truth speaker labels 

for the input features. 

𝑦𝑡  
The ground-truth speaker label vector at 

time step t 

𝑦𝑡,𝑐 
Binary value indicating the presence (1) or 

absence (0) of speaker c at time step t 

C 
The total number of speakers in the current 

recording. 

S 
The sequence of absolute ground-truth 

speaker labels for the input features. 

𝑠𝑡 
The absolute ground-truth speaker label 

vector at time step t 

𝑆𝑡,𝑛 
Binary value indicating the presence (1) or 

absence (0) of speaker n at time step t 

H 
The sequence of feature vectors obtained 

from the Encoder layer 

ℎ𝑡 D-dimensional vector at time step t 

ℝ𝐷 The D-dimensional feature space 

𝑌̂ The sequence of predicted speaker labels 

𝑦̂𝑡 
C-dimensional vector representing the 

probabilities for each speaker at time step t 

𝜎 
The sigmoid function applied element-wise 

to the output of the linear layer 

𝑝𝑒𝑟𝑚(𝑐) 
The set of all possible permutations of 

1,…,C 

BEC(-,-) 

Binary Cross Entropy function, measuring 

the difference between the predicted 

probabilities and the ground-truth labels. 

1𝑡
∅ 

The ground-truth label vector for the ϕ-th 

permutation at time step t 

𝑣 (𝑡) 
The binary mask from the oracle VAD 

indicating speech activity. 

𝑥𝑠  (𝑡) 
The masked audio signal at scale s, where 

only speech segments are retained. 

𝐹𝑠 
The features extracted from the masked 

audio signal at scale s 

𝛼𝑠 (𝑡) 
The weight associated with scale s at time 

step t. 

𝐸𝑠 [𝑡] 
The multi-scale embedding vector at time 

step t for scale s 

𝐶𝑘 
The cluster-average embedding vector for 

the k-th cluster 

 

The nomenclature section of the paper is shown in 

Table 1. 
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4. Proposed methodology 

This section covers the theoretical concepts 

associated with the proposed EEND multi-scale 

approach. MSDD combines information from these 

varying scales, enabling the model to capture detailed 

speaker characteristics even in brief utterances. 

By employing multi-scale inputs, MSDD 

significantly improves diarization performance, 

particularly in dynamic conversational contexts 

characterized by frequent speaker transitions. Our 

methodology integrates three neural network models: 

Multilingual Marblenet for Voice Activity Detection 

(VAD) [7], Titanet Large for generating Speaker 

Embeddings [8], and Diarization Multi-scale 

Clustering [8-9, 15-16]. Our approach incorporates 

two diarization methods on MSDD: Cluster Diarizer 

and Neural Diarizer. Cluster Diarizer is typically 

assessed with a default collar of 0.25 seconds, 

excluding overlap. Neural Diarizer, on the other hand, 

uses a MSDD combined with Oracle VAD to 

improve speaker diarization accuracy. The default 

configuration utilizes 5 embeddings with time scales 

ranging from 0.5 to 1.5 seconds. In less complex 

scenarios, a single embedding with longer durations, 

such as 1.0 or 1.5 seconds, may suffice. However, for 

unknown number of speakers, we employ 6 

embeddings with time scales extending from 0.5 to 

3.0 seconds. The overview of proposed method is 

shown in Fig. 1. 

4.1 Oracle voice activity detection (VAD) 

The proposed system employs a multi-scale 

approach in Oracle VAD evaluation to enhance 

speaker diarization accuracy. By utilizing ground-

truth VAD timestamps at various temporal 

resolutions, it effectively captures speech activity and 

speaker changes across multiple time scales [7].  

Given an audio signal x(t), the oracle VAD 

provides a binary mask v(t) indicating speech activity 

(1 for speech, 0 for non-speech). The audio signal is 

segmented into multiple scales S, where each scale s 

∈ S represents a different temporal resolution. Only 

segments marked as speech by the oracle VAD are 

processed: 

 

𝑥𝑠 (𝑡) = 𝑥 (𝑡). 𝑣 (𝑡)                                          (9) 

 
For each scale s, features Fs is extracted from the 

masked audio signal: 

 

𝐹𝑠 = 𝐹𝑒𝑎𝑡𝑢𝑟𝑒𝐸𝑥𝑡𝑟𝑎𝑐𝑡𝑜𝑟 (𝑥𝑠 (𝑡))                  (10) 

 

4.2 Speaker embeddings (TitaNet) 

TitaNet, a cutting-edge speaker embedding 

extractor, generates speaker embeddings from 

extracted features [8]. For each scale and segment, 

TitaNet processes the features to produce a speaker 

embedding vector Es[i] that encapsulates the 

speaker’s characteristics. The process is repeated 

across all scales and segments, resulting in a 

collection of speaker embeddings that capture 

speaker information at various temporal resolutions. 

These multi-scale embeddings provide a rich and 

comprehensive representation of the speaker’s 

identity, essential for accurate diarization. 

The multi-scale embeddings are then combined to 

form a single, integrated embedding for each segment. 

It can be achieved using methods such as 

concatenation, averaging, or attention mechanisms. 

The combined embedding is fed into a decoder, 

which assigns speaker labels to each segment by 

computing the probability of segment i belonging to 

a particular speaker through a softmax function. 

4.3 Multi-scale diarization decoder (MSDD) 

Following the extraction of multi-scale 

embeddings, these embeddings are processed by a 

clustering algorithm to provide initial clustering 

results for the MSDD module. The MSDD module 

uses cluster-average speaker embedding vectors to 

compare with input speaker embedding sequences [9]. 

For each step, the importance of each scale is 

weighed through estimated scale weights.  

Ultimately, a neural network model called the 

MSDD is designed to leverage the multi-scale 

approach by dynamically calculating the weight of 

each scale. The MSDD utilizes the initial clustering 

results to compare the extracted speaker embeddings 

with the cluster-average speaker representation 

vectors. 

Crucially, the weight of each scale at each time 

step is determined using a scale weighting 

mechanism, where the scale weights are derived from 

1-D convolutional neural networks (CNNs) applied 

to the multi-scale speaker embedding inputs and the 

cluster average embeddings. The calculated scale 

weights are then applied to cosine similarity values 

computed for each speaker and each scale. The scale 

weights αs [t] at time step t are calculated using 1-D 

CNNs applied to the multi-scale embeddings and 

cluster-average embeddings: 

 

𝛼𝑠 (𝑡) = 𝐶𝑁𝑁𝑠 (𝐸𝑠 [𝑡], 𝐶𝑘)                                  (11) 
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Figure. 1 Framework of EEND Multi-Scale Approach 

 

 

where Ck is cluster-average embedding for cluster k 

and CNNs represents the 1-D CNN applied at scale s.  

The process is illustrated by applying the estimated 

scale weights on the cosine similarity between the 

cluster-average speaker embedding and the input 

speaker embeddings. Aside from the CNN-based 

weighting scheme, a conv_scale_weight approach 

utilizes 1-D CNN filters to calculate scale weights. 

Finally, each context vector for each step is fed into a 

multi-layer LSTM model that generates per-speaker 

existence probabilities. 

5. M-Diarization dataset 

The creation of the M-Diarization dataset marked 

a significant milestone in the field of speech 

technology and natural language processing by 

introducing the first-ever speech conversation dataset 

for the Myanmar language. Intended as a benchmark, 

the dataset begins with two-speaker conversations as 

a baseline [10] and later expands to include multi-

speaker interactions in real-time scenarios [11]. This 

research utilized the updated M-Diarization dataset, 

maintaining the original settings while adding audio 

files from real-time conversations, such as recorded 

Facebook Live session discussions, YouTube stream 

discussions, and UCSY seminar meetings. 

Updating the M-Diarization dataset introduces 

the first Myanmar multi-speaker dataset and 

enhances real-world diarization research with 

recordings from live events and seminars. Moreover, 

the dataset features unlike other datasets with fixed-

length audio segments.  

5.1 Dataset collection procedure 

The process started by acquiring the original 

video files and converting them into wave file format.  
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Figure. 2 Details statistics of dataset categories and items 

 

This conversion ensured a consistent 16 kHz sample 

frequency and mono channel configuration. Next, 

textGrid files were generated from the wave files 

using the Praat toolkit [12]. And then applied to 

convert the textGrid files into RTTM files. These 

RTTM files are essential for speaker diarization and 

related speech processing tasks. Fig. 2 displays 

distinct categories within the dataset. 

5.2 Dataset size 

The dataset comprises 41 hours of audio 

recordings with a total of 443 speakers, including 200 

female speakers and 243 male speakers. The dataset 

also includes a total of 1677 utterances. Further 

details can be found in Table 2 below. 

In Fig. 3 illustrates the variation in the number of 

speakers in the M-Diarization dataset. 

This dataset focuses on real-world scenarios often 

involve diarization and speaker recognition in multi- 

 
Table 2. Details statistics of dataset size 

Dataset 

Size 
No. of Speakers No. of 

Utterances Female Male Total 

41 hours 200 243 443 1677 

 

 

 
Figure. 3 Varying numbers of speakers 

Table 3. Details overlap ratio for M-Diarization dataset 

Dataset Overlap Ratio (%) 

Train 10 

Development 0.01 

Testset1 0.03 

Testset2 0 

Testset3 3.31 

 

speaker conversations, this approach lays the 

groundwork to establish as a fundamental basis for 

tackling more complex situations. 

5.3 Overlap ratio 

The metric is essential for accurately segmenting 

and identifying speakers in multi-speaker scenarios, 

with natural overlaps. In this experiment, the overlap  

 

𝑂 =  
𝑇𝑡𝑜𝑡𝑎𝑙

𝑇𝑜𝑣𝑒𝑟𝑙𝑎𝑝
 × 100 %                                      (12) 

 

where Toverlap is the total duration of overlapping 

speech, Ttotal is the total duration of the segment. The 

overlap ratio details for the M-Diarization dataset are 

shown in Table 3. 

6. Main text 

This section covers the AMI meeting corpus, 

focusing on overlap ratio calculation and utilizing i-

vectors and x-vectors as fundamental components.  

It provides a comprehensive analysis of training 

methodologies for end-to-end neural networks, 

addressing both single-scale and multi-scale 

frameworks, and includes a rigorous evaluation of 

performance metrics. 

6.1 AMI meeting corpus 

AMI meeting corpus [13] included with a 19.4% 

overlap ratio. This experiment applies the AMI 

meeting corpus to evaluate a proposed method across 

different languages.  

The corpus, comprising 100 hours of multi-modal 

meeting recordings, is preferred for developing 

speaker diarization systems due to its diverse 

scenarios in academic and professional domains. This 

study specifically utilizes 10 hours of close-talking 

meeting recordings from AMI, each featuring fixed 

configurations of four speakers. 

6.2 I-vectors and X-vectors implementation 

I-vectors condense speaker characteristics into a 

low-dimensional space using Gaussian Mixture 

Models (GMMs) for feature extraction.  
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Table 4. Implementations of I-vectors and X-vectors 

Aspect I-vector X-vector 

Model Basis GMM-UBM DNN 

Dimensionality 128 512 

Speaker 

Discrimination 
Low robust More robust 

Feature Extraction GMM features DNN features 

 

In contrast, x-vectors utilize deep neural networks 

(DNNs) to provide more robust feature 

representations, capturing complex patterns in speech. 

The implementations are shown in the following 

Table 4. 

6.3 EEND (Single scale approach) 

The implementation begins with SincNet [14] for 

detailed audio feature extraction, followed by two 

stacked bidirectional LSTM layers, each with 128 

units in both directions, as part of the EEND single-

scale approach. 

Temporal pooling is intentionally omitted to 

preserve temporal dynamics and long-term 

dependencies crucial for tasks like audio stream 

analysis. The subsequent two feed-forward layers, 

each with 128 units and tanh activation, transform 

and abstract learned features. The final classification 

layer, consisting of two units with softmax activation, 

optimizes categorical classification tasks based on 

preserved temporal context. The experiment utilized 

a sliding window with a size of 5 seconds and a shift 

of 0.5 seconds [15]. For segmentation, a collar 

tolerance duration of 0.00 seconds required segments 

to precisely match start or end times to be considered 

consecutive or overlapping. The pre-trained pipeline 

employed segmentation (threshold 0.4442), 

clustering (threshold 0.7154, method: Centroid), and 

specified minimum duration off (0.5817). The fine-

tuned pipeline adjusted segmentation (threshold 

0.5895) and clustering (threshold 0.6422) parameters 

to enhance performance. 

6.4 EEND (Multi-scale approach) 

In this experiment, Multilingual Marblenet for 

VAD, Titanet Large for generating speaker 

embeddings, and Diarization MSDD [8-9, 15-16] 

neural networks are used. The standard setup 

incorporates five embeddings ranging from 0.5 to 1.5 

seconds. In simpler scenarios, a single embedding 

with a longer duration, such as 1.0 or 1.5 seconds, 

may be adequate. However, in more complex 

situations involving unknown number of speakers, 

the use of multi-scale embeddings significantly 

improves diarization precision.  

Table 5. Training parameters for EEND multi-scale 
Model Parameter 

Name 

Value 

General Input 

sample 

rate 

16 000 

Batch size 16 

VAD Window 

length 

0.8 

Shift 

length 

0.04 

Pad onset 0.1 

Pad offset -0.05 

Speaker 

embedding 

(5 scales) 

Window 

length 

[1.5,1.25,1.0,0.75,0.5] 

Shift 

length 

[0.75,0.625,0.5,0.375,0.25] 

Speaker 

embedding 

(6 scales) 

Window 

length 

[3.0,2.5,2.0,1.5,1.0,0.5] 

Shift 

length 

[1.5,1.25,1.0,0.75,0.5,0.25] 

 

 

In our experiments, we employed six embeddings, 

extending from 0.5 to 3.0 seconds. Detailed training 

parameters are shown in Table 5. 

In our work, encompasses two main diarization 

methods: Cluster Diarizer and Neural Diarizer. 

6.4.1. Cluster diarizer 

Cluster Diarizer is typically evaluated using a 

default collar of 0.25 seconds without overlap. The 

evaluation setting focuses on assessing non-

overlapping segments around boundaries, ensuring 

accurate segmentation without considering overlaps. 

The method effectively identifies and separates 

speakers based on distinct embeddings, enhancing 

speaker diarization in various audio processing 

applications [8]. 

6.4.2. Neural diarizer 

The Neural Diarizer employs a MSDD coupled 

with Oracle VAD to enhance speaker diarization 

accuracy [8]. A critical parameter, sigmoid_threshold, 

determines the sensitivity to speech overlaps: lower 

values increase sensitivity, potentially reducing false 

alarms and missed detections but also risking over-

segmentation. The default sigmoid_threshold is set to 

0.7 for telephonic models; setting it to 1.0 results in 

detecting no overlap speech, suitable for tasks 

requiring precise segmentation. The flexible 

approach adapts to different speech scenarios, 

optimizing diarization performance based on 

specified threshold settings. 
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6.5 Evaluation metric 

In this research, Diarization Error Rate (DER) is 

a key metric for evaluating speaker diarization 

systems by measuring segmentation and speaker 

labelling errors within an audio dataset [17]. It is 

typically calculated using the following equation: 

 

𝐷𝐸𝑅 =  
100×(𝑀𝑖𝑠𝑠𝑒𝑠+𝐹𝐴+𝑂𝑣𝑒𝑟𝑙𝑎𝑝𝑠)

𝑇𝑜𝑡𝑎𝑙 𝑆𝑝𝑒𝑒𝑐ℎ 𝑆𝑒𝑔𝑚𝑒𝑛𝑡𝑠
                       (13) 

 

where Misses represent segments where a speaker 

change is missed. False Alarms denote segments 

incorrectly labelled as speaker changes. Speaker 

Overlaps indicate segments where more than one 

speaker is detected simultaneously. Total Speech 

Segments refer to the total duration of speech 

segments in the evaluation dataset. 

7. Experimental results and analysis on AMI 

corpus 

This section provides a comparative analysis of 

baseline and proposed methods using the AMI 

Meeting Corpus [13]. It included with a 19.4% 

overlap ratio. This experiment applies the AMI 

meeting corpus to evaluate a proposed method across 

different languages.  

The corpus, comprising 100 hours of multi-modal 

meeting recordings, is preferred for developing 

speaker diarization systems due to its comprehensive 

coverage of diverse scenarios in academic and 

professional domains. This study specifically utilizes 

10 hours of close-talking meeting recordings from 

AMI, each featuring fixed configurations of four 

speakers. 

7.1 Experimental setup 

The corpus is characterized by a 19.4% overlap 

ratio. The training set comprises 28 audio files, 

totalling 8 hours and 46 minutes, featuring 112 

speakers. The development set includes 3 files with a 

duration of 56 minutes, involving 12 speakers. 

Similarly, the test set contains 3 files, also spanning 

56 minutes, with 12 speakers. Each audio file 

consistently features 4 speakers. 

7.2 Experimental results 

The experimental results compare our 5-scale and 

6-scale cluster diarizer models, serving as a baseline, 

and the EEND single-scale approach models. Fig. 4 

presents these comparative results, focusing on DER 

percentages. This comparison provides a clear 

highlight of DER percentages across various methods 

 
Figure. 4 Comparative results for English AMI corpus 

 

and pipelines in speaker diarization, demonstrating 

the effectiveness of our approach as applied to the 

English AMI meeting corpus. 

Firstly, traditional methods such as i-vector and 

x-vector exhibit higher error rates of 88.32% and 

81.69%, respectively. These methods rely on 

handcrafted features and statistical modelling, which 

can lead to higher error rates compared to end-to-end 

approaches. 

Secondly, the EEND model operating at a single 

scale demonstrates improvements over traditional 

methods. The pre-trained configuration achieves a 

DER of 32.5%, while the Finetuned version further 

reduces this to 26.6%. The underscores the 

effectiveness of neural networks in learning 

discriminative features directly from data, thereby 

enhancing diarization accuracy. 

Additionally, the proposed EEND model 

implemented with multiple scales using Cluster 

Diarizer, specifically using a collar of 0.25 seconds 

without overlap, shows significant advancements in 

diarization performance. The configuration using 5 

scales achieves a DER of 14.18%, and scaling up to 

6 scales further reduces the DER to 8.5%. The 

proposed multi-scale representations of 6 scales 

enables the model to capture temporal and 

hierarchical dependencies more effectively, leading 

to superior speaker segmentation and clustering. 

Furthermore, Table 6 provides detailed results for 

the EEND multi-scale Neural Diarizer, showcasing 

its performance in both the 5-scale and 6-scale 

configurations. 

In the context of the Neural Diarizer using EEND 

with 6 scales and a threshold of 0.7, the results 

demonstrate superior performance compared to other 

configurations. Specifically, at this threshold and 

scale setup, DER is notably lower, achieving 13.07%.  

The results indicate that the model effectively 

balances the trade-off between sensitivity and 

specificity  in  speaker  segmentation, leading to more  
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Table 6. The performance of multi-scale EEND on AMI corpus 
Proposed 

Method 

Multi 

Scales 
DER % 

Neural Diarizer Threshold: 0.7 Threshold: 1.0 

EEND (Multi-Scale) 

collar 0.25 

sec, 

without 

overlap 

collar 0.25 

sec, with 

overlap 

collar 0.0 

sec, with 

overlap 

collar 0.25 

sec, without 

overlap 

collar 0.25 

sec, with 

overlap 

collar 0.0 

sec, with 

overlap 

EEND 

(Multi 

Scale) 

5 scales 13.87 18 24.21 12.31 16.62 23.16 

6 scales 13.07 17.29 23.38 12 16.29 23 

 

 

accurate identification and clustering of speakers 

within audio recordings. 

Comparatively, at 6 scales with a threshold of 1.0, 

the DER increases to 17.29%, indicating a less 

precise segmentation compared to the 0.7 threshold 

setting. Similarly, variations in collar settings (0.25 

sec with or without overlap) and scale adjustments 

show fluctuations in DER, but the 6 scales with a 

threshold of 0.7 consistently stands out with the 

lowest error rate among the presented options. 

In our experiments, the findings highlight the 

efficacy of configuring the Neural Diarizer with 6 

scales and a threshold of 0.7 for achieving enhanced 

accuracy in speaker diarization tasks. 

7.3 Analysis and discussion 

Building on the results of our experiments, the 

findings underscore significant advancements in 

speaker diarization achieved through the EEND 

model with multi-scale configurations. The notable 

reduction in DER to as low as 8.5% with 6 scales 

using Cluster Diarizer demonstrates the capability to 

effectively capture complex temporal and 

hierarchical dependencies inherent in audio data. The 

improvement over traditional methods like i-vector 

and x-vector, which exhibited much higher error rates 

due to their reliance on manually crafted features, 

highlights the transformative impact of neural 

network-driven approaches in speaker diarization 

tasks. 

Additionally, the sensitivity analysis across 

different thresholds and collar settings within the 

Neural Diarizer further emphasizes the optimal 

performance of the EEND model at 6 scales with a 

threshold of 0.7, ensuring robust speaker 

segmentation and clustering. These results not only 

validate the efficacy of multi-scale representations 

but also pave the way for enhanced applications in 

real-world scenarios. 

8. Experimental results and analysis on M-

Diarization dataset 

This section offers a comparative evaluation of 

the baseline and proposed techniques in multi-

speaker environments utilizing the Myanmar M-

Diarization dataset.  

8.1 Experimental setup 

The training set comprises 1673 audio files, 

totalling 41 hours, and includes recordings from 443 

speakers. The development set consists of a single 

30-minute file involving 4 speakers, designed to 

assess multi-speaker interactions. Testset1 features a 

25-minute file with 2 speakers. Testset2 includes a 

13-minute Zoom interview with unbalanced dialogue. 

Testset3 comprises a 31-minute recording of a UCSY 

seminar, notable for its high overlap. 

8.2 Experimental results 

A comparative analysis of the proposed models 

against baseline clustering methods and the EEND 

single-scale approach was conducted, evaluating 

various speaker configurations within the M-

Diarization dataset. The results of this comparative 

study are illustrated in Fig. 5. This experiment 

provides detailed insights into DER percentages for 

both state-of-the-art methods and our proposed 

models, showcasing the effectiveness of our 

approach across different speaker configurations, as 

outlined in our research survey. 

Fig. 5 provides a comprehensive overview of 

speaker diarization methods across different test sets, 

highlighting their performance under various 

conditions. In the development set, i-vector achieving 

1.72%, indicating effective speaker separation. In 

contrast, x-vector shows a significantly higher error 

rate of 24.67%, suggesting less precise performance 

in this controlled setting. The EEND models, both 

single - scale   and   multi - scale,  show   substantial  
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Table 7. The performance of multi-scale EEND on M-Diarization dataset 

Proposed 

Method 

Multi 

Scales 

DER % 

Neural Diarizer Threshold: 0.7 Threshold: 1.0 

 

EEND (Multi-Scale) 

collar 0.25 

sec, 

without 

overlap 

collar 0.25 

sec, with 

overlap 

collar 0.0 

sec, with 

overlap 

collar 0.25 

sec, without 

overlap 

collar 0.25 

sec, with 

overlap 

collar 0.0 

sec, with 

overlap 

Dev 5 scales 0.07 0.07 0.12 0.05 0.05 0.1 

6 scales 0.04 0.04 0.1 0.04 0.04 0.1 

Testset1 5 scales 2.64 2.64 2.74 2.7 2.7 2.79 

6 scales 2.62 2.62 2.4 2.62 2.62 2.4 

Testset2 5 scales 0.05 0.05 0.12 0.03 0.03 0.07 

6 scales 0 0 0.08 0 0 0.08 

Testset3 5 scales 9.9 11.42 14.16 9.16 10.87 13.65 

6 scales 2.45 4.37 6.72 2.45 4.37 6.72 

 

 

 
Figure. 5 Comparative results for Myanmar M-

Diarization dataset 

 

improvements through pre-training and fine-tuning, 

with multi-scale variants achieving remarkably low 

error rates as fine as 0.03%. 

Moving to the test sets, each presents unique 

challenges. Testset1, which exhibits less speaker 

overlap, poses a challenge to traditional methods like 

i-vector and x-vector, resulting in higher error rates 

of 7.47% and 4.75%, respectively. This scenario 

highlights the difficulty in accurately distinguishing 

speakers when overlap is minimal. Testset2, 

characterized by an unbalanced speaker distribution, 

challenges diarization methods differently. Despite 

the imbalance, EEND models perform robustly, 

particularly at multiple scales, showcasing their 

ability to handle varied speaker distributions 

effectively with error rates as low as 0.03%. 

Testset3 represents the most complex scenario 

with high speaker overlap, where traditional methods 

like i-vector and x-vector struggle significantly, 

showing error rates of 44.63% and 47.38%, 

respectively. In contrast, EEND models demonstrate 

their superiority in handling such challenges, 

achieving error rates ranging from 2.5% in 6 scales. 

The capability underscores the advantage of EEND 

multi-scale approach in capturing and separating 

speakers amidst overlapping speech patterns, making 

it particularly effective for real-world applications 

where speaker interactions are intricate and varied. 

Overall, the findings underscore the importance of 

adaptive diarization methods like EEND in 

addressing the diverse complexities encountered 

across different speaker diarization tasks. 

Table 7 presents the results of the proposed 

Neural Diarizer (5-scale and 6-scale), detailing its 

performance across various evaluation sets and 

conditions. The table compares the multi-scale 

Neural Diarizer effectiveness at two thresholds (0.7 

and 1.0) and different collar settings (0.25 seconds 

and 0.0 seconds for overlap handling). The analysis 

underscores the 6-scale configuration consistent and 

superior performance across diverse scenarios. 

In the development set, for instance, the 6 scales 

setup achieves a remarkably low DER of 0.04 with a 

0.25-second collar, whether handling overlap or not. 

This indicates precise and reliable speaker 

segmentation, showcasing the effectiveness in 

controlled environments. 

The test sets, the 6 scales configuration maintains 

strong performance across different challenges. In 

Testset1, it sustains a DER of 2.62% under both 

collar settings, demonstrating stable performance in a 

dataset with moderate speaker overlap. Testset2 

showcases the capability further, achieving a perfect 
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DER of 0% with a 0.25-second collar without overlap, 

highlighting its robustness in scenarios where 

speakers are distinctly separated. Even in Testset3, 

known for high speaker overlap, the 6 scales 

configuration manages a competitive DER of 2.45% 

with a 0.25-second collar, indicating effective 

speaker separation despite challenging conditions. 

The experiment results show the significant 

advantage when employing the 6 scales configuration 

in the Neural Diarizer model. 

8.3 Analysis and discussion 

The results highlight the proposed EEND multi-

scale models outperform, especially in challenging 

contexts characterized by high speaker overlap.  

While i-vector and x-vector demonstrate 

effectiveness in controlled settings with low speaker 

overlap, as seen in the development dataset, their 

performance falters significantly in environments 

like Testset3, where speaker interactions are complex 

and overlap is prevalent. The limitation is evident in 

their markedly higher error rates compared to EEND 

models, particularly those employing multiple scales. 

The EEND models consistently outperform 

traditional methods, showcasing superior adaptability 

and accuracy across all evaluation sets. The 6 scales 

configuration within the EEND framework stands out 

for its ability to achieve remarkably low error rates 

even in the face of challenging speaker overlap 

scenarios, underscoring its efficacy in accurately 

capturing and separating speakers amidst varying 

speech patterns. 

9. Conclusion and future works 

In this study, we conducted a thorough evaluation 

of traditional clustering-based methods, such as i-

vectors and x-vectors, alongside EEND methods, 

focusing on their capacity to handle speaker overlap 

and distribution. We applied these techniques to two 

datasets: the Myanmar M-Diarization dataset and the 

English AMI meeting corpus, both featuring diverse 

languages and speaker configurations. According to 

the comparative results that while traditional methods 

like i-vectors and x-vectors performed well in 

controlled environments, they struggled with 

complex scenarios involving significant speaker 

overlap. And the single-scale EEND approach 

outperformed conventional methods. However, the 

single-scale EEND approach faces limitations when 

dealing with an unknown number of speakers. In 

contrast, EEND models, particularly those employing 

multi-scale approaches (5-scale and 6-scale), 

demonstrated enhanced adaptability and precision. 

Additionally, our study introduced the first M-

Diarization dataset and implemented a flexible 

speaker count system, validating the performance of 

our proposed model with high-overlap test sets and 

the AMI meeting corpus. The 6-scale EEND 

configuration notably outperformed traditional 

methods in terms of DER in high-overlap conditions. 

These findings highlight the effectiveness of multi-

scale approaches in improving diarization accuracy. 

Our work underscores the significant contribution of 

EEND multi-scale models in advancing speaker 

separation in challenging environments. Future 

research should explore the application of EEND 

models in real-time online diarization systems to 

further assess their effectiveness in dynamic 

scenarios. 
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