
Received: July 16, 2024. Revised: September 30, 2024. 880

International Journal of Intelligent Engineering and Systems, Vol.17, No.6, 2024 DOI: 10.22266/ijies2024.1231.67

An Improved Toxic Speech Detection on Multimodal Scam Confrontation Data

Using LSTM-Based Deep Learning

Agustinus Bimo Gumelar1 Eko Mulyanto Yuniarno1,2 Arif Nugroho3

Derry Pramono Adi1 Indar Sugiarto4 Mauridhi Hery Purnomo1,2,5,*

1Department of Electrical Engineering, Faculty of Intelligent Electrical and Information Technology (ELECTICS),

Institut Teknologi Sepuluh Nopember, Surabaya 60111, Indonesia
2Department of Computer Engineering, Faculty of Intelligent Electrical and Information Technology (ELECTICS),

Institut Teknologi Sepuluh Nopember, Surabaya 60111, Indonesia
3Department of Electrical Engineering, Faculty of Engineering,

Universitas Negeri Yogyakarta, Yogyakarta 55281, Indonesia
4Department of Electrical Engineering, Petra Christian University, Surabaya 60236, Indonesia

5University Center of Excellence on Artificial Intelligence for Healthcare and Society (UCE AIHeS),
Surabaya, Indonesia

* Corresponding author’s Email: hery@ee.its.ac.id

Abstract: Toxic speech has gained substantial attention, focusing on its detrimental effects and prevalence across

online platforms. This phenomenon often exhibits discernible patterns in pronunciation analogous to emotions such as

happiness or anger. It has been relatively underexplored in prior studies, which predominantly addressed offensive

language, hate speech, and sarcasm without considering their emotional properties. Social media platforms have

emerged as spaces where individuals share personal encounters with toxic speech that impacts on their well-being. To

address this challenge, our study introduces a novel approach that combines speech and text data within a Long Short-

Term Memory (LSTM) framework. Unlike existing methods that primarily focus on text analysis, our approach

uniquely integrates both speech and text, thereby enhancing the model’s ability to accurately detect toxic content. This

multimodal data strategy is such an innovative step forward that it provides a more comprehensive solution to the

problem of toxic speech detection. Our collected dataset comprises two-way conversations from online fraud reports

and confrontations related to loan scams uploaded on YouTube, conducted in the Indonesian language. The absence

of subtitles can emerge any ambiguity of homonyms, so it is required to transcribe the audio content to text. To do this,

we used native speakers to make sure the transcription was correct in the Indonesian language of the toxic context. In

addition, speech features, such as pitch, intensity, and speaking rate, were utilized alongside text features, including

Bag-of-Words (BoW) and Term Frequency-Inverse Document Frequency (TF-IDF). As a result, validation through

F1-score measurement yielded 92.73% for text data and 89.09% for speech data. Our proposed approach provided a

substantial improvement of approximately 12%-30% compared to the previous LSTM models. The performance

comparison results confirmed that our proposed approach can enhance the accuracy of toxic speech detection.

Keywords: Toxic speech detection, Speech pitch, Speech intensity, Bag-of-words, Term frequency-inverse document

frequency, Long short-term memory.

1. Introduction

Toxic speech is acknowledged for its negative

impact, causing emotional distress and disrupting

social connections [1]. Understanding how toxic

speech operates on social media is crucial to deal with

its consequences. Generally described as offensive

language, toxic speech can potentially lead to self-

harm and trigger long-lasting depression [1, 2].

Spotting toxic speech in everyday conversations is

not easy [3]. However, by focusing on specific

contexts or cases that inherently involve toxic speech,

Received: July 16, 2024. Revised: September 30, 2024. 881

International Journal of Intelligent Engineering and Systems, Vol.17, No.6, 2024 DOI: 10.22266/ijies2024.1231.67

toxic-related instances can be recognized and further

automated using Deep Learning model classification.

Our study focuses on online interactions, making

data collection from the social media platforms for

capturing relevant and accurate insights. Unlike other

social media platforms, YouTube is a major hub for

video content, which often includes user comments

and interactions that can provide valuable insights

into online behavior. The platform’s popularity and

extensive use for both content creation and

consumption make it an ideal source for our study on

toxic speech detection. Additionally, the variety of

content and the engagement it generates allow us to

capture a wide range of speech patterns and

interactions, making our analysis more

comprehensive and representative of the general

online discourse in Indonesia [4].

We collected data from YouTube specifically

because as of 2024, Indonesia ranks third in the

number of YouTube users globally, with

approximately 139 million active users. This large

user base provides a rich and diverse dataset for

analyzing toxic speech. The importance of taking

data from YouTube for toxic speech research lies in

its vast user base, which includes significant

contributions from Indonesia [5]. Analyzing

YouTube content allows for a comprehensive

understanding of toxic speech in an active online

community.

Moreover, scam confrontation videos on

YouTube would often follow this scenario: the

reporters brought attention to a troubling scenario

involving online loan scams. The uploaded YouTube

reports on these scams would feature conversations

between victims and scammers during confrontations

via telephone calls. Our collection of online loan

scam reports adheres to Dove’s criteria of scam-

related phenomena, which is close to investment

scams, Ponzi schemes, and potential identity theft [6].

In this case, we specifically selected Indonesia for

our study. The reason is that the Central Bureau of

Statistics’ report indicates a low percentage of loan

disbursements to Gross Domestic Product (GDP),

suggesting underutilization of its financing capacity

[7]. Consequently, the citizens of Indonesia are

susceptible to quick online loan schemes. However,

the use of financial technology in these online loan

schemes makes them vulnerable to scams, leading to

confrontations that result in toxic speech from both

the victims and the perpetrators.

According to Dove, scam schemes can start in a

complex motion [6]. Scammers would initiate

random calls to various numbers, sourced from

different outlets like the dark web or public hotlines

disclosed on social media, targeting potential loan-

seekers [8].

Through phishing techniques, they manipulate

victims by posing as fake agents representing

corporations, convincing them of unnecessary quick

loan schemes. Prior to the initiation of these supposed

loan schemes, scammers request “administrative

funds” to finalize the process. Once victims transfer

the funds, the scammers sever all communication by

blocking the number [6]. Conversely, scammers may

also apply for loans using stolen identities,

maintaining a semblance of a steady income in a bank

account. After the loan approval, the leaves the actual

victim, whose identity was stolen, to deal with debt

collectors [9]. This often results in a perplexing

conversation between the victim and the debt

collector, as the victim is unaware of the loan.

According to Hess, varying intonations can impart

different meanings to a neutral word, transforming it

into toxic language [10].

Nguyen et al. introduced the Vietnamese

Constructive and Toxic Speech Detection dataset

(UIT-ViCTSD), a crowdsourced and text-based

dataset designed to facilitate research in toxic speech

detection [11]. Moon et al. contributed to this area by

presenting a Korean Corpus for toxic speech

detection, consisting of 9,400 manually labeled

entertainment news comments sourced from a widely

used crowdsourcing media platform [12]. D’Sa et al.

explored the use of Bidirectional Encoder

Representations from Transformers (BERT) and

fastText embeddings to detect toxic speech in online

media, achieving an 84% F1-measure during

validation [13]. Similarly, Malik et al. employed

BERT and fastText embeddings in their toxic speech

detection system [14]. Additionally, Lees et al.

introduced a crowdsourced toxic speech dataset,

“coverttoxicity,” although the handling steps in

managing crowdsourced datasets remain manual [17].

Even though toxic speech detection has been

widely discussed in previous studies, there remains a

notable gap in research regarding speech-based

methods [13]. Lin et al. corroborated this observation,

noting a prevailing focus on text-based solutions in

published work on toxic speech detection [15]. The

role of voice in conveying toxic speech is significant,

encompassing intonation, tone, and nuances closely

tied to emotions. Toxic speech often exhibits

discernible patterns in pronunciation analogous to

emotions such as happiness or anger [15]. This aspect

has been relatively underexplored in prior studies,

which predominantly addressed offensive language,

hate speech, and sarcasm without considering their

emotional properties [16].

Received: July 16, 2024. Revised: September 30, 2024. 882

International Journal of Intelligent Engineering and Systems, Vol.17, No.6, 2024 DOI: 10.22266/ijies2024.1231.67

This study investigates multimodal toxic speech

detection using voiced speech from crowdsourced

media. The toxic speech detection process involves

multiple steps. Lees et al. highlighted nuanced

toxicity indicators like microaggression and

condescension, forming the criteria for labeling data

into “Toxic” and “Non-Toxic” classes [17]. Voice, as

a carrier of information, encompasses various

features, including speech features such as

Fundamental Frequency (F0), denoting mean, range,

and standard deviation, speaking rate, Harmonic-to-

Noise ratio (HNR), energy, and Mel Frequency

Cepstral Coefficients (MFCC) to Linear Predictive

Coding (LPC) [18-19].

There exist plenty of Deep Learning models.

Despite not specifically for toxic speech detection,

many speech and text classification tasks in Natural

Language Processing have achieved excellent

accuracy using Deep Learning models, including

LSTM [20]. One commonly used Deep Learning

model is the Recurrent Neural Network (RNN),

which is effective in capturing sequential patterns in

text data. Variants of RNNs, such as Long Short-

Term Memory (LSTM) are often used due to their

ability to remember long-range dependencies in text.

Studies have demonstrated the effectiveness of

LSTMs in this domain, with research showing their

superiority in handling contextual information

necessary for accurately detecting toxic speech [21-

22].

Despite significant advances in toxic speech

detection, existing methods face notable limitations.

Traditional text-based approaches often overlook the

emotional cues present in speech, such as tone, pitch,

and intensity, which are critical for accurately

identifying toxic speech in real-world conversations.

When models rely solely on text data, they tend to

miss these nuances, leading to inaccuracies in

detection. Although Convolutional Neural Networks

(CNNs) have been successful in text and image

recognition tasks, they are less effective when

handling sequential speech data, where the order of

words and vocal patterns play a vital role. Similarly,

while Long Short-Term Memory (LSTM) networks

excel at capturing long-term dependencies, their

performance heavily depends on careful feature

selection and hyperparameter tuning.

Additionally, techniques like MinMaxScaler,

commonly used for normalizing feature values and

improving model convergence, can sometimes

oversimplify complex speech characteristics,

potentially losing important nuances in tone and

intensity. To address these challenges, our method

combines both speech and text features, applying

MinMaxScaler for feature scaling alongside Random

Forest (RF) for feature importance ranking. This

approach enhances the accuracy of toxic speech

detection by preserving the most relevant and

informative aspects of the data while ensuring proper

normalization.

Our approach is distinguished by its integration

of multiple modalities (speech and text) collected

from real-world online fraud confrontation data. By

optimizing the LSTM model with advanced feature

selection and hyperparameter tuning, we achieve

superior performance compared to traditional

methods. This novel combination of multimodal data,

feature ranking, and model optimization positions our

work as a significant improvement over conventional

toxic speech detection technique.

In this study, we resolved the multimodal toxic

speech detection research by three-fold contributions:

1. We created a new dataset, featuring voice

recordings from online fraud confrontation

incidents in Indonesia, all compiled from

YouTube. These incidents may indicate toxic

speech and deserve further investigation in

toxic speech detection. This dataset

encompasses multiple modalities,

incorporating both speech and transcripted

text by Indonesian native speakers. Our

dataset can be found in [23].

2. We combined a specific set of respective

speech features and text features. We found

that basic speech and text features matter a lot,

but their combination of use can influence the

outcome. Basic speech features include pitch,

intensity, and speaking rate. While basic text

features include word and character n-grams

such as unigram, bigram, and trigram,

represented through Bag of Words (BoW)

and Term Frequency-Inverse Document

Frequency (TF-IDF) methods. Based on the

many features set on respective data

modalities (speech and text), we ranked the

importance of each feature set using Random

Forest. We hypothesized that ranked feature

sets would have a positive correlation with

higher accuracy in our toxic speech

recognition study.

3. We optimized the learning model Long Short-

Term Memory by selecting the best value of

hyperparameter, be it numerical or

categorical. We also used Random Forest as a

meta learner in automatic hyperparameter

optimization, which would yield higher

accuracy than vanilla LSTM [21].

These contributions offer important

improvements over existing methods for detecting

toxic speech. First, our new dataset, which includes

Received: July 16, 2024. Revised: September 30, 2024. 883

International Journal of Intelligent Engineering and Systems, Vol.17, No.6, 2024 DOI: 10.22266/ijies2024.1231.67

real-world voice recordings from online fraud

confrontations in Indonesia, provides more realistic

examples of toxic speech than other datasets. By

using both speech and text features, like pitch and

intensity in the voice alongside the words being

spoken, our model can better recognize toxic speech,

especially when the tone matters. Moreover, by

systematically ranking the importance of speech and

text features using Random Forest, we can ensure that

our model addresses on the most relevant aspects. As

a result, it can lead to improved classification

performance.

Finally, using Random Forest to help fine-tune

the LSTM model’s settings gives us better results

than standard methods. This combination of novel

data, feature selection, and optimized LSTM model

produces a more robust and effective toxic speech

detection system.

The rest of this study is summarized as follows:

Section 2 shows some previous studies regarding

toxic speech detection, while Section 3 shows our

proposed approach to toxic speech detection using

speech and text data. From our proposed approach,

Section 4 illustrates the results and our findings from

it. Finally, the conclusions and future research are

provided in Section 5.

2. Related work

Guo in 2022 claimed that from a data analysis

perspective in language modeling for the task of

recognizing human emotions, humor, stress, and

toxic speech in the text-based source becomes highly

beneficial [24]. Furthermore, textual-based

recognition has received so many pre-trained models

for language modeling in the past decade [25]. To

identify toxic and hate speech, Rodriguez et al. use

textual emotion analysis on social media cases. Their

study’s objective was to track down and examine the

unstructured material from a sample of social media

posts with the hostile [26]. However, Rodriguez et al.

mentioned no concept of toxic speech. Cao et al.

surveyed deep learning techniques that are

commonly used in assessing emotion in text data.

They also draw attention to the problems and

difficulties associated with text emotion recognition

[27]. Additionally, Cao et al.’s survey has shown that

LSTM and CNN accurately assessed emotions [27].

Li et al. presented the foundations of techniques to

automatically recognize spoken languages for

computational and phonological purposes [28].

Subsequent years have seen significant

improvements in the field of spoken language

comprehension [29], many of which have been

powered by advances in associated signal-processing

fields such as pattern recognition and cognitive

science [30]. Studies indicate that while the field has

grown in recent years, it seems far from flawless,

especially in language characterization [31].

2.1 Convolutional neural network in toxic speech

recognition

Deep Convolutional Neural Networks (CNNs)

have hierarchical patterns of multiple layers

investigated using a completely convoluted 2D data

recognition [32, 33]. CNN is structured to handle

massively complex data in the form of multiple arrays

or tensors. CNN usually manages input data that

integrates three simple ideas: local networking,

collective weights, and organized pooling in a

sequence of interconnected layers. CNN extracted

global portrayals of the entire input and collected

local features to recognize each component of

sequential objects (in this case, textual-based toxic

speech).

While convolutional layers recognize a local

subset of inputs from the preceding stage, the pooling

layer aims to add local features to an even more

global representation [34]. Pooling is accomplished

by sliding a non-overlapping window over the

convolution layer’s output to gain a collected value

for each window. In addition, all CNN learning

weights (and those of a fully connected layer) are

computed using the standard backpropagation

method, Gradient-Descent Optimization [35, 36].

Sadly, CNN cannot yield the best result by itself in

text recognition. Some past work used CNN in text

recognition by converting text to image [37], using

attention mechanism [38], using encoder mechanism

[39], and even using LSTM [40]. CNN is used in

many text recognitions including emotion

recognition [41, 42], text-based hate speech

recognition [43, 44], and so forth.

Recent studies from 2019 to 2024 have

demonstrated CNN’s effectiveness in text-based

toxic speech recognition, achieving excellent

accuracies by leveraging various hyperparameters

and text features of TF-IDF and Bag of Words, yet

these studies primarily focus on text data from social

media platforms. D’Sa et al. experimented with CNN

and BERT embedding for their toxic speech

multiclass classification. They stated that TF-IDF and

BoW are largely used as input patterns. In result, they

achieved 84% in F1-measure validation [13].

Georgakopoulos et al. explored toxic comment

detection using BoW as a text feature with the CNN

model, demonstrating superior accuracy at 91.2%

[45]. Saif et al. combined LSTM and CNN to detect

toxic comments, yielding excellent classification

Received: July 16, 2024. Revised: September 30, 2024. 884

International Journal of Intelligent Engineering and Systems, Vol.17, No.6, 2024 DOI: 10.22266/ijies2024.1231.67

results, although the features and mechanisms of the

layers were not extensively detailed [46].

Malik et al. employed BERT and fastText

embeddings in their toxic speech detection system,

although with lower result of 82%. Additionally,

Malik et al. also worked with both TF-IDF and BoW.

Even using the same Deep Learning model and input

features, Malik’s experiment still lower in accuracy

than the work of D’Sa et al. The reason is that their

work lost too many data because they completely

remove slangs and no translation effort done from

slangs to formal words, therefore resulting in dataset

that is shallow in context and imbalanced in terms of

data count. They have since stated a future work of

using data augmentation (Synthetic Minority

Oversampling Technique or SMOTE) to alleviate

this research gap [14]. We can conclude that even

input feature and Deep Learning model choice is

important, balanced data in terms of count is also very

important for toxic speech recognition research.

Convolutional Neural Networks (CNN) have

been widely applied in image processing and text-

based tasks. However, CNNs struggle with sequential

and time-dependent data, such as speech, where the

order of words and tone of voice are crucial. Unlike

CNNs, our approach leverages LSTM models that are

effective for sequential speech data, thus capturing

long-term dependencies in speech patterns.

2.2 Long short-term memory in toxic speech

recognition

Although CNN is superb in capturing local and

global features, CNN is not suitable for sequential

objects because the length of sequential objects varies,

and the input data should be configured to a fixed size.

A predecessor of LSTM is called Recurrent Neural

Network (RNN). It can capture meaningful temporal

patterns in sequential speech data. Ultimately, this

behavior leads to improved results. The RNN

architecture contains hidden layers that preserve the

previous input sequence’s elements [47].

Despite sequential data modeling performance,

RNN is faced with difficulties using traditional

backpropagation techniques for data sequence

training with higher separation degrees [48]. The

Long Short-Term Memory (LSTM) networks

overcome this restriction by establishing “gates,”

which are hidden units that regulate how much

information is retained or lost during

backpropagation [48]. To increase output,

bidirectional RNNs would treat sequential data

processing [49]. However, because the complete

sequence needs to be available for processing, this

kind of technology can obstruct real-time operation.

Figure. 1 One Memory Cell of LSTM Unit

Gated Recurrent Unit (GRU) is another LSTM

derivate for the context of Neural Machine

Translation (NMT). The GRU indicates that it will do

plenty to deal with the short sentence of the NMT

problems. According to Zuo et al., there are a few

different versions in the LSTM, such as GRU, that are

contrasted with one another [39]. Greff et al. have

identified that the original LSTM structure is better

compared to the different recognition tasks [50].

LSTM is used in emotion recognition [51, 52], text-

based hate speech recognition [53, 54], generic text

detection [55, 56], and so on.

As shown in Fig. 1, an LSTM diagram has an

input gate denoted by 𝑖𝑡, and accepts input denoted

by 𝑥𝑡 which is all independent features by reference,

which is an input vector at time 𝑡, while ℎ𝑡−1is the

previous hidden state and pass-through sigmoid

function denoted by 𝑡𝑎𝑛ℎ . It then restricts the

number between zero and one, if it must discard the

previous memory, it will output a vector which will

have all zero, this is the work of the forget gate [57].

Previous studies have employed deep learning

methodologies, including Recurrent Neural

Networks (RNN), Long Short-Term Memory

(LSTM), and Convolutional Neural Network (CNN)

models, to tackle the challenges of toxic speech

classification. Koratana and Hu utilized a GRU-RNN

model based on LSTM and RNN paradigms,

alongside the Very Deep Convolutional Neural

Network (VDCNN), achieving successful toxic

speech detection using logistic regression with text

word and character n-grams, employing Bag-of-

Words (BoW) and Term Frequency-Inverse

Document Frequency (TF-IDF) representations [58].

Sutejo and Lestari conducted a similar LSTM-

based study, achieving an F1-score of 83.91% in

toxic speech detection using TF-IDF and Bag-of-

Received: July 16, 2024. Revised: September 30, 2024. 885

International Journal of Intelligent Engineering and Systems, Vol.17, No.6, 2024 DOI: 10.22266/ijies2024.1231.67

Words (BoW) as text features [59]. Miok et al.

reported robust toxic speech classification using

various text features with LSTM, achieving 81%

accuracy with TF-IDF [60].

Toxic speech detection studies also leverage

speech features. Sutejo and Lestari collected

multimodal data, incorporating speech and text from

social media platforms, achieving an F1-score of

82.5% using a one-layered LSTM with Time

Distributed layer and extracting speech features such

as MFCC, INTERSPEECH, and Prosody_Acf [59].

Rakov and Rosenberg reported successful toxic

speech detection utilizing speech features, including

pitch, intensity, speaking rate, and prosodic contour

patterns, achieving an accuracy of 81.57% with K-

means clustering and Simple Logistic classification

(LogitBoost) [61]. Previous studies have motivated

us to leverage the integration of speech features (pitch,

intensity, and speaking rate), text features (TF-IDF

and BoW), and the application of the LSTM model as

they are deemed beneficial for effective toxic speech

detection.

LSTM models are a powerful method for

handling sequential data, but they are highly sensitive

to the selection of features and require extensive

tuning to achieve optimal performance. Existing

LSTM-based methods often overlook the importance

of combining both speech and text features, thereby

limiting their ability to fully capture toxic speech. By

integrating speech and text features and employing

Random Forest for feature importance ranking, this

method can improve LSTM performance and

guarantee that only the most relevant features are

used for classification.

2.3 Feature scaling using MinMaxScaler

Feature scaling, particularly using the

MinMaxScaler, can significantly impact the

performance of LSTM models. LSTM models

perform better when input features are scaled. Scaling

ensures that all features contribute equally during

training, preventing any single feature from

dominating the model. When using MinMaxScaler,

features are transformed to a range between 0 and 1.

This normalization helps the LSTM model converge

faster and improves its ability to learn from the data

[62]. Proper scaling speeds up convergence, allowing

the model to learn more efficiently. It also helps avoid

issues related to feature magnitude discrepancies.

The MinMaxScaler transforms features by

scaling each feature to a given range, usually between

0 and 1. The transformation is given by the following

equations for standardization in Eq. (1) and scaling to

the feature range in Eq. (2).

𝑋𝑠𝑡𝑑 =
𝑋−𝑋𝑚𝑖𝑛

𝑋𝑚𝑎𝑥−𝑋𝑚𝑖𝑛
 (1)

𝑋𝑠𝑐𝑎𝑙𝑒𝑑 = 𝑋𝑠𝑡𝑑 (𝑚𝑎𝑥 −𝑚𝑖𝑛) + 𝑚𝑖𝑛 (2)

where X is the input feature, 𝑋𝑚𝑖𝑛 and 𝑋𝑚𝑎𝑥 are the

minimum and maximum values of 𝑋 respectively.

Additionally, min and max represent the intended

range of the transformed data [63].

In the context of toxic speech detection, these

features could be various characteristics extracted

from the speech signal, such as Mel-Frequency

Cepstral Coefficients (MFCCs) [64]. After scaling,

these features can be fed into a LSTM model for toxic

speech detection 𝑀𝑖𝑛𝑀𝑎𝑥𝑆𝑐𝑎𝑙𝑒𝑟 does not reduce

the effect of outliers. It linearly scales them down into

a fixed range, where the largest occurring data point

corresponds to the maximum value and the smallest

one corresponds to the minimum value [63].

MinMaxScaler is an essential preprocessing step

in many machine learning tasks. It can ensure that

features are scaled to a consistent range, which is

important for optimizing model performance.

However, one limitation of MinMaxScaler is that it

can sometimes reduce the variability of more

complex features, such as the dynamic range of

speech characteristics like pitch and intensity. To

overcome this problem, we combine the use of

MinMaxScaler with a feature-ranking technique

using Random Forest. This allows us to retain the

most important and informative features such that the

scaling process does not negatively impact the

detection of toxic speech. By carefully selecting and

scaling features, we maintain both the benefits of

feature normalization and the richness of the data.

3. Proposed methodology

This study developed several steps, including

data collection, feature extraction, and classification,

to detect toxic speech using LSTM as well as voice

and text transcription. Overall, the study steps are

presented in Fig. 2.

3.1 Data collection

The collected data is in the form of two-way real-

life conversations [23]. Many have reported their

experience of scam confrontation, which largely

involves online loan scam cases. They recorded the

whole conversation and then uploaded it to YouTube.

The voice was taken from recorded online fraud

conversations on YouTube. Victims and fraudsters

utter toxic words in online fraud recordings due to

anger or annoyance.

Received: July 16, 2024. Revised: September 30, 2024. 886

International Journal of Intelligent Engineering and Systems, Vol.17, No.6, 2024 DOI: 10.22266/ijies2024.1231.67

Figure. 2 Proposed Experiment Pipeline

Table 1. Total Instances in Toxic Speech Dataset

Data Type Toxic
Non-

Toxic
Total

Voice/audio
200 200 400

Text (voice/audio

transcript)
200 200 400

Since the data had no labels, manual labelling was

performed with a class of 0 and 1, where 0

represented Non-Toxic, while 1 meant Toxic. The

voice was also transcribed for use as text data.

However, the transcription was manual [65] in order

to obtain more accurate results. The data instances are

presented in Table 1.

3.2 Speech data preprocessing steps

This section covers data pre-processing, which

typically follows data collection.

Received: July 16, 2024. Revised: September 30, 2024. 887

International Journal of Intelligent Engineering and Systems, Vol.17, No.6, 2024 DOI: 10.22266/ijies2024.1231.67

Figure. 3 Speech Data Preprocessing Steps

Raw data had many shortcomings, such as high noise,

many silence segments, and too long duration.

Subsequently, the voice [66-69] and text [59, 70] data

were normalized.

Algorithm 1. Speech Data Preprocessing

Pseudocode

input: Voice/audio files (.wav)

output: Preprocessed voice/audio files (.wav)

TrimSilenceSegment: module to trim audio silence

segment

ReduceNoise: module to reduce audio noise

TrimDuration: module to trim the audio duration

MoveAudioToPreprocessedDir: function to move

preprocessed audio file into preprocessed directory

1 while voice/audio file in the audio directory

exists do

2 filepath = get original audio filepath

3 outputpath = set output filepath same as

 original audio filepath

4 duration = get audio duration

5 TrimSilenceSegment(filepath, outputpath)

6 ReduceNoise(filepath, outputpath)

7 if duration > 4 seconds

8 TrimDuration(filepath, outputpath)

9 endif

10 preprocessed_dir = set preprocessed

 directory location

11 MoveAudioToPreprocessedDir(filepath,

 preprocessed_dir)

12 endwhile

The combination of preprocessing functions

makes the accuracy results better than the previous

works’ result [59]. The features of the preprocessed

dataset were extracted for further processing. Fig. 3

shows data pre-processing steps for voice/audio data,

while Algorithm 1 show our toxic speech data

preprocessing steps in pseudocode.

Algorithm 1 mainly provide the pseudocodes of

data pre-processing steps of speech data. Below is the

explanation of data pre-processing steps:

• Silence Removal

Trimming the voice silence segment aimed to

avoid empty data segments during feature

extraction [59, 71]. The trimming function is

shown in Algorithm 1, line 6.

• Duration Trimming

Trimming duration to a maximum of 4 seconds

aimed to obtain the approximate toxic

conversation pattern [59]. The trimming function

is shown in Algorithm 1, lines 8-10.

• Noise Reduction

Noise reduction aimed to obtain clearer

conversations and improve the features’ quality

[65]. The noise reduction function is shown in

Algorithm 1, line 7.

• Sampling Rate Adjustment

Adjusting the sampling rate is crucial for ensuring

compatibility with the LSTM’s requirements.

This adjustment involves resampling the audio

signals to match the desired rate, such as 16 kHz

or 44.1 kHz, which are common in speech

processing tasks. This step helps in standardizing

the input data and improving the LSTM’s

performance.

3.3 Text data preprocessing steps

Fig. 4 shows data pre-processing steps for text

data, where text data is acquired after the text

transcription process. Algorithm 2 primarily presents

the pseudocode for the data pre-processing steps of

text data. The following is a detailed explanation of

these pre-processing steps:

• Case folding

Converting the entire text to lowercase, known as

Case Folding, aimed to avoid possible sensitive

cases [59]. By standardizing the text in this way,

we reduce complexity and improve the

consistency of the input data. The case folding

function is shown in Algorithm 2, line 5.

• Number removal

The numbers in the text were removed and

converted into letters [59]. This ensures the text

analysis remains focused on words rather than

digits, helping reduce dimensionality and making

the training process more efficient. The removal

function is shown in Algorithm 2, line 6.

Figure. 4 Transcripted Text Data Preprocessing Steps

Received: July 16, 2024. Revised: September 30, 2024. 888

International Journal of Intelligent Engineering and Systems, Vol.17, No.6, 2024 DOI: 10.22266/ijies2024.1231.67

• Stopwords removal

Stopwords with a high text occurrence frequency

were removed [70], such as “dan (and)”, “atau

(or)”, “tapi (but),” in Indonesia. This process

increases the accuracy and speed of training and

classification because the text becomes more

efficient concerning the number of words. The

stopwords removal function is shown in

Algorithm 2, lines 7-8.

• Stemming

Stemming involves changing text words into stem

forms to avoid expanding word form patterns [70].

For instance, the words “kemungkinan

(possibility)”, “dimungkinkan (will be possible)”,

“mungkinkah (is it possible)”, are changed to

“mungkin (possible)”. The stemming function is

shown in Algorithm 2, lines 9-10.

Algorithm 2. Text Data Preprocessing Pseudocode

input: Voice/audio transcript file (.csv)

output: Preprocessed voice/audio transcript file

(.csv)

NumberRemoval: module to convert number in text

to word

StopwordsRemoval: module to remove stopwords in

text Stemming: module for sentence stemming

1 preprocessed_sentences = initial empty array to

store new preprocessed sentences

2 while row in the audio transcript file exists do

3 str = original sentence

4 str = str to lower case()

5 str = NumberRemoval(str)

6 sw_factory = load stopword remover

 factory module

7 str = StopwordsRemoval(str,

 sw_factory)

8 st_factory = load stemmer factory

 module

9 str = Stemming(str, st_factory)

10 preprocessed_sentences.push(str) push

 str into preprocessed sentences

11 endwhile

12 save new preprocessed sentences into

preprocessed audio transcript file (.csv)

3.4 Speech feature extraction

After the preprocessing step, the speech features

(Algorithm 3 lines 4-17) were extracted (as used in

[61]), including pitch, intensity, and speaking rate.

Pitch, energy, and other speech features were selected

because they are closer to the human voice

characteristics [72]. Intensity and pitch were

normalized by constructing a contour function to

reduce variation between voice or audio sessions [73].

The total speech features and the speaking rate were

seven features. According to the recommendation of

Rakov and Rosenberg [61], all speech features in

Algorithm 3 lines 20-23 were divided into a

combination of (1) Pitch and Speaking Rate

(PSR_COMB); (2) Intensity and Speaking Rate

(ISR_COMB); and (3) Pitch, Intensity and Speaking

Rate (PISR_COMB). All speech features were

extracted using Parselmouth, a Praat implementation

in Python [74]. Furthermore, Fig. 5 illustrates

extracted speech features in this study.

Figure. 5 Speech Feature Extraction Steps

Received: July 16, 2024. Revised: September 30, 2024. 889

International Journal of Intelligent Engineering and Systems, Vol.17, No.6, 2024 DOI: 10.22266/ijies2024.1231.67

Algorithm 3. Speech Data Preprocessing

Pseudocode

input: Voice/audio files (.wav)

output: Extracted speech features file (.csv)

parselmouth: parselmouth module

1 speech_features = initial empty array to store

extracted speech features

2 while voice/audio file in the audio directory

exists do

3 s = parselmouth.Sound() initialize

 parselmouth module and read

 voice/audio file

4 ptcs = s.to_pitch() get list of pitchs from

 the audio

5 mp = calculate mean pitch from ptcs

6 rp = calculate range pitch from ptcs

7 sp = calculate std pitch from ptcs

8 ints = s.to_intensity() get list of

 intensities from the audio

9 mi = calculate mean intensity from ints

10 ri = calculate range intensity from ints

11 si = calculate std intensity from ints

12 sprs = load praat source run

 (parselmouth.praat)

13 spr = calculate speaking rate from sprs

14 speech _features.push((mp, rp, sp), (mi,

 ri, si), spr) push and store the extracted

 features

15 endwhile

16 Save speech features data into extracted file

(.csv)

17 PSR_COMB = format (mp, rp, sp, spr) from

extracted features

18 ISR_COMB =. format (mi, ri, si, spr) from

extracted features

19 PISR_COMB = format (mp, rp, sp, mi, ri, si,

spr) from extracted features

3.5 Text feature extraction

The text features were extracted from the

transcription by first using word n-grams consisting

of unigrams, bigrams, and trigrams with BoW and

TF-IDF representations. BoW implementation is

useful for analysis, classification [45], and TF-IDF

[74]. However, the vocabulary representation formed

by word n-grams only collects words often appearing

in the text [76]. The transcription texts produced were

almost all short sentences of between 1 to 5 words.

This study also used character n-grams such as

unigrams, bigrams, and trigrams, besides n-grams

words. In character n-grams, each feature attribute

was a character string considered a bag of character

n-grams [77] that capture shorter feature categories

[78]. For instance, the 2-grams or bi-gram character

of the sentence toxic speech would be extracted to |to|,

|ox|, |xi|, |ic|, |c_|, |_s|, |sp|, |pe|, |ee|, |ec|, and |ch|.

Subsequently, BoW & TF-IDF representations

produced were more balanced. When the word was

2-grams, the sentence would be extracted into |toxic

speech|. The best combination of text features was

determined using word and character n-grams

because both features are effectively useful for text

processing [77-79]. All text features were extracted

using sklearn in Python.

3.6 Feature importance ranking using random

forest

It is important to introduce the decision tree

before discussing RF. The decision tree is a

straightforward supervised learning algorithm based

on the if-then-else rule. It offers strong

interpretability and aligns with human intuitive

thinking. RF, or Random Forest, is composed of

multiple decision trees that are uncorrelated. Each

decision tree in the forest independently judges and

classifies new input samples during classification

tasks, but only once their classification result is

obtained. Subsequently, RF determines the final

result based on the majority decision among the

decision trees.

In essence, RF has two key advantages:

• First, it can effectively balance errors in

imbalanced data in multiple classes.

• Second, it provides a means to rank the

importance of features or different sets of features.

These characteristics make RF an ideal choice for

this paper’s explanatory algorithm. Specifically, the

Gini coefficient is used to assess each feature’s

contribution in each tree of the RF. These

contributions are averaged and compared to

determine the relative importance of features.

Additionally, cross-validation of features has been

employed to validate the RF results.

With ease, one can construct and use RF models

by importing the RandomForestClassifier from the

sklearn, a Python library offering a wide array of

Machine Learning algorithms. In this approach, the

RF model divides each feature, calculating the

decrease in the Gini index for each feature split. The

significance of a feature is determined by the

magnitude of the reduction in the Gini index post-

splitting: the larger the reduction, the more the feature

contributes to enhancing the dataset’s purity,

highlighting its importance [78].

In addition, Gilles Louppe gave a different

version in [80]. Instead of counting splits, the actual

decrease in node impurity is summed and averaged

Received: July 16, 2024. Revised: September 30, 2024. 890

International Journal of Intelligent Engineering and Systems, Vol.17, No.6, 2024 DOI: 10.22266/ijies2024.1231.67

across all trees. (weighted by the number of samples

it splits). In sklearn, we implement the importance as

described in [81]. It is defined as the total decrease in

node impurity (weighted by the probability of

reaching that node (which is approximated by the

proportion of samples reaching that node) averaged

over all trees of the ensemble. However, the

implementation of our study remains to be consistent

with what Gilles Louppe described.

Parameters are selected to control the behavior of

a random forest classifier. The “Bootstrap” parameter

dictates whether bootstrap samples are employed

when constructing individual decision trees within

the RF. When set to False, the entire dataset is utilized

for each tree’s construction. The Max_depth

parameter governs the maximum depth of each

decision tree within the random forest. Setting it to

the same length as the model’s sequence length can

help mitigate overfitting by restricting the tree’s level

count. The n_estimators parameter determines the

number of decision trees within the RF ensemble. In

this study, 1,000 estimators are utilized due to the

limited quantity of Toxic and Non-Toxic data across

both speech and text modalities.

3.7 Toxic speech LSTM model

This study used Long Short-Term Memory

(LSTM). LSTM uses memory cells as its hidden layer

and classifies data with a long sequence range [82].

The LSTM had a memory cell, an input, an output,

and a forget gate [83]. This method was selected

because the data extracted was sequential and had a

shape input that matched the architectural

characteristics of the LSTM. Additionally, LSTM’s

ability to capture long-term dependencies made it

well-suited for modeling the complex patterns

present in both speech and text data.

LSTM generally overcomes the vanishing

gradient problem in RNN by inserting a gating

function into the state, facilitating better sequential

data processing.

Table 2. Architecture of Proposed Toxic Speech

in LSTM Model

Layer Type Output Shape Param #

Input Layer (None, None) 0

Embedding Layer (None, 100, 128) 640000

LSTM Layer (None, None, 64) 49408

Dropout (None, None, 64) 0

Flatten Layer (None, None, 64) 0

Dense Layer (None, 2) 130

Total params : 689,538

Trainable params : 689,538

Non-trainable params : 0

The input gate determines the information stored in

the memory cell, while the forget gate determines the

previous information that needs removal from the

memory cell. The output gate controls the

information removed from the hidden state [59]. A

total of two LSTM models were created for each

feature input, including the Toxic Speech LSTM and

Toxic Text LSTM. All of the LSTM models we used

in this study were built using Keras in Python.

Algorithm 4. Proposed Toxic Speech LSTM

Model Pseudocode

input: Sequential data (speech features combination)

output: Classification prediction & validation

accuracy

1 X, Y = get speech features combination &

classes

2 X_train, X_test, Y_train, Y_test = train/test split

(X, Y)

3 X_train = scaling (MinMaxScaler)

4 X_test = scaling (MinMaxScaler)

5 X_train = reshape input dimension (samples, 1,

7)

6 X_test = reshape input dimension (samples, 1,

7)

7 model = initialize LSTM model Input → LSTM

(50) → Dropout (0.2) → Dense (7) → Dense (1)

8 Fit the model (X_train, val_acc=X_test)

9 Get prediction & validation accuracy

The Toxic Speech LSTM model is getting input

from speech features of voice pitch, intensity, and

speaking rate. In Table 2, the LSTM structure for the

Toxic Speech LSTM model used a layer with 50

memory units. Furthermore, we used a 0.2 value for

Dropout and a hidden layer with seven neurons

according to the number of speech features to reduce

overfitting. Our model is running approximately

1,000 epochs (stopped with early stopping scheduler)

with Adam optimizer and MSE loss function.

The input layer consisted of seven feature

variables from the previous speech feature extraction.

LSTM requires 3-dimensional input, comprising

samples, time steps, and features. Optimization was

made by reshaping input shown in Algorithm 4 lines

5-6, and it became a format |sample=total data|, |time

steps=1| and |features=7|.

3.8 Toxic text LSTM model

A Toxic Text LSTM model was used to detect

toxic speech based on transcripted text and character

n-grams. Table 3 shows that we used one Embedding

layer that processes data sequence BoW and TF-IDF.

Received: July 16, 2024. Revised: September 30, 2024. 891

International Journal of Intelligent Engineering and Systems, Vol.17, No.6, 2024 DOI: 10.22266/ijies2024.1231.67

Table 3. Architecture of Proposed Toxic Text

in LSTM Model

Layer Type Output Shape Param #

Input Layer (None, 100) 0

Embedding Layer (None, 100, 256) 2560000

LSTM Layer (None, 100, 128) 197120

Time-Distributed

Layer
(None, 100, 128) 16512

Flatten Layer (None, 12800) 0

Dense Layer (None, 2) 25602

Total params : 2,800,234

Trainable params : 2,800,234

Non-trainable params : 0

This study used optimization of 100 top words, 100

sequence word padding, and 128 batch sizes.

Algorithm 5. Proposed Toxic Text LSTM Model

Pseudocode

input: Sequential data (text features combination)

output: Classification prediction & validation

accuracy

1 X, Y = get text features combination & classes

2 X_train, X_test, Y_train, Y_test = train/test split

(X, Y)

3 model = initialize LSTM model Embedding

 layer → LSTM (embedding output) →

 Dropout (0.2) → TimeDistributed (Dense

 (LSTM output)) → Flatten()→ Dense (1)

4 Fit the model (X_train, val_acc=X_test)

5 Get prediction & validation accuracy

6 X, Y = get text features combination & classes

The classification used an LSTM layer with the

input shape and number of memory units from the

Embedding layer output and a 0.2 Dropout layer.

Furthermore, we added the Time-Distributed layer

and Flattened layer before the output layer, as shown

in Table 3 and Algorithm 5 lines 3-7. The first Dense

used in this study was layered with a Time-

Distributed layer to change or reduce the dimensions

of the output shape from the LSTM layer and was

processed optimally. The second Dense or output

layer used sigmoid activation with 1 binary neuron.

Since only 0 and 1 classification classes were used, a

Flattened layer was added to handle the Time-

Distributed layer output. The Flattened layer changed

the output dimensions of the previous layer,

becoming the optimal sequence dimension in the last

Dense or output layer with one binary neuron.

3.9 Hyperparameter optimization using random

forest

To ensure high recognition accuracy,

hyperparameter optimization is oftentimes a

mandatory step before the learning stage. There is a

popular hyperparameter search technique, namely the

grid search. Sadly, it almost always hardly struggles

to adapt to high dimensions [84]. Therefore, a

substantial amount of newer studies has concentrated

on superior methods, namely Bayesian Optimization

and its derivative, namely the Random Forest-based

Optimization. The Random Forest-based

Optimization follows the sequential version of

Bayesian Optimization.

Random Forest-based Optimization is an efficient

tool for global optimization of costly black-box

functions 𝑓 . A complete Random Forest-based

Optimization stage is defined in Algorithm 6.

Random Forest-based Optimization starts by function

inquiry 𝑓 to the ℎ values in an initial space and

record ⟨𝛹𝑖, 𝑓(𝛹1)⟩𝑖=1
𝑡 as the ⟨𝑖𝑛𝑝𝑢𝑡, 𝑜𝑢𝑡𝑝𝑢𝑡⟩ result

pair.

Algorithm 6. Random Forest-based Optimization

Pseudocode

input: Target 𝒇𝑿;

 limit 𝑯;

 hyperparameter space 𝜳;

 initial space 〈𝜳𝟏, … ,𝜳𝒕〉
output: Best hyperparameter configuration as 𝜳̂

1 for 𝑖 + 1 to ℎ

2 do 𝑦𝑖  evaluate 𝑓𝑋(Ψ𝑖)
3 for 𝑗  to ℎ + 1 to 𝐻

4 do ℳ  fit model on performance

 data 〈Ψ𝑖, 𝑦𝑖〉𝑖=1
𝑗−1

5 select Ψ𝑗 ∈ 𝑎𝑟𝑔 𝑚𝑎𝑥Ψ ∈ Ω α(Ψ,ℳ)

6 end for

7 𝑦𝑗  evaluate 𝑓𝑋(Ψ𝑗)

8 end for

9 return 𝑎𝑟𝑔 𝑚𝑖𝑛Ψ𝑗 ∈ Ψ1,…,Ψ𝑇𝑦𝑗
𝑦𝑖𝑒𝑙𝑑𝑠
→ Ψ̂

Then it fits a probabilistic-based model ℳ to the

previous recorded. Later on, ℳ is used to select input

for Ψ which happened to be evaluating function

value from input Ψ ∈ Ω through acquisition function

of α(Ψ,ℳ) . Finally, it evaluates function in Ψ

newest input.

3.10 Validation methods

The classification accuracy matrices were

systematically calculated and reanalysed by utilising

Received: July 16, 2024. Revised: September 30, 2024. 892

International Journal of Intelligent Engineering and Systems, Vol.17, No.6, 2024 DOI: 10.22266/ijies2024.1231.67

the standard F1-score derived from the LSTM

model’s accuracy, grounded in the actual and

predicted class data [85]. F1-score is calculated

according to Eq. (3), where Precision and Recall is

formulated in Eq. (4) and Eq. (5).

𝐹1 =
2×𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛×𝑅𝑒𝑐𝑎𝑙𝑙

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛×𝑅𝑒𝑐𝑎𝑙𝑙
 (3)

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =
𝑇𝑃

𝑇𝑃+𝐹𝑃
 (4)

𝑅𝑒𝑐𝑎𝑙𝑙 =
𝑇𝑃

𝑇𝑃+𝐹𝑁
 (5)

The Confusion Matrix (CM) does not assume

distributional parameters but only on rough data

information from the model created. CM is often used

to evaluate the prediction results of deep learning

models [86]. Since this study only used Toxic and

Non-Toxic classes, CM had two columns that

informed the actual class. Moreover, it had two

predicted columns that informed the predicted class

using LSTM. The sklearn in Python was used to

produce CM.

This study used the train or test split function for

the validation method. The training data set took 70%

of the total data, while the test sets took 20, and are

used randomly. The experiment results took the F1-

score from the train or test split, while the comparison

used the Cross-Validation method (k-fold, Stratified,

Repeated, and Time Series). This method ensures that

the validation of the LSTM model performance is

appropriate and does not deviate [87]. The

observation value to 5-fold (k=5) was set to balance

computational complexity and validation accuracy.

Additionally, the mean F1-score in Cross-Validation

was set based on the number of observations made,

while a heatmap was used to visualize the comparison

of validation methods.

4. Result and discussion

Before conducting classification, scaling was

performed using the MinMaxScaler method to

convert the data sequence into a range between 0 - 1.

The process was conducted on the features in the

Toxic Speech LSTM model shown in the previous

section in Algorithm 4 lines 3-4, while the text

features were directly inserted into the embedding

layer on the Toxic Text LSTM model. In the

Confusion Matrix results table, the five columns

compiled were TP(0), TP(1), FP(0), FP(1), and score.

TP indicated True Prediction, and FP indicated False

Prediction. TP(0) was the correct prediction accuracy

for the Non-Toxic class, while TP(1) was for the toxic.

Furthermore, FP(0) is the false prediction accuracy

for the Non-Toxic class, while FP(1) is the false

prediction accuracy for the Toxic class. The “Score”

column was a calculation of the overall Confusion

Matrix accuracy. The following are the experiment

and analysis results.

4.1 Result of toxic speech LSTM model

The results showed that PISR_COMB had the

best F1-score of 0.8909 or 89.09%, with the lowest

MSE score of 0.1429. Meanwhile, PSR_COMB had

a performance of about 7% better than ISR_COMB,

with an F1-score of 0.8174 or 81.74%. Furthermore,

ISR_COMB produced a high MSE score of 0.3571,

making the lowest accuracy and performance.

However, the F1-score of ISR_COMB still reaches

0.7414 or 74.14%.

Figure. 6 Graphical Accuracy of F1-Score of Best Result from Toxic Speech LSTM Model per its epoch

Received: July 16, 2024. Revised: September 30, 2024. 893

International Journal of Intelligent Engineering and Systems, Vol.17, No.6, 2024 DOI: 10.22266/ijies2024.1231.67

Table 3. Result of Toxic Speech LSTM Model

Features MSE Recall Precision
F1-

score

PSR_COMB 0.2500 0.8545 0.7833 0.8174

ISR_COMB 0.3571 0.7818 0.7049 0.7414

PISR_COMB 0.1429 0.8909 0.8909 0.8909

Table 4. Confusion Matrix Result of Toxic Speech

LSTM Model

Features
TP

(0)

TP

(1)

FP

(0)

FP

(1)
Score

PSR_

COMB
0.55 0.85 0.45 0.15 0.7500

ISR_

COMB
0.38 0.78 0.62 0.22 0.6429

PISR_

COMB
0.79 0.89 0.21 0.11 0.8571

In addition, graphical accuracy of F1-score

achieved by using PISR_COMB, PSR_COMB, and

ISR_COMB feature set is shown in Fig. 6. In Fig. 6,

accuracy is depicted per its epoch, which in

PISR_COMB case, stopped automatically at 939; in

PSR_COMB case, stopped automatically at 971; in

PSR_COMB case, stopped automatically by early

stopping scheduler technique at 993.

In addition, Table 3 shows the result of Toxic

Speech LSTM Model based on MSE, Recall,

Precision, and F1-score; while Table 4 shows the

Confusion Matrix result of Toxic Speech LSTM

Model. The Confusion Matrix validation on the

Toxic Speech LSTM model produced features with

the best score following the LSTM model

classification results. PISR_COMB obtained the best

evaluation score of 0.8571 or 85.71%. The accuracy

of PISR_COMB on the Confusion Matrix in

predicting the Non-Toxic class was 0.79 or 79%,

while the correct prediction for the Toxic class was

0.89 or 89%. These results were good because the

wrong class predictions were only 0.21 or 21% for

Non-Toxic and 0.11 or 11% for Toxic, respectively.

PSR_COMB and ISR_COMB received evaluation

scores of 0.7500 or 75.00% and 0.6429 or 64.29%,

respectively. In this case, PSR_COMB correctly

predicted that the toxic class was quite good, reaching

0.85 or 85%, but the correct prediction for the Non-

Toxic class was only 0.55 or 55%.

4.2 Result of toxic text LSTM model

Using binary cross-entropy, the Toxic Text

LSTM model conducted 50-100 epochs with Adam

optimizer. The Toxic Speech LSTM Model was less

in epochs because the range of sequences in the Toxic

Text LSTM Model was longer.

Table 5. Result of Toxic Text LSTM Model

Features MSE Recall Precision F1

BOW_

UNIGRAMS

0.1429 0.8909 0.8909 0.8909

BOW_BIGRA

MS

0.2857 0.9636 0.7067 0.8154

BOW_

TRIGRAMS

0.3452 0.9455 0.6667 0.7820

BOW_CHAR_

UNIGRAMS

0.1905 0.8364 0.8679 0.8519

BOW_CHAR_

BIGRAMS

0.0952 0.9273 0.9273 0.9273

BOW_CHAR_

TRIGRAMS

0.2262 0.7455 0.8913 0.8119

TFIDF_

UNIGRAMS

0.2976 0.8909 0.7206 0.7967

TFIDF_BIGRA

MS

0.2738 0.9818 0.7105 0.8224

TFIDF_

TRIGRAMS

0.3333 0.9818 0.6667 0.7941

TFIDF_CHAR

_UNIGRAMS

0.3452 1.0000 0.6548 0.7914

TFIDF_CHAR

_BIGRAMS

0.3214 1.0000 0.6707 0.8029

TFIDF_CHAR

_TRIGRAMS

0.2857 1.0000 0.6962 0.8209

Table 6. Confusion Matrix Result of Toxic Text

LSTM Model

Features
TP(

0)
TP(1) FP(0) FP(1) Score

BOW_

UNIGRAMS
0.79 0.89 0.21 0.11 0.8571

BOW_

BIGRAMS
0.24 0.96 0.76 0.04 0.7143

BOW_

TRIGRAMS
0.10 0.95 0.90 0.05 0.6548

BOW_CHAR_

UNIGRAMS
0.76 0.84 0.24 0.16 0.8095

BOW_CHAR_

BIGRAMS
0.86 0.93 0.14 0.07 0.9048

BOW_CHAR_

TRIGRAMS
0.83 0.75 0.17 0.25 0.7738

TFIDF_

UNIGRAMS
0.34 0.89 0.66 0.11 0.7024

TFIDF_

BIGRAMS
0.24 0.98 0.76 0.02 0.7262

TFIDF_

TRIGRAMS
0.07 0.98 0.93 0.02 0.6667

TFIDF_CHAR

_UNIGRAMS
0.00 1.00 1.00 0.00 0.6548

TFIDF_CHAR

_BIGRAMS
0.07 1.00 0.93 0.00 0.6786

TFIDF_CHAR

_TRIGRAMS
0.17 1.00 0.83 0.00 0.7143

Furthermore, more than 100 epochs do not show

significant results on the Toxic Text LSTM model.

Received: July 16, 2024. Revised: September 30, 2024. 894

International Journal of Intelligent Engineering and Systems, Vol.17, No.6, 2024 DOI: 10.22266/ijies2024.1231.67

Figure. 7 Graphical Confusion Matrix of Best Result from Toxic Speech LSTM Model (PISR_COMB) and Toxic Text

LSTM Model (BOW_CHAR_BIGRAMS)

Table 5 shows the result of Toxic Text LSTM Model

based on MSE, Recall, Precision, and F1-score; while

Table 6 shows the Confusion Matrix result of Toxic

Text LSTM Model. The results show that BoW word

unigram performance was about 10%, superior to TF-

IDF with an F1-score of 0.8909 or 89.09%.

However, TF-IDF word bigram and trigram

performance were better, though it was only a

difference of about 1%. For character n-grams, BoW

performance was much better by 20% than TF-IDF.

BoW bigram’s character resulted in the best F1-score

of 0.9273 or 92.73%, with a very low MSE of 0.0952.

BoW and TF-IDF had the lowest performance for

word and char trigrams compared to unigram and

bigram. This suggests that simpler n-gram models

may capture the key features needed for toxic speech

detection more effectively. Moreover, these results

highlight the importance of choosing the right feature

representation for different types of input data.

Additionally, both graphical confusion matrix of the

best result from Toxic Speech LSTM and Toxic Text

LSTM is shown in Fig. 7.

The confusion matrix validation on the Toxic

Text LSTM model produced features with the best

score following the classification results. The

character BoW bigram obtained the best evaluation

score of 0.9048 or 90.58%, correctly predicting the

Non-Toxic class by 0.86 or 86% and the Toxic class

by 0.93 or 93% (Fig. 7). This result was good because

the wrong class predictions were 0.14 or 14% for

Non-Toxic and 0.07 or 7% for Toxic, respectively.

The Toxic Text LSTM model experiment found that

character n-grams with TF-IDF had overfitting

problems. The Confusion Matrix evaluation showed

that the correct prediction for the Toxic class was

1.00 or 100%, while for the Non-Toxic was only less

than 0.20 or 20%. This means the wrong prediction

for the Toxic class was high, ranging from 0.83 or

83% to 1.00 or 100%, which was not recommended.

Moreover, the evaluation of the Cross-Validation

method on the Toxic Text LSTM model was quite

different.

Received: July 16, 2024. Revised: September 30, 2024. 895

International Journal of Intelligent Engineering and Systems, Vol.17, No.6, 2024 DOI: 10.22266/ijies2024.1231.67

Table 7. F1-Score Result using Cross-Validation (k=5)

in Toxic Speech LSTM Model and

Toxic Text LSTM Model

Features k-Fold
Stratifie

d

Repeate

d

Time

Series

PSR_

COMB
0.8070 0.7928 0.7890 0.8043

ISR_

COMB
0.7679 0.7241 0.7578 0.7416

PISR_

COMB
0.8155 0.8224 0.8257 0.8276

BOW_

UNIGRAMS
0.8571 0.8829 0.8814 0.8200

BOW_

BIGRAMS
0.7879 0.7874 0.7727 0.7664

BOW_

TRIGRAMS
0.7794 0.7669 0.7634 0.7850

BOW_CHAR_

UNIGRAMS
0.7636 0.7961 0.8000 0.7959

BOW_CHAR_

BIGRAMS
0.7563 0.7458 0.7478 0.7347

BOW_CHAR_

TRIGRAMS
0.8095 0.7840 0.7937 0.7885

TFIDF_

UNIGRAMS
0.8548 0.8095 0.8421 0.7736

TFIDF_

BIGRAMS
0.7969 0.7874 0.8000 0.8174

TFIDF_

TRIGRAMS
0.7794 0.7761 0.7789 0.8174

TFIDF_CHAR

_UNIGRAMS
0.7794 0.7737 0.7794 0.7679

TFIDF_CHAR

_BIGRAMS
0.7794 0.7737 0.7794 0.8103

TFIDF_CHAR

_TRIGRAMS
0.7794 0.7737 0.7794 0.8103

BoW word unigram obtained the best score on the k-

fold, Stratified, Repeated, and Time Series (Table 7)

methods. Additionally, the Character BoW Bigram

only obtained a Cross-Validation score of around

74%, while the TF-IDF character was overfitting in

Cross-Validation.

Besides, the evaluation of the Cross-Validation

method on the Toxic Speech LSTM model was

appropriate. PISR_COMB obtained the best score on

the k-fold, Stratified, Repeated, and Time Series

methods. Based on the experimental results of the

Toxic Speech model, all the combinations of speech

features worked well without overfitting.

In addition, graphical accuracy of F1-score

achieved by using BOW_UNIGRAMS,

BOW_BIGRAMS, and BOW_TRIGRAMS feature

set is shown in Fig. 8. In Fig. 8, accuracy is depicted

per its epoch, which in BOW_UNIGRAMS case,

stopped at 100; in BOW_BIGRAMS case, stopped at

100; and in BOW_TRIGRAMS case, stopped

automatically by early stopping scheduler technique

at 88.

Next, graphical accuracy of F1-score achieved by

using BOW_CHAR_UNIGRAMS, BOW_CHAR_

BIGRAMS, and BOW_CHAR_TRIGRAMS feature

set is shown in Fig. 9. In Fig. 9, accuracy is depicted

per its epoch, which in BOW_CHAR_UNIGRAMS

case, stopped automatically by early stopping

scheduler technique at 96; in

BOW_CHAR_BIGRAMS case, stopped

automatically by early stopping scheduler technique

at 84; in BOW_CHAR_TRIGRAMS case, stopped at

100.

Figure. 8 Graphical Accuracy of F1-Score of Best Result from Toxic Text LSTM Model per its epoch for

BOW_UNIGRAMS, BOW_BIGRAMS, and BOW_TRIGRAMS

Received: July 16, 2024. Revised: September 30, 2024. 896

International Journal of Intelligent Engineering and Systems, Vol.17, No.6, 2024 DOI: 10.22266/ijies2024.1231.67

Figure. 9 Graphical Accuracy of F1-Score of Best Result from Toxic Text LSTM Model per its epoch for

BOW_CHAR_UNIGRAMS, BOW_CHAR_BIGRAMS, and BOW_CHAR_TRIGRAMS

Figure. 10 Graphical Accuracy of F1-Score of Best Result from Toxic Text LSTM Model per its epoch for

TFIDF_UNIGRAMS, TFIDF_BIGRAMS, and TFIDF_TRIGRAMS

Another graphical accuracy of F1-score achieved

by using TFIDF_UNIGRAMS, TFIDF_BIGRAMS,

and TFIDF_TRIGRAMS feature set is shown in Fig.

10. In Fig. 10, accuracy is depicted per its epoch,

which in TFIDF_UNIGRAMS case, stopped

automatically by early stopping scheduler technique

at 84; in TFIDF_BIGRAMS case, stopped

automatically by early stopping scheduler technique

at 97; in TFIDF_TRIGRAMS case, stopped

automatically by early stopping scheduler technique

at 96.

The last graphical accuracy of F1-score achieved

by using TFIDF_CHAR_UNIGRAMS,

TFIDF_CHAR_BIGRAMS, and TFIDF_CHAR_

TRIGRAMS feature set is shown in Fig. 11. In Fig.

11, accuracy is depicted per its epoch, which in

TFIDF_CHAR_UNIGRAMS case, stopped

automatically by early stopping scheduler technique

at 94; in TFIDF_CHAR_BIGRAMS case, stopped

automatically by early stopping scheduler technique

at 99; in TFIDF_CHAR_TRIGRAMS case, stopped

automatically by early stopping scheduler technique

at 92.

Received: July 16, 2024. Revised: September 30, 2024. 897

International Journal of Intelligent Engineering and Systems, Vol.17, No.6, 2024 DOI: 10.22266/ijies2024.1231.67

Figure. 11 Graphical Accuracy of F1-Score of Best Result from Toxic Text LSTM Model per its epoch for

TFIDF_CHAR_UNIGRAMS, TFIDF_CHAR_BIGRAMS, and TFIDF_CHAR_TRIGRAMS

4.3 Result of feature importance ranking

The Random Forest (RF) model is a robust

ensemble learning method comprising numerous

Table 8. Importance Ranking based on Different

Feature Set in Toxic Speech Recognition

Feature Set
Importance

Rank

F1-

Score

k-fold

Accuracy

PSR_COMB 0.8664 0.8174 0.8070

ISR_COMB 0.8752 0.7414 0.7679

PISR_COMB 0.8992 0.8909 0.8155

BOW_

UNIGRAMS
0.9111 0.8909 0.8571

BOW_

BIGRAMS
0.7181 0.8154 0.7879

BOW_

TRIGRAMS
0.7712 0.7820 0.7794

BOW_CHAR_

UNIGRAMS
0.7453 0.8519 0.7636

BOW_CHAR_

BIGRAMS
0.8646 0.9273 0.7563

BOW_CHAR_

TRIGRAMS
0.7124 0.8119 0.8095

TFIDF_

UNIGRAMS
0.7767 0.7967 0.8548

TFIDF_

BIGRAMS
0.6544 0.8224 0.7969

TFIDF_

TRIGRAMS
0.8893 0.7941 0.7794

TFIDF_CHAR_

UNIGRAMS
0.8184 0.7914 0.7794

TFIDF_CHAR_

BIGRAMS
0.7866 0.8029 0.7794

TFIDF_CHAR_

TRIGRAMS
0.9201 0.8209 0.7794

decision trees, commonly employed for classification

and regression tasks. Notably, RF can assess the

significance of features. In this section, following the

feature importance ranking by RF, we reorganized

the features to train the model at the shortest sequence

length. The classification performance is shown in

Table 8 below.

4.4 Discussion

The experimental results showed that the speech

features comprising pitch, intensity, speaking rate,

and text features consisting of the word and character

n-grams produced the best F1-score of more than

85%. Fig. 12 shows a comparison of the performance

of the train or test split, confusion matrix, and Cross-

Validation (k=5) using a heatmap.

In addition, Table 9 and Table 10 shows a

comparison of the experimental results with several

previous studies, for textual data and speech data,

respectively. These previous studies are the state-of-

the-art speech detection studies with almost the same

speech and text features also LSTM model employed.

Mazari et al. employed Bidirectional Encoder

Representations from Transformers (BERT) as a pre-

trained model, stacking Bidirectional Long-Short

Term Memory (BiLSTM) and/or Bidirectional Gated

Recurrent Units (BiGRU) on GloVe and fastText

word embeddings [88]. However, their approach

achieved an F1-score of only 62%. In contrast,

Marshan et al. (2023) used a BiLSTM model with

various n-gram feature settings, incorporating a

feature selection method based on Mutual

Information, resulting in a significantly higher F1-

score of 88% [89].

Received: July 16, 2024. Revised: September 30, 2024. 898

International Journal of Intelligent Engineering and Systems, Vol.17, No.6, 2024 DOI: 10.22266/ijies2024.1231.67

Figure. 12 Graphical Heatmap Result of Train/Test Split, Confusion Matrix, k-Fold, and Cross-Validation (k=5) methods

Table 9. Accuracy Result Comparison for Text Data

with Previous Works

Authors Model and Features
F1-

Score

Mazari et al.

[88] (2022)

BERT with GloVe and

fastText word embeddings

62%

Marshan et al.

(2023) [89]

BiLSTM with Text Feature

n-gram and feature selection

Mutual Information (MI)

88%

Our

Proposed

Work

LSTM (Time Distributed

and Flatten) + Text

Features of

BOW_CHAR_BIGRAMS

92%

Table 10. Accuracy Result Comparison for Speech Data

with Previous Works

Authors Model and Features
F1-

Score

Islam et al.

(2022) [90]

3DCNN + Time Distributed

and Flatten + Bi-LSTM with

MFCC + Short Time

Fourier Transform (STFT) +

Chroma STFT

87%

Jacobs et al.

(2023) [91]

CAE-RNN with Acoustic

Word Embeddings

77%

Our

Proposed

Work

LSTM (Speech Features of

PISR_COMB)

89%

Despite extensive research on hate speech

detection, studies focusing on actual speech datasets

(audio recordings) remain relatively rare, as most

research targets textual data. Nevertheless, some key

studies have explored multimodal approaches that

include speech. Islam et al. (2022) proposed a model

combining 3D Convolutional Neural Networks

(3DCNN), Time Distributed layers, Flatten layers,

and BiLSTM. Their method used comprehensive

features, including Mel-Frequency Cepstral

Coefficients (MFCC), Short-Time Fourier Transform

(STFT), and Chroma STFT, achieving an accuracy of

87% [90].

Jacobs et al. (2023) focused on detecting toxicity

from radio recordings and utilized a Contextual

Autoencoder with RNN (CAE-RNN) for model

learning. This represents one of the few state-of-the-

art studies on toxic speech detection using LSTM

models. Their research, conducted in Swahili,

employed Acoustic Word Embeddings (AWE)—

analogous to GloVe and fastText but specifically

designed for voiced speech—and achieved an F1-

score of 77% [91].

Meanwhile in our study, the Toxic Speech LSTM

model structure worked well. The combination of

speech feature functions PISR_COMB detected toxic

speech with the best F1-score of up to 89.09% and the

best evaluation of confusion matrix of 85.71%.

Additionally, PSR_COMB obtained an F1-score of

81.74%, while ISR_COMB reached an F1-score of

74.14%.

The experimental results also showed that the

Toxic Text LSTM model performed better than the

Toxic Speech LSTM model in detecting toxicity in a

conversation. The Toxic Text LSTM model obtained

the best F1-score of 92.73% and the best confusion

matrix evaluation of 90.48% using the bigram

character (BoW). Furthermore, the F1-score of

Received: July 16, 2024. Revised: September 30, 2024. 899

International Journal of Intelligent Engineering and Systems, Vol.17, No.6, 2024 DOI: 10.22266/ijies2024.1231.67

89.09% and the best Cross-Validation score of

around 88% were obtained using word unigram.

5. Conclusion

This study detected toxic speech using speech

features and text features. We developed the Toxic

Speech LSTM model and Toxic Text LSTM models

for toxic classification. The best accuracy with an F1-

score of 89.09% and a confusion matrix of 85.71%

was obtained on the Toxic Speech LSTM model

using PISR_COMB comprising pitch, intensity, and

speaking rate. In the Toxic Text LSTM model, the

LSTM model constituting the Time-Distributed and

Flattened layers and adjusted batch size, and input

shape was optimized and obtained the best accuracy.

The results were an F1-score of 92.73% and a

confusion matrix of 90.48%, using BoW or bigram

characters. The Cross-Validation best score was

around 88% using BoW or word unigram. Based on

the Toxic Text LSTM model result, character bigram

and word unigram performed better than other

combinations of n-grams.

We suggest that further studies should examine

toxic speech detection using PISR_COMB speech

features comprising pitch, intensity, and speaking

rate, and text features consisting of the word and

character n-grams using the LSTM method. Studies

on text features from transcription text with short

sentence variations should use bigram characters and

word unigrams. Random Forest as the feature

importance ranking method can also be further

utilized as the reasoning behind using text and/or

speech feature set, especially in a recognition task.

Nomenclature
Term Definition

AWE Acoustic Word Embeddings

BERT Bidirectional Encoder Representations

from Transformers

BoW Bag-of-Words

CAE Contextual Auto Encoder

CNN Convolutional Neural Network

GDP Gross Domestic Product

GRU Gated Recurrent Unit

HNR Harmonic-to-Noise Ratio

ISR_COMB Intensity and Speaking Rate

Combination of Speech Features

LPC Linear Predictive Coding

LSTM Long Short-Term Memory

MFCC Mel-Frequency Cepstral Coefficients

NMT Neural Machine Translation

PISR_COMB Pitch, Intensity, and Speaking Rate

Combination of Speech Features

PSR_COMB Pitch and Speaking Rate Combination

of Speech Features

Term Definition

RF Random Forest

RNN Recurrent Neural Network

sklearn Scikit-Learn

tanh Hyperbolic Tangent Function

TF-IDF Term Frequency-Inverse Document

Frequency

UIT-ViCTSD University of Information Technology

- Vietnamese Constructive and Toxic

Speech Detection

VDCNN Very Deep Convolutional Neural

Network

Conflicts of Interest

The authors declare no conflict of interest.

Author Contributions

Agustinus Bimo Gumelar: conceptualization of

study and methodology. Eko Mulyanto Yuniarno:

data curation and preparation. Derry Pramono Adi:

writing—review and editing. Arif Nugroho: formal

analysis and practical methodology. Indar Sugiarto:

supervision and theoretical methodology. Mauridhi

Hery Purnomo: original draft and supervision.

Acknowledgments

This work is supported by the Kementerian Riset

dan Teknologi (Indonesian Ministry of Research and

Technology) and the Badan Riset dan Inovasi

Nasional (Indonesian National Research and

Innovation Agency) by providing the research grant

with contract number 848/PKS/ITS/2021.

References

[1] L. Tirrell, “Toxic speech: Toward an

epidemiology of discursive harm”,

Philosophical Topics, Vol. 45, No. 2, pp. 139-

161, 2017, doi: 10.5840/philtopics201745217.

[2] S. Arabi, The Highly Sensitive Person’s Guide

to Dealing with Toxic People: How to Reclaim

Your Power from Narcissists and Other

Manipulators, New Harbinger Publications,

2020.

[3] N. Babakov, V. Logacheva, and A. Panchenko,

“Beyond Plain Toxic: Building Datasets for

Detection of Flammable Topics and

Inappropriate Statements”, Lang Resour Eval,

pp. 1-46, 2023.

[4] A. B. Gumelar, D. P. Adi, E. Setiawan, A.

Widodo, M. Y. T. Sulistyono, and others,

“Machine Learning Performance Comparison

for Toxic Speech Classification: Online Payday

Received: July 16, 2024. Revised: September 30, 2024. 900

International Journal of Intelligent Engineering and Systems, Vol.17, No.6, 2024 DOI: 10.22266/ijies2024.1231.67

Loan Scams in Indonesia”, In: Proc. of 2020

International Seminar on Application for

Technology of Information and Communication

(iSemantic), pp. 603-608, 2020.

[5] R. Shewale, “YouTube Statistics For 2024

(Users, Facts & More)”, Demand Sage, 2024,

Available:

https://www.demandsage.com/youtube-stats/

[6] M. Dove, The Psychology of Fraud, Persuasion

and Scam Techniques: Understanding what

Makes Us Vulnerable. Milton: Taylor & Francis

Group, 2020.

[7] PricewaterhouseCoopers, PwC Indonesia -

Fintech Series, Indonesia’s Fintech Lending:

Driving Economic Growth Through Financial

Inclusion, 2019. Available:

https://www.pwc.com/id/en/fintech/PwC_Finte

chLendingThoughtLeadership_ExecutiveSum

mary.pdf

[8] H. Tu, A. Doupé, Z. Zhao, and G.-J. Ahn, “Users

Really Do Answer Telephone Scams”, In: Proc.

of the 28th USENIX Conference on Security

Symposium, Santa Clara, CA: {USENIX}

Association, pp. 1327-1340, 2019.

[9] S. Mbarek and D. Trabelsi, “Crowdfunding

without Crowd-fooling: Prevention is Better

than Cure”, Corporate Fraud Exposed, Emerald

Publishing Limited, 2020.

[10] L. Hess, “Slurs and Expressive Commitments”,

Acta Analytica, Vol. 36, No. 2, pp. 1-28, 2020,

doi: 10.1007/s12136-020-00445-x.

[11] L. T. Nguyen, K. Van Nguyen, and N. L.-T.

Nguyen, “Constructive and Toxic Speech

Detection for Open-Domain Social Media

Comments in Vietnamese”, Advances and

Trends in Artificial Intelligence. Artificial

Intelligence Practices 2021, Lecture Notes in

Computer Science, Vol 12798, pp 572–583,

2021, doi: 10.1007/978-3-030-79457-6_49.

[12] J. Moon, W. I. Cho, and J. Lee, “BEEP! Korean

Corpus of Online News Comments for Toxic

Speech Detection”, In: Proc. of the Eighth

International Workshop on Natural Language

Processing for Social Media, 2020, doi:

10.18653/v1/2020.socialnlp-1.4.

[13] A. G. D’Sa, I. Illina, and D. Fohr, “BERT and

fastText Embeddings for Automatic Detection

of Toxic Speech”, In: Proc. of 2020

International Multi-Conference on:

“Organization of Knowledge and Advanced

Technologies” (OCTA), pp. 1-5, 2020. doi:

10.1109/OCTA49274.2020.9151853.

[14] P. Malik, A. Aggrawal, and D. K. Vishwakarma,

“Toxic Speech Detection using Traditional

Machine Learning Models and BERT and

fastText Embedding with Deep Neural

Networks”, In: Proc. of 2021 5th International

Conference on Computing Methodologies and

Communication (ICCMC), pp. 1254-1259, 2021.

doi: 10.1109/ICCMC51019.2021.9418395.

[15] W.-C. Lin and D. Emmanouilidou, “Toxic

Speech and Speech Emotions: Investigations of

Audio-based Modeling and Intercorrelations”,

In: Proc. of 2022 30th European Signal

Processing Conference (EUSIPCO), pp. 115-

119, 2022. doi:

10.23919/EUSIPCO55093.2022.9909856.

[16] H. Madhu, S. Satapara, S. Modha, T. Mandl, and

P. Majumder, “Detecting offensive speech in

conversational code-mixed dialogue on social

media: A contextual dataset and benchmark

experiments”, Expert Syst Appl, Vol. 215, p.

119342, 2023, doi:

10.1016/j.eswa.2022.119342.

[17] A. Lees, D. Borkan, I. Kivlichan, J. Nario, and

T. Goyal, “Capturing Covertly Toxic Speech via

Crowdsourcing”, In: Proc. of the First

Workshop on Bridging Human-Computer

Interaction and Natural Language Processing,

Online: Association for Computational

Linguistics, pp. 14-20, 2021.

[18] K. Han, D. Yu, and I. Tashev, “Speech Emotion

Recognition using Deep Neural Network and

Extreme Learning Machine”, In: Proc. of 15th

Annual Conference of the International Speech

Communication Association, 2014.

[19] S. Debnath and P. Roy, “Audio-Visual

Automatic Speech Recognition Using PZM,

MFCC and Statistical Analysis”, International

Journal of Interactive Multimedia and Artificial

Intelligence, Vol. 7, No. 2, p. 121, 2021, doi:

10.9781/ijimai.2021.09.001.

[20] Z. B. Nezhad and M. A. Deihimi, “A Combined

Deep Learning Model for Persian Sentiment

Analysis”, IIUM Engineering Journal, Vol. 20,

No. 1, pp. 129-139, 2019.

[21] K. Dubey, R. Nair, Mohd. U. Khan, and Prof. S.

Shaikh, “Toxic Comment Detection using

LSTM”, In: Proc. of 2020 Third International

Conference on Advances in Electronics,

Computers and Communications (ICAECC),

IEEE, pp. 1-8, 2020, doi:

10.1109/ICAECC50550.2020.9339521.

[22] Z. Zhang, D. Robinson, and J. Tepper,

“Detecting Hate Speech on Twitter Using a

Convolution-GRU Based Deep Neural

Network”, In: Proc. of the Semantic Web ESWC

2018, Lecture Notes in Computer Science, Vol

10843, pp. 745–760, 2018, doi: 10.1007/978-3-

319-93417-4_48.

Received: July 16, 2024. Revised: September 30, 2024. 901

International Journal of Intelligent Engineering and Systems, Vol.17, No.6, 2024 DOI: 10.22266/ijies2024.1231.67

[23] A. B. Gumelar, E. M. Yuniarno, A. Nugroho, D.

P. Adi, I. Sugiarto, and M. H. Purnomo,

“Indonesian Toxic Speech Dataset

(IndoToxSpeech)”, IEEE Dataport, 2024, doi:

10.21227/dbgb-j630.

[24] J. Guo, “Deep Learning Approach to Text

Analysis for Human Emotion Detection from

Big Data”, Journal of Intelligent Systems, Vol.

31, No. 1, pp. 113-126, 2022, doi: 10.1515/jisys-

2022-0001.

[25] A. F. Adoma, N.-M. Henry, and W. Chen,

“Comparative Analyses of BERT, RoBERTa,

DistilBERT, and XLNet for Text-Based

Emotion Recognition”, In: Proc. of 2020 17th

International Computer Conference on Wavelet

Active Media Technology and Information

Processing (ICCWAMTIP), IEEE, pp. 117-121,

2020. doi:

10.1109/ICCWAMTIP51612.2020.9317379.

[26] A. Rodriguez, Y.-L. Chen, and C. Argueta,

“FADOHS: Framework for Detection and

Integration of Unstructured Data of Hate Speech

on Facebook Using Sentiment and Emotion

Analysis”, IEEE Access, Vol. 10, pp. 22400-

22419, 2022, doi:

10.1109/ACCESS.2022.3151098.

[27] L. Cao, S. Peng, P. Yin, Y. Zhou, A. Yang, and

X. Li, “A Survey of Emotion Analysis in Text

based on Deep Learning”, In: Proc. of 2020

IEEE 8th International Conference on Smart

City and Informatization (iSCI), pp. 81-88, 2020.

[28] H. Li, B. Ma, and K. A. Lee, “Spoken Language

Recognition: from Fundamentals to Practice”,

In: Proc. of the IEEE, Vol. 101, No. 5, pp. 1136-

1159, 2013.

[29] A. A. Alashban, M. A. Qamhan, A. H. Meftah,

and Y. A. Alotaibi, “Spoken Language

Identification System Using Convolutional

Recurrent Neural Network”, Applied Sciences,

Vol. 12, No. 18, p. 9181, 2022, doi:

10.3390/app12189181.

[30] R. Haeb-Umbach, S. Watanabe, T. Nakatani, M.

Bacchiani, B. Hoffmeister, M.L. Seltzer, H. Zen,

M. Souden., “Speech Processing for Digital

Home Assistants: Combining Signal Processing

With Deep-Learning Techniques”, IEEE Signal

Processing Magazine, Vol. 36, No. 6, pp. 111-

124, 2019, doi:

https://doi.org/10.1109/MSP.2019.2918706.

[31] E. Lleida and L. J. Rodriguez-Fuentes, “Speaker

and Language Recognition and

Characterization: Introduction to the CSL

Special Issue”, Elsevier, 2018.

[32] Y. Gao, Y. Chen, J. Wang, M. Tang, and H. Lu,

“Reading Scene Text with Fully Convolutional

Sequence Modeling”, Neurocomputing, Vol.

339, pp. 161-170, 2019.

[33] N. Das, N. Padhy, N. Dey, S. Bhattacharya, and

J. M. R.S. Tavares, “Deep Transfer Learning-

Based Automated Identification of Bird Song”,

International Journal of Interactive Multimedia

and Artificial Intelligence, Vol. 8, No. 4, p. 33,

2023, doi: 10.9781/ijimai.2023.01.003.

[34] R. Imbriaco, C. Sebastian, E. Bondarev, and

others, “Aggregated Deep Local Features for

Remote Sensing Image Retrieval”, Remote Sens

(Basel), Vol. 11, No. 5, p. 493, 2019.

[35] J. Kim, H. Kim, and others, “An Effective

Intrusion Detection Classifier using Long Short-

Term Memory with Gradient Descent

Optimization”, In: Proc. of 2017 International

Conference on Platform Technology and

Service (PlatCon), pp. 1-6, 2017.

[36] K. Lv, S. Jiang, and J. Li, “Learning Gradient

Descent: Better Generalization and Longer

Horizons”, In: Proc. of International

Conference on Machine Learning, pp. 2247-

2255, 2017.

[37] D. Wang and K. Mao, “Task-generic Semantic

Convolutional Neural Network for Web Text-

aided Image Classification”, Neurocomputing,

Vol. 329, pp. 103-115, 2019, doi:

10.1016/j.neucom.2018.09.042.

[38] H. Xie, S. Fang, Z.-J. Zha, Y. Yang, Y. Li, and

Y. Zhang, “Convolutional Attention Networks

for Scene Text Recognition”, ACM

Transactions on Multimedia Computing,

Communications, and Applications, Vol. 15, No.

1s, pp. 1-17, 2019, doi: 10.1145/3231737.

[39] L.-Q. Zuo, H.-M. Sun, Q.-C. Mao, R. Qi, and R.-

S. Jia, “Natural Scene Text Recognition Based

on Encoder-Decoder Framework”, IEEE Access,

Vol. 7, pp. 62616-62623, 2019, doi:

10.1109/ACCESS.2019.2916616.

[40] J. Wang, W. Xu, X. Fu, G. Xu, and Y. Wu,

“ASTRAL: Adversarial Trained LSTM-CNN

for Named Entity Recognition”, Knowl Based

Syst, Vol. 197, p. 105842, 2020.

[41] S. K. Bharti, S. Varadhaganapathy, R. K. Gupta,

P. K. Shukla, M. Bouye, S. K. Hingaa, A.

Mahmoud, “Text-Based Emotion Recognition

Using Deep Learning Approach”,

Computational Intelligence and Neuroscience,

Vol. 2022, p. 2645381, 2022, doi:

https://doi.org/10.1155/2022/2645381.

[42] E. Hamdi, S. Rady, and M. Aref, “A

Convolutional Neural Network Model for

Emotion Detection from Tweets”, pp. 337-346,

2019. doi: 10.1007/978-3-319-99010-1_31.

Received: July 16, 2024. Revised: September 30, 2024. 902

International Journal of Intelligent Engineering and Systems, Vol.17, No.6, 2024 DOI: 10.22266/ijies2024.1231.67

[43] O. E. Ojo, T. T. Hoang, A. Gelbukh, H. Calvo,

G. Sidorov, and O. O. Adebanji, “Automatic

Hate Speech Detection Using CNN Model and

Word Embedding”, Computación y Sistemas,

Vol. 26, No. 2, 2022, doi: 10.13053/cys-26-2-

4107.

[44] A. Safaya, M. Abdullatif, and D. Yuret,

“KUISAIL at SemEval-2020 Task 12: BERT-

CNN for Offensive Speech Identification in

Social Media”, In: Proc. of the Fourteenth

Workshop on Semantic Evaluation, pp. 2054-

2059, 2020.

[45] S. V Georgakopoulos, S. K. Tasoulis, A. G.

Vrahatis, and V. P. Plagianakos, “Convolutional

Neural Networks for Toxic Comment

Classification”, In: Proc. of the 10th Hellenic

Conference on Artificial Intelligence, pp. 1-6,

2018.

[46] M. A. Saif, A. N. Medvedev, M. A. Medvedev,

and T. Atanasova, “Classification of Online

Toxic Comments using the Logistic Regression

and Neural Networks Models”, AIP Conference

Proceedings, p. 60011, 2018.

[47] S. O. Manoj, A. Kumar, A. K. Dubey, and J. P.

Ananth, “An Adaptive Salp-Stochastic-

Gradient-Descent- Based Convolutional LSTM

With MapReduce Framework for the Prediction

of Rainfall”, International Journal of

Interactive Multimedia and Artificial

Intelligence, pp. 1-13, 2024, doi:

10.9781/ijimai.2024.01.003.

[48] A. Sherstinsky, “Fundamentals of Recurrent

Neural Network (RNN) and Long Short-Term

Memory (LSTM) Network”, Physica D, Vol.

404, p. 132306, 2020.

[49] H. Zhao, S. Zarar, I. Tashev, and C.-H. Lee,

“Convolutional-Recurrent Neural Networks for

Speech Enhancement”, In: Proc. of 2018 IEEE

International Conference on Acoustics, Speech

and Signal Processing (ICASSP), pp. 2401-2405,

2018.

[50] K. Greff, R. K. Srivastava, J. Koutník, B. R.

Steunebrink, and J. Schmidhuber, “LSTM: A

Search Space Odyssey”, IEEE Trans Neural

Netw Learn Syst, Vol. 28, No. 10, pp. 2222-2232,

2016.

[51] M.-H. Su, C.-H. Wu, K.-Y. Huang, and Q.-B.

Hong, “LSTM-based Text Emotion Recognition

Using Semantic and Emotional Word Vectors”,

2018 First Asian Conference on Affective

Computing and Intelligent Interaction (ACII

Asia), IEEE, pp. 1-6, 2018, doi:

10.1109/ACIIAsia.2018.8470378.

[52] Y. Yu, X. Si, C. Hu, and J. Zhang, “A Review

of Recurrent Neural Networks: LSTM Cells and

Network Architectures”, Neural Comput, Vol.

31, No. 7, pp. 1235-1270, 2019, doi:

10.1162/neco_a_01199.

[53] G. L. De la Peña Sarracén, R. G. Pons, C. E.

Muñiz Cuza, and P. Rosso, “Hate Speech

Detection using Attention-based LSTM”,

EVALITA Evaluation of NLP and Speech Tools

for Italian, Accademia University Press, pp.

235-238, 2018, doi:

10.4000/books.aaccademia.4784.

[54] A. R. Isnain, A. Sihabuddin, and Y. Suyanto,

“Bidirectional Long Short Term Memory

Method and Word2vec Extraction Approach for

Hate Speech Detection”, IJCCS (Indonesian

Journal of Computing and Cybernetics Systems),

Vol. 14, No. 2, p. 169, 2020, doi:

10.22146/ijccs.51743.

[55] M. P. Kantipudi, S. Kumar, and A. Kumar Jha,

“Scene Text Recognition Based on Bidirectional

LSTM and Deep Neural Network”, Comput

Intell Neurosci, Vol. 2021, pp. 1-11, 2021, doi:

10.1155/2021/2676780.

[56] X. She and D. Zhang, “Text Classification based

on Hybrid CNN-LSTM Hybrid Model”, In:

Proc. of 2018 11th International Symposium on

Computational Intelligence and Design (ISCID),

pp. 185-189, 2018.

[57] D. Avola, M. Bernardi, L. Cinque, G. L. Foresti,

and C. Massaroni, “Exploiting recurrent neural

networks and leap motion controller for the

recognition of sign language and semaphoric

hand gestures”, IEEE Trans Multimedia, Vol. 21,

No. 1, pp. 234-245, 2018.

[58] A. Koratana and K. Hu, “Toxic Speech

Detection”, Neural Information Processing

System, p. 9, 2018.

[59] T. L. Sutejo and D. P. Lestari, “Indonesia Hate

Speech Detection Using Deep Learning”, In:

Proc. of the 2018 International Conference on

Asian Language Processing, IALP 2018, pp. 39-

43, 2019, doi: 10.1109/IALP.2018.8629154.

[60] K. Miok, D. Nguyen-Doan, B. Škrlj, D. Zaharie,

and M. Robnik-Šikonja, “Prediction

Uncertainty Estimation for Hate Speech

Classification”, In: Proc. of International

Conference on Statistical Language and Speech

Processing, pp. 286-298, 2019.

[61] R. Rakov and A. Rosenberg, “ ‘Sure, I Did The

Right Thing ‘: A System for Sarcasm Detection

in Speech”, Interspeech Proceedings, pp. 842-

846, 2013, doi:

https://doi.org/10.21437/interspeech.2013-239

[62] M. Rahimzad, A. Moghaddam Nia, H.

Zolfonoon, J. Soltani, A. Danandeh Mehr, and

H.-H. Kwon, “Performance Comparison of an

Received: July 16, 2024. Revised: September 30, 2024. 903

International Journal of Intelligent Engineering and Systems, Vol.17, No.6, 2024 DOI: 10.22266/ijies2024.1231.67

LSTM-based Deep Learning Model versus

Conventional Machine Learning Algorithms for

Streamflow Forecasting”, Water Resources

Management, Vol. 35, No. 12, pp. 4167-4187,

2021, doi: 10.1007/s11269-021-02937-w.

[63] Z. Peng, Y. Lu, S. Pan, and Y. Liu, “Efficient

Speech Emotion Recognition Using Multi-Scale

CNN and Attention”, In: Proc. of ICASSP 2021

- 2021 IEEE International Conference on

Acoustics, Speech and Signal Processing

(ICASSP), pp. 3020-3024, 2021, doi:

10.1109/ICASSP39728.2021.9414286.

[64] Y. Zhao and X. Shu, “Speech emotion analysis

using convolutional neural network (CNN) and

gamma classifier-based error correcting output

codes (ECOC)”, Sci Rep, Vol. 13, No. 1, p.

20398, 2023, doi: 10.1038/s41598-023-47118-4.

[65] K. Yu, M. J. F. Gales, and P. C. Woodland,

“Unsupervised training with directed manual

transcription for recognising Mandarin

broadcast audio”, In: Proc. of International

Speech Communication Association - 8th

Annual Conference of the International Speech

Communication Association, Interspeech 2007,

Vol. 4, pp. 2896-2899, 2007.

[66] A. Tursunov, S. Kwon, and H.-S. Pang,

“Discriminating Emotions in the Valence

Dimension from Speech using Timbre Features”,

Applied Sciences, Vol. 9, No. 12, p. 2470, 2019.

[67] A. Balakrishnan and A. Rege, “Reading

Emotions from Speech using Deep Neural

Networks”, CS224S Project Reports, Stanford

University, Computer Science Department,

2017. [Online]. Available:

https://web.stanford.edu/class/cs224s/semesters

/2024-spring/reports_2017

[68] K. Rajaratnam, K. Shah, and J. Kalita, “Isolated

and Ensemble Audio Preprocessing Methods for

Detecting Adversarial Examples against

Automatic Speech Recognition”, ACL

Anthology, pp. 16-30, 2018, Accessed: Jan. 15,

2024. [Online]. Available:

https://aclanthology.org/O18-1002/

[69] F. Dong, G. Zhang, Y. Huang, and H. Liu,

“Speech Emotion Recognition Based on Multi-

Output GMM and SVM”, In: Proc. of 2010

Chinese Conference on Pattern Recognition

(CCPR), pp. 1-4, 2010.

[70] M. O. Ibrohim and I. Budi, “Multi-label Hate

Speech and Abusive Language Detection in

Indonesian Twitter”, In: Proc. of the Third

Workshop on Abusive Language Online, pp. 46-

57, 2019.

[71] F. Dong, G. Zhang, Y. Huang, and H. Liu,

“Speech Emotion Recognition Based on Multi-

Output GMM and SVM”, In: Proc. of 2010

Chinese Conference on Pattern Recognition

(CCPR), pp. 1-4, 2010.

[72] M. Selvaraj, R. Bhuvana, and S. Padmaja,

“Human Speech Emotion Recognition”,

International Journal of Engineering &

Technology, Vol. 8, pp. 311-323, 2016.

[73] D. Bone, M.P. Black, Chi-Chun Lee, M.E.

Williams, P. Levitt, S. Lee, S. Narayanan.,

“Spontaneous-speech acoustic-prosodic

features of children with autism and the

interacting psychologist”, In: Proc. of

Interspeech 2012, 2012, doi:

10.21437/interspeech.2012-307.

[74] Y. Jadoul, B. De Boer, and A. Ravignani,

“Parselmouth for Bioacoustics: Automated

Acoustic Analysis in Python”, Bioacoustics, pp.

1-19, 2024.

[75] A. Aziz, Mohd Aizaini Maarof, and Anazida

Zainal, “Hate Speech and Offensive Language

Detection: A New Feature Set with Filter-

Embedded Combining Feature Selection”, In:

Proc. of 2021 3rd International Cyber

Resilience Conference (CRC), Langkawi Island,

Malaysia, pp. 1-6, 2012, doi:

10.1109/CRC50527.2021.9392486.

[76] Q. Jin, C. Li, S. Chen, and H. Wu, “Speech

Emotion Recognition with Acoustic and Lexical

Features”, In: Proc. of 2015 IEEE international

conference on acoustics, speech and signal

processing (ICASSP), pp. 4749-4753, 2015.

[77] I. Alfina, R. Mulia, M. I. Fanany, and Y.

Ekanata, “Hate speech detection in the

Indonesian language: A dataset and preliminary

study”, In: Proc. of 2017 International

Conference on Advanced Computer Science and

Information Systems, ICACSIS 2017, Vol.

2018-Janua, No. October, pp. 233-237, 2018,

doi: 10.1109/ICACSIS.2017.8355039.

[78] U. Sapkota, S. Bethard, M. Montes, and T.

Solorio, “Not All Character N-grams are

Created Equal: A Study in Authorship

Attribution”, In: Proc. of the 2015 conference of

the North American chapter of the association

for computational linguistics: Human language

technologies, pp. 93-102, 2015.

[79] R. R. Oliveira and R. F. De Oliveira Neto,

“Using character n-grams and style features for

gender and language variety classification:

Notebook for PAN at CLEF 2017”, In: CEUR

Workshop Proc, Vol. 1866, 2017.

[80] G. Louppe, “Understanding Random Forests”,

University of Liège, 2014, Accessed: Mar. 12,

2024. [Online]. Available:

Received: July 16, 2024. Revised: September 30, 2024. 904

International Journal of Intelligent Engineering and Systems, Vol.17, No.6, 2024 DOI: 10.22266/ijies2024.1231.67

https://orbi.uliege.be/bitstream/2268/170309/1/

thesis.pdf.

[81] A. Perrie, “Feature Importance in Random

Forests”, Data Science. [Online]. Alexis Perrier-

Data Science, 2015. [Online]. Available:

https://alexisperrier.com/datascience/2015/08/2

7/feature-importance-random-forests-gini-

accuracy.html

[82] H. Daoud, M. Dhouib, J. Rancati, C. Faron, and

A. Tettamanzi, “A Hybrid Bi-LSTM-CRF

Model for Sequence Labeling Applied to the

Sourcing Domain”, In: Proc. of PFIA-APIA

2020 -5ème Conférence Nationale sur les

Applications Pratiques, Accessed: Mar. 11,

2024. [Online]. Available:

https://inria.hal.science/hal-

02932095/document.

[83] Y. Wang, M. Huang, X. Zhu, and L. Zhao,

“Attention-based LSTM for Aspect-level

Sentiment Classification”, In: Proc. of the 2016

conference on empirical methods in natural

language processing, pp. 606-615, 2016.

[84] M. Raiaan, S. Sakib, N. Fahad, A. Al Mamun,

M. Rahman, S. Shatabda, and M. Mukta, “A

systematic review of hyperparameter

optimization techniques in Convolutional

Neural Networks”, Decision analytics journal,

pp. 100470-100470, 2024, doi:

https://doi.org/10.1016/j.dajour.2024.100470.

[85] S. Thirukumaran and A. F. C. Archana, “Speech

Emotion Classification Analysis using Short-

term Features”, J Sci, Vol. 8, No. 1, 2017.

[86] I. Düntsch and G. Gediga, “Confusion Matrices

and Rough Set Data Analysis”, In: Proc. of

International Journal of Physics: Conference

Series, p. 12055, 2019.

[87] H. Moss, D. Leslie, and P. Rayson, “Using J-K-

fold Cross Validation to Reduce Variance When

Tuning NLP Models”, ACL Anthology, pp.

2978-2989, 2018, Accessed: Sep. 24, 2024.

[Online]. Available:

https://aclanthology.org/C18-1252.

[88] A. C. Mazari, N. Boudoukhani, and A. Djeffal,

“BERT-based Ensemble Learning for Multi-

Aspect Hate Speech Detection”, Cluster

Comput., 2023, doi: 10.1007/s10586-022-

03956-x.

[89] A. Marshan, F. N. M. Nizar, A. Ioannou, and K.

Spanaki, “Comparing Machine Learning and

Deep Learning Techniques for Text Analytics:

Detecting the Severity of Hate Comments

Online”, Inf. Syst. Front., 2023, doi:

10.1007/s10796-023-10446-x.

[90] M. R. Islam, M. A. H. Akhand, M. A. S. Kamal,

and K. Yamada, “Recognition of Emotion with

Intensity from Speech Signal Using 3D

Transformed Feature and Deep Learning”,

Electronics, Vol. 11, No. 15, p. 2362, 2022, doi:

10.3390/electronics11152362.

[91] C. Jacobs, N. C. Rakotonirina, E. A. Chimoto, B.

A. Bassett, and H. Kamper, “Towards Hate

Speech Detection in Low-Resource Languages:

Comparing ASR to Acoustic Word Embeddings

on Wolof and Swahili”, In: Proc. of

INTERSPEECH 2023, pp. 436-440, 2023. doi:

10.21437/Interspeech.2023-421.

