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Abstract: Toxic speech has gained substantial attention, focusing on its detrimental effects and prevalence across 

online platforms. This phenomenon often exhibits discernible patterns in pronunciation analogous to emotions such as 

happiness or anger. It has been relatively underexplored in prior studies, which predominantly addressed offensive 

language, hate speech, and sarcasm without considering their emotional properties. Social media platforms have 

emerged as spaces where individuals share personal encounters with toxic speech that impacts on their well-being. To 

address this challenge, our study introduces a novel approach that combines speech and text data within a Long Short-

Term Memory (LSTM) framework. Unlike existing methods that primarily focus on text analysis, our approach 

uniquely integrates both speech and text, thereby enhancing the model’s ability to accurately detect toxic content. This 

multimodal data strategy is such an innovative step forward that it provides a more comprehensive solution to the 

problem of toxic speech detection. Our collected dataset comprises two-way conversations from online fraud reports 

and confrontations related to loan scams uploaded on YouTube, conducted in the Indonesian language. The absence 

of subtitles can emerge any ambiguity of homonyms, so it is required to transcribe the audio content to text. To do this, 

we used native speakers to make sure the transcription was correct in the Indonesian language of the toxic context. In 

addition, speech features, such as pitch, intensity, and speaking rate, were utilized alongside text features, including 

Bag-of-Words (BoW) and Term Frequency-Inverse Document Frequency (TF-IDF). As a result, validation through 

F1-score measurement yielded 92.73% for text data and 89.09% for speech data. Our proposed approach provided a 

substantial improvement of approximately 12%-30% compared to the previous LSTM models. The performance 

comparison results confirmed that our proposed approach can enhance the accuracy of toxic speech detection. 

Keywords: Toxic speech detection, Speech pitch, Speech intensity, Bag-of-words, Term frequency-inverse document 

frequency, Long short-term memory. 

 

 

1. Introduction 

Toxic speech is acknowledged for its negative 

impact, causing emotional distress and disrupting 

social connections [1]. Understanding how toxic 

speech operates on social media is crucial to deal with 

its consequences. Generally described as offensive 

language, toxic speech can potentially lead to self-

harm and trigger long-lasting depression [1, 2]. 

Spotting toxic speech in everyday conversations is 

not easy [3]. However, by focusing on specific 

contexts or cases that inherently involve toxic speech, 
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toxic-related instances can be recognized and further 

automated using Deep Learning model classification.  

Our study focuses on online interactions, making 

data collection from the social media platforms for 

capturing relevant and accurate insights. Unlike other 

social media platforms, YouTube is a major hub for 

video content, which often includes user comments 

and interactions that can provide valuable insights 

into online behavior. The platform’s popularity and 

extensive use for both content creation and 

consumption make it an ideal source for our study on 

toxic speech detection. Additionally, the variety of 

content and the engagement it generates allow us to 

capture a wide range of speech patterns and 

interactions, making our analysis more 

comprehensive and representative of the general 

online discourse in Indonesia [4]. 

We collected data from YouTube specifically 

because as of 2024, Indonesia ranks third in the 

number of YouTube users globally, with 

approximately 139 million active users.  This large 

user base provides a rich and diverse dataset for 

analyzing toxic speech. The importance of taking 

data from YouTube for toxic speech research lies in 

its vast user base, which includes significant 

contributions from Indonesia [5]. Analyzing 

YouTube content allows for a comprehensive 

understanding of toxic speech in an active online 

community.  

Moreover, scam confrontation videos on 

YouTube would often follow this scenario: the 

reporters brought attention to a troubling scenario 

involving online loan scams. The uploaded YouTube 

reports on these scams would feature conversations 

between victims and scammers during confrontations 

via telephone calls. Our collection of online loan 

scam reports adheres to Dove’s criteria of scam-

related phenomena, which is close to investment 

scams, Ponzi schemes, and potential identity theft [6]. 

In this case, we specifically selected Indonesia for 

our study. The reason is that the Central Bureau of 

Statistics’ report indicates a low percentage of loan 

disbursements to Gross Domestic Product (GDP), 

suggesting underutilization of its financing capacity 

[7]. Consequently, the citizens of Indonesia are 

susceptible to quick online loan schemes. However, 

the use of financial technology in these online loan 

schemes makes them vulnerable to scams, leading to 

confrontations that result in toxic speech from both 

the victims and the perpetrators. 

According to Dove, scam schemes can start in a 

complex motion [6]. Scammers would initiate 

random calls to various numbers, sourced from 

different outlets like the dark web or public hotlines 

disclosed on social media, targeting potential loan-

seekers [8].  

Through phishing techniques, they manipulate 

victims by posing as fake agents representing 

corporations, convincing them of unnecessary quick 

loan schemes. Prior to the initiation of these supposed 

loan schemes, scammers request “administrative 

funds” to finalize the process. Once victims transfer 

the funds, the scammers sever all communication by 

blocking the number [6]. Conversely, scammers may 

also apply for loans using stolen identities, 

maintaining a semblance of a steady income in a bank 

account. After the loan approval, the leaves the actual 

victim, whose identity was stolen, to deal with debt 

collectors [9]. This often results in a perplexing 

conversation between the victim and the debt 

collector, as the victim is unaware of the loan. 

According to Hess, varying intonations can impart 

different meanings to a neutral word, transforming it 

into toxic language [10].  

Nguyen et al. introduced the Vietnamese 

Constructive and Toxic Speech Detection dataset 

(UIT-ViCTSD), a crowdsourced and text-based 

dataset designed to facilitate research in toxic speech 

detection [11]. Moon et al. contributed to this area by 

presenting a Korean Corpus for toxic speech 

detection, consisting of 9,400 manually labeled 

entertainment news comments sourced from a widely 

used crowdsourcing media platform [12]. D’Sa et al. 

explored the use of Bidirectional Encoder 

Representations from Transformers (BERT) and 

fastText embeddings to detect toxic speech in online 

media, achieving an 84% F1-measure during 

validation [13]. Similarly, Malik et al. employed 

BERT and fastText embeddings in their toxic speech 

detection system [14]. Additionally, Lees et al. 

introduced a crowdsourced toxic speech dataset, 

“coverttoxicity,” although the handling steps in 

managing crowdsourced datasets remain manual [17]. 

Even though toxic speech detection has been 

widely discussed in previous studies, there remains a 

notable gap in research regarding speech-based 

methods [13]. Lin et al. corroborated this observation, 

noting a prevailing focus on text-based solutions in 

published work on toxic speech detection [15]. The 

role of voice in conveying toxic speech is significant, 

encompassing intonation, tone, and nuances closely 

tied to emotions. Toxic speech often exhibits 

discernible patterns in pronunciation analogous to 

emotions such as happiness or anger [15]. This aspect 

has been relatively underexplored in prior studies, 

which predominantly addressed offensive language, 

hate speech, and sarcasm without considering their 

emotional properties [16]. 
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This study investigates multimodal toxic speech 

detection using voiced speech from crowdsourced 

media. The toxic speech detection process involves 

multiple steps. Lees et al. highlighted nuanced 

toxicity indicators like microaggression and 

condescension, forming the criteria for labeling data 

into “Toxic” and “Non-Toxic” classes [17]. Voice, as 

a carrier of information, encompasses various 

features, including speech features such as 

Fundamental Frequency (F0), denoting mean, range, 

and standard deviation, speaking rate, Harmonic-to-

Noise ratio (HNR), energy, and Mel Frequency 

Cepstral Coefficients (MFCC) to Linear Predictive 

Coding (LPC) [18-19].  

There exist plenty of Deep Learning models. 

Despite not specifically for toxic speech detection, 

many speech and text classification tasks in Natural 

Language Processing have achieved excellent 

accuracy using Deep Learning models, including 

LSTM [20]. One commonly used Deep Learning 

model is the Recurrent Neural Network (RNN), 

which is effective in capturing sequential patterns in 

text data. Variants of RNNs, such as Long Short-

Term Memory (LSTM) are often used due to their 

ability to remember long-range dependencies in text. 

Studies have demonstrated the effectiveness of 

LSTMs in this domain, with research showing their 

superiority in handling contextual information 

necessary for accurately detecting toxic speech [21-

22]. 

Despite significant advances in toxic speech 

detection, existing methods face notable limitations. 

Traditional text-based approaches often overlook the 

emotional cues present in speech, such as tone, pitch, 

and intensity, which are critical for accurately 

identifying toxic speech in real-world conversations. 

When models rely solely on text data, they tend to 

miss these nuances, leading to inaccuracies in 

detection. Although Convolutional Neural Networks 

(CNNs) have been successful in text and image 

recognition tasks, they are less effective when 

handling sequential speech data, where the order of 

words and vocal patterns play a vital role. Similarly, 

while Long Short-Term Memory (LSTM) networks 

excel at capturing long-term dependencies, their 

performance heavily depends on careful feature 

selection and hyperparameter tuning.  

Additionally, techniques like MinMaxScaler, 

commonly used for normalizing feature values and 

improving model convergence, can sometimes 

oversimplify complex speech characteristics, 

potentially losing important nuances in tone and 

intensity. To address these challenges, our method 

combines both speech and text features, applying 

MinMaxScaler for feature scaling alongside Random 

Forest (RF) for feature importance ranking. This 

approach enhances the accuracy of toxic speech 

detection by preserving the most relevant and 

informative aspects of the data while ensuring proper 

normalization. 

Our approach is distinguished by its integration 

of multiple modalities (speech and text) collected 

from real-world online fraud confrontation data. By 

optimizing the LSTM model with advanced feature 

selection and hyperparameter tuning, we achieve 

superior performance compared to traditional 

methods. This novel combination of multimodal data, 

feature ranking, and model optimization positions our 

work as a significant improvement over conventional 

toxic speech detection technique. 

In this study, we resolved the multimodal toxic 

speech detection research by three-fold contributions:  

1. We created a new dataset, featuring voice 

recordings from online fraud confrontation 

incidents in Indonesia, all compiled from 

YouTube. These incidents may indicate toxic 

speech and deserve further investigation in 

toxic speech detection. This dataset 

encompasses multiple modalities, 

incorporating both speech and transcripted 

text by Indonesian native speakers. Our 

dataset can be found in [23]. 

2. We combined a specific set of respective 

speech features and text features. We found 

that basic speech and text features matter a lot, 

but their combination of use can influence the 

outcome. Basic speech features include pitch, 

intensity, and speaking rate. While basic text 

features include word and character n-grams 

such as unigram, bigram, and trigram, 

represented through Bag of Words (BoW) 

and Term Frequency-Inverse Document 

Frequency (TF-IDF) methods. Based on the 

many features set on respective data 

modalities (speech and text), we ranked the 

importance of each feature set using Random 

Forest. We hypothesized that ranked feature 

sets would have a positive correlation with 

higher accuracy in our toxic speech 

recognition study. 

3. We optimized the learning model Long Short-

Term Memory by selecting the best value of 

hyperparameter, be it numerical or 

categorical. We also used Random Forest as a 

meta learner in automatic hyperparameter 

optimization, which would yield higher 

accuracy than vanilla LSTM [21]. 

These contributions offer important 

improvements over existing methods for detecting 

toxic speech. First, our new dataset, which includes 
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real-world voice recordings from online fraud 

confrontations in Indonesia, provides more realistic 

examples of toxic speech than other datasets. By 

using both speech and text features, like pitch and 

intensity in the voice alongside the words being 

spoken, our model can better recognize toxic speech, 

especially when the tone matters. Moreover, by 

systematically ranking the importance of speech and 

text features using Random Forest, we can ensure that 

our model addresses on the most relevant aspects. As 

a result, it can lead to improved classification 

performance.  

Finally, using Random Forest to help fine-tune 

the LSTM model’s settings gives us better results 

than standard methods. This combination of novel 

data, feature selection, and optimized LSTM model 

produces a more robust and effective toxic speech 

detection system.  

The rest of this study is summarized as follows: 

Section 2 shows some previous studies regarding 

toxic speech detection, while Section 3 shows our 

proposed approach to toxic speech detection using 

speech and text data. From our proposed approach, 

Section 4 illustrates the results and our findings from 

it. Finally, the conclusions and future research are 

provided in Section 5. 

2. Related work 

Guo in 2022 claimed that from a data analysis 

perspective in language modeling for the task of 

recognizing human emotions, humor, stress, and 

toxic speech in the text-based source becomes highly 

beneficial [24]. Furthermore, textual-based 

recognition has received so many pre-trained models 

for language modeling in the past decade [25]. To 

identify toxic and hate speech, Rodriguez et al. use 

textual emotion analysis on social media cases. Their 

study’s objective was to track down and examine the 

unstructured material from a sample of social media 

posts with the hostile [26]. However, Rodriguez et al. 

mentioned no concept of toxic speech. Cao et al. 

surveyed deep learning techniques that are 

commonly used in assessing emotion in text data. 

They also draw attention to the problems and 

difficulties associated with text emotion recognition 

[27]. Additionally, Cao et al.’s survey has shown that 

LSTM and CNN accurately assessed emotions [27]. 

Li et al. presented the foundations of techniques to 

automatically recognize spoken languages for 

computational and phonological purposes [28]. 

Subsequent years have seen significant 

improvements in the field of spoken language 

comprehension [29], many of which have been 

powered by advances in associated signal-processing 

fields such as pattern recognition and cognitive 

science [30]. Studies indicate that while the field has 

grown in recent years, it seems far from flawless, 

especially in language characterization [31]. 

2.1 Convolutional neural network in toxic speech 

recognition 

Deep Convolutional Neural Networks (CNNs) 

have hierarchical patterns of multiple layers 

investigated using a completely convoluted 2D data 

recognition [32, 33]. CNN is structured to handle 

massively complex data in the form of multiple arrays 

or tensors. CNN usually manages input data that 

integrates three simple ideas: local networking, 

collective weights, and organized pooling in a 

sequence of interconnected layers. CNN extracted 

global portrayals of the entire input and collected 

local features to recognize each component of 

sequential objects (in this case, textual-based toxic 

speech).  

While convolutional layers recognize a local 

subset of inputs from the preceding stage, the pooling 

layer aims to add local features to an even more 

global representation [34]. Pooling is accomplished 

by sliding a non-overlapping window over the 

convolution layer’s output to gain a collected value 

for each window. In addition, all CNN learning 

weights (and those of a fully connected layer) are 

computed using the standard backpropagation 

method, Gradient-Descent Optimization [35, 36]. 

Sadly, CNN cannot yield the best result by itself in 

text recognition. Some past work used CNN in text 

recognition by converting text to image [37], using 

attention mechanism [38], using encoder mechanism 

[39], and even using LSTM [40]. CNN is used in 

many text recognitions including emotion 

recognition [41, 42], text-based hate speech 

recognition [43, 44], and so forth. 

Recent studies from 2019 to 2024 have 

demonstrated CNN’s effectiveness in text-based 

toxic speech recognition, achieving excellent 

accuracies by leveraging various hyperparameters 

and text features of TF-IDF and Bag of Words, yet 

these studies primarily focus on text data from social 

media platforms. D’Sa et al. experimented with CNN 

and BERT embedding for their toxic speech 

multiclass classification. They stated that TF-IDF and 

BoW are largely used as input patterns. In result, they 

achieved 84% in F1-measure validation [13]. 

Georgakopoulos et al. explored toxic comment 

detection using BoW as a text feature with the CNN 

model, demonstrating superior accuracy at 91.2% 

[45]. Saif et al. combined LSTM and CNN to detect 

toxic comments, yielding excellent classification 
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results, although the features and mechanisms of the 

layers were not extensively detailed [46]. 

Malik et al. employed BERT and fastText 

embeddings in their toxic speech detection system, 

although with lower result of 82%. Additionally, 

Malik et al. also worked with both TF-IDF and BoW. 

Even using the same Deep Learning model and input 

features, Malik’s experiment still lower in accuracy 

than the work of D’Sa et al. The reason is that their 

work lost too many data because they completely 

remove slangs and no translation effort done from 

slangs to formal words, therefore resulting in dataset 

that is shallow in context and imbalanced in terms of 

data count. They have since stated a future work of 

using data augmentation (Synthetic Minority 

Oversampling Technique or SMOTE) to alleviate 

this research gap [14]. We can conclude that even 

input feature and Deep Learning model choice is 

important, balanced data in terms of count is also very 

important for toxic speech recognition research. 

Convolutional Neural Networks (CNN) have 

been widely applied in image processing and text-

based tasks. However, CNNs struggle with sequential 

and time-dependent data, such as speech, where the 

order of words and tone of voice are crucial. Unlike 

CNNs, our approach leverages LSTM models that are 

effective for sequential speech data, thus capturing 

long-term dependencies in speech patterns. 

2.2 Long short-term memory in toxic speech 

recognition 

Although CNN is superb in capturing local and 

global features, CNN is not suitable for sequential 

objects because the length of sequential objects varies, 

and the input data should be configured to a fixed size. 

A predecessor of LSTM is called Recurrent Neural 

Network (RNN). It can capture meaningful temporal 

patterns in sequential speech data. Ultimately, this 

behavior leads to improved results. The RNN 

architecture contains hidden layers that preserve the 

previous input sequence’s elements [47].  

Despite sequential data modeling performance, 

RNN is faced with difficulties using traditional 

backpropagation techniques for data sequence 

training with higher separation degrees [48]. The 

Long Short-Term Memory (LSTM) networks 

overcome this restriction by establishing “gates,” 

which are hidden units that regulate how much 

information is retained or lost during 

backpropagation [48]. To increase output, 

bidirectional RNNs would treat sequential data 

processing [49]. However, because the complete 

sequence needs to be available for processing, this 

kind of technology can obstruct real-time operation. 

 
Figure. 1 One Memory Cell of LSTM Unit 

 

Gated Recurrent Unit (GRU) is another LSTM 

derivate for the context of Neural Machine 

Translation (NMT). The GRU indicates that it will do 

plenty to deal with the short sentence of the NMT 

problems. According to Zuo et al., there are a few 

different versions in the LSTM, such as GRU, that are 

contrasted with one another [39]. Greff et al. have 

identified that the original LSTM structure is better 

compared to the different recognition tasks [50]. 

LSTM is used in emotion recognition [51, 52], text-

based hate speech recognition [53, 54], generic text 

detection [55, 56], and so on. 

As shown in Fig. 1, an LSTM diagram has an 

input gate denoted by 𝑖𝑡, and accepts input denoted 

by 𝑥𝑡 which is all independent features by reference, 

which is an input vector at time 𝑡, while ℎ𝑡−1is the 

previous hidden state and pass-through sigmoid 

function denoted by 𝑡𝑎𝑛ℎ . It then restricts the 

number between zero and one, if it must discard the 

previous memory, it will output a vector which will 

have all zero, this is the work of the forget gate [57]. 

Previous studies have employed deep learning 

methodologies, including Recurrent Neural 

Networks (RNN), Long Short-Term Memory 

(LSTM), and Convolutional Neural Network (CNN) 

models, to tackle the challenges of toxic speech 

classification. Koratana and Hu utilized a GRU-RNN 

model based on LSTM and RNN paradigms, 

alongside the Very Deep Convolutional Neural 

Network (VDCNN), achieving successful toxic 

speech detection using logistic regression with text 

word and character n-grams, employing Bag-of-

Words (BoW) and Term Frequency-Inverse 

Document Frequency (TF-IDF) representations [58].  

Sutejo and Lestari conducted a similar LSTM-

based study, achieving an F1-score of 83.91% in 

toxic speech detection using TF-IDF and Bag-of-
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Words (BoW) as text features [59]. Miok et al. 

reported robust toxic speech classification using 

various text features with LSTM, achieving 81% 

accuracy with TF-IDF [60]. 

Toxic speech detection studies also leverage 

speech features. Sutejo and Lestari collected 

multimodal data, incorporating speech and text from 

social media platforms, achieving an F1-score of 

82.5% using a one-layered LSTM with Time 

Distributed layer and extracting speech features such 

as MFCC, INTERSPEECH, and Prosody_Acf [59]. 

Rakov and Rosenberg reported successful toxic 

speech detection utilizing speech features, including 

pitch, intensity, speaking rate, and prosodic contour 

patterns, achieving an accuracy of 81.57% with K-

means clustering and Simple Logistic classification 

(LogitBoost) [61]. Previous studies have motivated 

us to leverage the integration of speech features (pitch, 

intensity, and speaking rate), text features (TF-IDF 

and BoW), and the application of the LSTM model as 

they are deemed beneficial for effective toxic speech 

detection. 

LSTM models are a powerful method for 

handling sequential data, but they are highly sensitive 

to the selection of features and require extensive 

tuning to achieve optimal performance. Existing 

LSTM-based methods often overlook the importance 

of combining both speech and text features, thereby 

limiting their ability to fully capture toxic speech. By 

integrating speech and text features and employing 

Random Forest for feature importance ranking, this 

method can improve LSTM performance and 

guarantee that only the most relevant features are 

used for classification. 

2.3 Feature scaling using MinMaxScaler 

Feature scaling, particularly using the 

MinMaxScaler, can significantly impact the 

performance of LSTM models. LSTM models 

perform better when input features are scaled. Scaling 

ensures that all features contribute equally during 

training, preventing any single feature from 

dominating the model. When using MinMaxScaler, 

features are transformed to a range between 0 and 1. 

This normalization helps the LSTM model converge 

faster and improves its ability to learn from the data 

[62]. Proper scaling speeds up convergence, allowing 

the model to learn more efficiently. It also helps avoid 

issues related to feature magnitude discrepancies. 

The MinMaxScaler transforms features by 

scaling each feature to a given range, usually between 

0 and 1. The transformation is given by the following 

equations for standardization in Eq. (1) and scaling to 

the feature range in Eq. (2). 

 

𝑋𝑠𝑡𝑑 =
𝑋−𝑋𝑚𝑖𝑛

𝑋𝑚𝑎𝑥−𝑋𝑚𝑖𝑛
                                               (1) 

 

𝑋𝑠𝑐𝑎𝑙𝑒𝑑 = 𝑋𝑠𝑡𝑑  (𝑚𝑎𝑥 −𝑚𝑖𝑛) + 𝑚𝑖𝑛                (2) 

 

where X is the input feature, 𝑋𝑚𝑖𝑛 and 𝑋𝑚𝑎𝑥 are the 

minimum and maximum values of 𝑋  respectively. 

Additionally, min and max represent the intended 

range of the transformed data [63].  

In the context of toxic speech detection, these 

features could be various characteristics extracted 

from the speech signal, such as Mel-Frequency 

Cepstral Coefficients (MFCCs) [64]. After scaling, 

these features can be fed into a LSTM model for toxic 

speech detection 𝑀𝑖𝑛𝑀𝑎𝑥𝑆𝑐𝑎𝑙𝑒𝑟  does not reduce 

the effect of outliers. It linearly scales them down into 

a fixed range, where the largest occurring data point 

corresponds to the maximum value and the smallest 

one corresponds to the minimum value [63].  

MinMaxScaler is an essential preprocessing step 

in many machine learning tasks. It can ensure that 

features are scaled to a consistent range, which is 

important for optimizing model performance. 

However, one limitation of MinMaxScaler is that it 

can sometimes reduce the variability of more 

complex features, such as the dynamic range of 

speech characteristics like pitch and intensity. To 

overcome this problem, we combine the use of 

MinMaxScaler with a feature-ranking technique 

using Random Forest. This allows us to retain the 

most important and informative features such that the 

scaling process does not negatively impact the 

detection of toxic speech. By carefully selecting and 

scaling features, we maintain both the benefits of 

feature normalization and the richness of the data. 

3. Proposed methodology 

This study developed several steps, including 

data collection, feature extraction, and classification, 

to detect toxic speech using LSTM as well as voice 

and text transcription. Overall, the study steps are 

presented in Fig. 2. 

3.1 Data collection 

The collected data is in the form of two-way real-

life conversations [23]. Many have reported their 

experience of scam confrontation, which largely 

involves online loan scam cases. They recorded the 

whole conversation and then uploaded it to YouTube.  

The voice was taken from recorded online fraud 

conversations on YouTube. Victims and fraudsters 

utter toxic words in online fraud recordings due to 

anger or annoyance.  
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Figure. 2 Proposed Experiment Pipeline 

 

 
Table 1. Total Instances in Toxic Speech Dataset 

Data Type Toxic 
Non-

Toxic 
Total 

Voice/audio 
200 200 400 

Text (voice/audio 

transcript) 
200 200 400 

 

Since the data had no labels, manual labelling was 

performed with a class of 0 and 1, where 0 

represented Non-Toxic, while 1 meant Toxic. The 

voice was also transcribed for use as text data. 

However, the transcription was manual [65] in order 

to obtain more accurate results. The data instances are 

presented in Table 1. 

3.2 Speech data preprocessing steps 

This section covers data pre-processing, which 

typically follows data collection.  
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Figure. 3 Speech Data Preprocessing Steps 

 

Raw data had many shortcomings, such as high noise, 

many silence segments, and too long duration. 

Subsequently, the voice [66-69] and text [59, 70] data 

were normalized.  

 

Algorithm 1. Speech Data Preprocessing 

Pseudocode 

input: Voice/audio files (.wav) 

output: Preprocessed voice/audio files (.wav) 

TrimSilenceSegment: module to trim audio silence 

segment 

ReduceNoise: module to reduce audio noise 

TrimDuration: module to trim the audio duration 

MoveAudioToPreprocessedDir: function to move 

preprocessed audio file into preprocessed directory 

1 while voice/audio file in the audio directory 

exists do 

2       filepath = get original audio filepath 

3       outputpath = set output filepath same as  

      original audio filepath 

4       duration = get audio duration 

5       TrimSilenceSegment(filepath, outputpath) 

6       ReduceNoise(filepath, outputpath) 

7       if duration > 4 seconds 

8             TrimDuration(filepath, outputpath) 

9       endif 

10       preprocessed_dir = set preprocessed  

      directory location 

11       MoveAudioToPreprocessedDir(filepath,  

      preprocessed_dir) 

12 endwhile 

 

The combination of preprocessing functions 

makes the accuracy results better than the previous 

works’ result [59]. The features of the preprocessed 

dataset were extracted for further processing. Fig. 3 

shows data pre-processing steps for voice/audio data, 

while Algorithm 1 show our toxic speech data 

preprocessing steps in pseudocode. 

Algorithm 1 mainly provide the pseudocodes of 

data pre-processing steps of speech data. Below is the 

explanation of data pre-processing steps: 

• Silence Removal 

Trimming the voice silence segment aimed to 

avoid empty data segments during feature 

extraction [59, 71]. The trimming function is 

shown in Algorithm 1, line 6. 

• Duration Trimming 

Trimming duration to a maximum of 4 seconds 

aimed to obtain the approximate toxic 

conversation pattern [59]. The trimming function 

is shown in Algorithm 1, lines 8-10. 

• Noise Reduction 

Noise reduction aimed to obtain clearer 

conversations and improve the features’ quality 

[65]. The noise reduction function is shown in 

Algorithm 1, line 7. 

• Sampling Rate Adjustment 

Adjusting the sampling rate is crucial for ensuring 

compatibility with the LSTM’s requirements. 

This adjustment involves resampling the audio 

signals to match the desired rate, such as 16 kHz 

or 44.1 kHz, which are common in speech 

processing tasks. This step helps in standardizing 

the input data and improving the LSTM’s 

performance. 

3.3 Text data preprocessing steps 

Fig. 4 shows data pre-processing steps for text 

data, where text data is acquired after the text 

transcription process. Algorithm 2 primarily presents 

the pseudocode for the data pre-processing steps of 

text data. The following is a detailed explanation of 

these pre-processing steps: 

• Case folding 

Converting the entire text to lowercase, known as 

Case Folding, aimed to avoid possible sensitive 

cases [59]. By standardizing the text in this way, 

we reduce complexity and improve the 

consistency of the input data. The case folding 

function is shown in Algorithm 2, line 5. 

• Number removal 

The numbers in the text were removed and 

converted into letters [59]. This ensures the text 

analysis remains focused on words rather than 

digits, helping reduce dimensionality and making 

the training process more efficient. The removal 

function is shown in Algorithm 2, line 6. 

 

 

 
Figure. 4 Transcripted Text Data Preprocessing Steps 
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• Stopwords removal 

Stopwords with a high text occurrence frequency 

were removed [70], such as “dan (and)”, “atau 

(or)”, “tapi (but),” in Indonesia. This process 

increases the accuracy and speed of training and 

classification because the text becomes more 

efficient concerning the number of words. The 

stopwords removal function is shown in 

Algorithm 2, lines 7-8. 

• Stemming 

Stemming involves changing text words into stem 

forms to avoid expanding word form patterns [70]. 

For instance, the words “kemungkinan 

(possibility)”, “dimungkinkan (will be possible)”, 

“mungkinkah (is it possible)”, are changed to 

“mungkin (possible)”. The stemming function is 

shown in Algorithm 2, lines 9-10. 

 

Algorithm 2. Text Data Preprocessing Pseudocode 

input: Voice/audio transcript file (.csv) 

output: Preprocessed voice/audio transcript file 

(.csv) 

NumberRemoval: module to convert number in text 

to word 

StopwordsRemoval: module to remove stopwords in 

text Stemming: module for sentence stemming 

1 preprocessed_sentences = initial empty array to 

store new preprocessed sentences 

2 while row in the audio transcript file exists do 

3       str = original sentence 

4       str = str to lower case() 

5       str = NumberRemoval(str) 

6       sw_factory = load stopword remover  

      factory module 

7       str = StopwordsRemoval(str,  

      sw_factory) 

8       st_factory = load stemmer factory  

      module 

9       str = Stemming(str, st_factory) 

10       preprocessed_sentences.push(str) push  

      str into preprocessed sentences 

11 endwhile 

12 save new preprocessed sentences into 

preprocessed audio transcript file (.csv) 

 

3.4 Speech feature extraction 

After the preprocessing step, the speech features 

(Algorithm 3 lines 4-17) were extracted (as used in 

[61]), including pitch, intensity, and speaking rate. 

Pitch, energy, and other speech features were selected 

because they are closer to the human voice 

characteristics [72]. Intensity and pitch were 

normalized by constructing a contour function to 

reduce variation between voice or audio sessions [73]. 

The total speech features and the speaking rate were 

seven features. According to the recommendation of 

Rakov and Rosenberg [61], all speech features in 

Algorithm 3 lines 20-23 were divided into a 

combination of (1) Pitch and Speaking Rate 

(PSR_COMB); (2) Intensity and Speaking Rate 

(ISR_COMB); and (3) Pitch, Intensity and Speaking 

Rate (PISR_COMB). All speech features were 

extracted using Parselmouth, a Praat implementation 

in Python [74]. Furthermore, Fig. 5 illustrates 

extracted speech features in this study. 

 

 

 
Figure. 5 Speech Feature Extraction Steps 
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Algorithm 3. Speech Data Preprocessing 

Pseudocode 

input: Voice/audio files (.wav) 

output: Extracted speech features file (.csv) 

parselmouth: parselmouth module 

1 speech_features = initial empty array to store 

extracted speech features 

2 while voice/audio file in the audio directory 

exists do 

3       s = parselmouth.Sound() initialize  

      parselmouth module and read  

      voice/audio file 

4       ptcs = s.to_pitch() get list of pitchs from  

      the audio 

5       mp = calculate mean pitch from ptcs 

6       rp = calculate range pitch from ptcs 

7       sp = calculate std pitch from ptcs 

8       ints = s.to_intensity() get list of  

      intensities from the audio 

9       mi = calculate mean intensity from ints 

10       ri = calculate range intensity from ints 

11       si = calculate std intensity from ints 

12       sprs = load praat source run  

       (parselmouth.praat) 

13       spr = calculate speaking rate from sprs 

14       speech _features.push((mp, rp, sp), (mi,  

      ri, si), spr) push and store the extracted  

      features 

15 endwhile 

16 Save speech features data into extracted file 

(.csv) 

17 PSR_COMB = format (mp, rp, sp, spr) from 

extracted features 

18 ISR_COMB =. format (mi, ri, si, spr) from 

extracted features 

19 PISR_COMB = format (mp, rp, sp, mi, ri, si, 

spr) from extracted features 

 

3.5 Text feature extraction 

The text features were extracted from the 

transcription by first using word n-grams consisting 

of unigrams, bigrams, and trigrams with BoW and 

TF-IDF representations. BoW implementation is 

useful for analysis, classification [45], and TF-IDF 

[74]. However, the vocabulary representation formed 

by word n-grams only collects words often appearing 

in the text [76]. The transcription texts produced were 

almost all short sentences of between 1 to 5 words.  

This study also used character n-grams such as 

unigrams, bigrams, and trigrams, besides n-grams 

words. In character n-grams, each feature attribute 

was a character string considered a bag of character 

n-grams [77] that capture shorter feature categories 

[78]. For instance, the 2-grams or bi-gram character 

of the sentence toxic speech would be extracted to |to|, 

|ox|, |xi|, |ic|, |c_|, |_s|, |sp|, |pe|, |ee|, |ec|, and |ch|. 

Subsequently, BoW & TF-IDF representations 

produced were more balanced. When the word was 

2-grams, the sentence would be extracted into |toxic 

speech|. The best combination of text features was 

determined using word and character n-grams 

because both features are effectively useful for text 

processing [77-79]. All text features were extracted 

using sklearn in Python. 

3.6 Feature importance ranking using random 

forest 

It is important to introduce the decision tree 

before discussing RF. The decision tree is a 

straightforward supervised learning algorithm based 

on the if-then-else rule. It offers strong 

interpretability and aligns with human intuitive 

thinking. RF, or Random Forest, is composed of 

multiple decision trees that are uncorrelated. Each 

decision tree in the forest independently judges and 

classifies new input samples during classification 

tasks, but only once their classification result is 

obtained. Subsequently, RF determines the final 

result based on the majority decision among the 

decision trees. 

In essence, RF has two key advantages:  

• First, it can effectively balance errors in 

imbalanced data in multiple classes.  

• Second, it provides a means to rank the 

importance of features or different sets of features.  

These characteristics make RF an ideal choice for 

this paper’s explanatory algorithm. Specifically, the 

Gini coefficient is used to assess each feature’s 

contribution in each tree of the RF. These 

contributions are averaged and compared to 

determine the relative importance of features. 

Additionally, cross-validation of features has been 

employed to validate the RF results. 

With ease, one can construct and use RF models 

by importing the RandomForestClassifier from the 

sklearn, a Python library offering a wide array of 

Machine Learning algorithms. In this approach, the 

RF model divides each feature, calculating the 

decrease in the Gini index for each feature split. The 

significance of a feature is determined by the 

magnitude of the reduction in the Gini index post-

splitting: the larger the reduction, the more the feature 

contributes to enhancing the dataset’s purity, 

highlighting its importance [78]. 

In addition, Gilles Louppe gave a different 

version in [80]. Instead of counting splits, the actual 

decrease in node impurity is summed and averaged 
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across all trees. (weighted by the number of samples 

it splits). In sklearn, we implement the importance as 

described in [81]. It is defined as the total decrease in 

node impurity (weighted by the probability of 

reaching that node (which is approximated by the 

proportion of samples reaching that node) averaged 

over all trees of the ensemble. However, the 

implementation of our study remains to be consistent 

with what Gilles Louppe described.  

Parameters are selected to control the behavior of 

a random forest classifier. The “Bootstrap” parameter 

dictates whether bootstrap samples are employed 

when constructing individual decision trees within 

the RF. When set to False, the entire dataset is utilized 

for each tree’s construction. The Max_depth 

parameter governs the maximum depth of each 

decision tree within the random forest. Setting it to 

the same length as the model’s sequence length can 

help mitigate overfitting by restricting the tree’s level 

count. The n_estimators parameter determines the 

number of decision trees within the RF ensemble. In 

this study, 1,000 estimators are utilized due to the 

limited quantity of Toxic and Non-Toxic data across 

both speech and text modalities. 

3.7 Toxic speech LSTM model 

This study used Long Short-Term Memory 

(LSTM). LSTM uses memory cells as its hidden layer 

and classifies data with a long sequence range [82]. 

The LSTM had a memory cell, an input, an output, 

and a forget gate [83]. This method was selected 

because the data extracted was sequential and had a 

shape input that matched the architectural 

characteristics of the LSTM. Additionally, LSTM’s 

ability to capture long-term dependencies made it 

well-suited for modeling the complex patterns 

present in both speech and text data. 

LSTM generally overcomes the vanishing 

gradient problem in RNN by inserting a gating 

function into the state, facilitating better sequential 

data processing.  

 
Table 2. Architecture of Proposed Toxic Speech  

in LSTM Model 

Layer Type Output Shape Param # 

Input Layer (None, None) 0 

Embedding Layer (None, 100, 128) 640000 

LSTM Layer (None, None, 64) 49408 

Dropout (None, None, 64) 0 

Flatten Layer (None, None, 64) 0 

Dense Layer (None, 2) 130 

Total params : 689,538 

Trainable params : 689,538 

Non-trainable params : 0 

The input gate determines the information stored in 

the memory cell, while the forget gate determines the 

previous information that needs removal from the 

memory cell. The output gate controls the 

information removed from the hidden state [59]. A 

total of two LSTM models were created for each 

feature input, including the Toxic Speech LSTM and 

Toxic Text LSTM. All of the LSTM models we used 

in this study were built using Keras in Python. 

 

Algorithm 4. Proposed Toxic Speech LSTM 

Model Pseudocode 

input: Sequential data (speech features combination) 

output: Classification prediction & validation 

accuracy 

1 X, Y = get speech features combination & 

classes 

2 X_train, X_test, Y_train, Y_test = train/test split 

(X, Y) 

3 X_train = scaling (MinMaxScaler) 

4 X_test = scaling (MinMaxScaler) 

5 X_train = reshape input dimension (samples, 1, 

7) 

6 X_test = reshape input dimension (samples, 1, 

7) 

7 model = initialize LSTM model Input → LSTM 

(50) → Dropout (0.2) → Dense (7) → Dense (1) 

8 Fit the model (X_train, val_acc=X_test) 

9 Get prediction & validation accuracy 

 

The Toxic Speech LSTM model is getting input 

from speech features of voice pitch, intensity, and 

speaking rate. In Table 2, the LSTM structure for the 

Toxic Speech LSTM model used a layer with 50 

memory units. Furthermore, we used a 0.2 value for 

Dropout and a hidden layer with seven neurons 

according to the number of speech features to reduce 

overfitting. Our model is running approximately 

1,000 epochs (stopped with early stopping scheduler) 

with Adam optimizer and MSE loss function. 

The input layer consisted of seven feature 

variables from the previous speech feature extraction. 

LSTM requires 3-dimensional input, comprising 

samples, time steps, and features. Optimization was 

made by reshaping input shown in Algorithm 4 lines 

5-6, and it became a format |sample=total data|, |time 

steps=1| and |features=7|.  

3.8 Toxic text LSTM model 

A Toxic Text LSTM model was used to detect 

toxic speech based on transcripted text and character 

n-grams. Table 3 shows that we used one Embedding 

layer that processes data sequence BoW and TF-IDF.  
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Table 3. Architecture of Proposed Toxic Text  

in LSTM Model 

Layer Type Output Shape Param # 

Input Layer (None, 100) 0 

Embedding Layer (None, 100, 256) 2560000 

LSTM Layer (None, 100, 128) 197120 

Time-Distributed 

Layer 
(None, 100, 128) 16512 

Flatten Layer (None, 12800) 0 

Dense Layer (None, 2) 25602 

Total params : 2,800,234 

Trainable params : 2,800,234 

Non-trainable params : 0 

 

This study used optimization of 100 top words, 100 

sequence word padding, and 128 batch sizes. 

 

Algorithm 5. Proposed Toxic Text LSTM Model 

Pseudocode 

input: Sequential data (text features combination) 

output: Classification prediction & validation 

accuracy 

1 X, Y = get text features combination & classes 

2 X_train, X_test, Y_train, Y_test = train/test split 

(X, Y) 

3 model = initialize LSTM model Embedding  

      layer → LSTM (embedding output) →  

      Dropout (0.2) → TimeDistributed (Dense  

      (LSTM output)) → Flatten()→ Dense (1) 

4 Fit the model (X_train, val_acc=X_test) 

5 Get prediction & validation accuracy 

6 X, Y = get text features combination & classes 

 

The classification used an LSTM layer with the 

input shape and number of memory units from the 

Embedding layer output and a 0.2 Dropout layer. 

Furthermore, we added the Time-Distributed layer 

and Flattened layer before the output layer, as shown 

in Table 3 and Algorithm 5 lines 3-7. The first Dense 

used in this study was layered with a Time-

Distributed layer to change or reduce the dimensions 

of the output shape from the LSTM layer and was 

processed optimally. The second Dense or output 

layer used sigmoid activation with 1 binary neuron. 

Since only 0 and 1 classification classes were used, a 

Flattened layer was added to handle the Time-

Distributed layer output. The Flattened layer changed 

the output dimensions of the previous layer, 

becoming the optimal sequence dimension in the last 

Dense or output layer with one binary neuron. 

3.9 Hyperparameter optimization using random 

forest 

To ensure high recognition accuracy, 

hyperparameter optimization is oftentimes a 

mandatory step before the learning stage. There is a 

popular hyperparameter search technique, namely the 

grid search. Sadly, it almost always hardly struggles 

to adapt to high dimensions [84]. Therefore, a 

substantial amount of newer studies has concentrated 

on superior methods, namely Bayesian Optimization 

and its derivative, namely the Random Forest-based 

Optimization. The Random Forest-based 

Optimization follows the sequential version of 

Bayesian Optimization.  

Random Forest-based Optimization is an efficient 

tool for global optimization of costly black-box 

functions 𝑓 . A complete Random Forest-based 

Optimization stage is defined in Algorithm 6. 

Random Forest-based Optimization starts by function 

inquiry 𝑓  to the ℎ  values in an initial space and 

record ⟨𝛹𝑖, 𝑓(𝛹1)⟩𝑖=1
𝑡  as the ⟨𝑖𝑛𝑝𝑢𝑡, 𝑜𝑢𝑡𝑝𝑢𝑡⟩  result 

pair.  

 

Algorithm 6. Random Forest-based Optimization 

Pseudocode 

input: Target 𝒇𝑿;  

            limit 𝑯;  

            hyperparameter space 𝜳; 

            initial space 〈𝜳𝟏, … ,𝜳𝒕〉 
output: Best hyperparameter configuration as �̂� 

1 for 𝑖 + 1 to ℎ 

2       do 𝑦𝑖  evaluate 𝑓𝑋(Ψ𝑖) 
3       for 𝑗  to ℎ + 1 to 𝐻 

4             do ℳ   fit model on performance  

            data 〈Ψ𝑖, 𝑦𝑖〉𝑖=1
𝑗−1

 

5             select Ψ𝑗 ∈ 𝑎𝑟𝑔 𝑚𝑎𝑥Ψ ∈ Ω α(Ψ,ℳ) 

6       end for 

7       𝑦𝑗  evaluate 𝑓𝑋(Ψ𝑗) 

8 end for 

9 return 𝑎𝑟𝑔 𝑚𝑖𝑛Ψ𝑗 ∈ Ψ1,…,Ψ𝑇𝑦𝑗
𝑦𝑖𝑒𝑙𝑑𝑠
→     Ψ̂ 

 

Then it fits a probabilistic-based model ℳ to the 

previous recorded. Later on, ℳ is used to select input 

for Ψ  which happened to be evaluating function 

value from input Ψ ∈ Ω through acquisition function 

of α(Ψ,ℳ) . Finally, it evaluates function in Ψ 

newest input. 

3.10 Validation methods 

The classification accuracy matrices were 

systematically calculated and reanalysed by utilising 
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the standard F1-score derived from the LSTM 

model’s accuracy, grounded in the actual and 

predicted class data [85]. F1-score is calculated 

according to Eq. (3), where Precision and Recall is 

formulated in Eq. (4) and Eq. (5). 

 

𝐹1 =
2×𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛×𝑅𝑒𝑐𝑎𝑙𝑙

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛×𝑅𝑒𝑐𝑎𝑙𝑙
    (3) 

 

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =
𝑇𝑃

𝑇𝑃+𝐹𝑃
    (4) 

 

𝑅𝑒𝑐𝑎𝑙𝑙 =
𝑇𝑃

𝑇𝑃+𝐹𝑁
   (5) 

 

The Confusion Matrix (CM) does not assume 

distributional parameters but only on rough data 

information from the model created. CM is often used 

to evaluate the prediction results of deep learning 

models [86]. Since this study only used Toxic and 

Non-Toxic classes, CM had two columns that 

informed the actual class. Moreover, it had two 

predicted columns that informed the predicted class 

using LSTM. The sklearn in Python was used to 

produce CM. 

This study used the train or test split function for 

the validation method. The training data set took 70% 

of the total data, while the test sets took 20, and are 

used randomly. The experiment results took the F1-

score from the train or test split, while the comparison 

used the Cross-Validation method (k-fold, Stratified, 

Repeated, and Time Series). This method ensures that 

the validation of the LSTM model performance is 

appropriate and does not deviate [87]. The 

observation value to 5-fold (k=5) was set to balance 

computational complexity and validation accuracy.  

Additionally, the mean F1-score in Cross-Validation 

was set based on the number of observations made, 

while a heatmap was used to visualize the comparison 

of validation methods. 

4. Result and discussion 

Before conducting classification, scaling was 

performed using the MinMaxScaler method to 

convert the data sequence into a range between 0 - 1. 

The process was conducted on the features in the 

Toxic Speech LSTM model shown in the previous 

section in Algorithm 4 lines 3-4, while the text 

features were directly inserted into the embedding 

layer on the Toxic Text LSTM model. In the 

Confusion Matrix results table, the five columns 

compiled were TP(0), TP(1), FP(0), FP(1), and score. 

TP indicated True Prediction, and FP indicated False 

Prediction. TP(0) was the correct prediction accuracy 

for the Non-Toxic class, while TP(1) was for the toxic. 

Furthermore, FP(0) is the false prediction accuracy 

for the Non-Toxic class, while FP(1) is the false 

prediction accuracy for the Toxic class. The “Score” 

column was a calculation of the overall Confusion 

Matrix accuracy. The following are the experiment 

and analysis results. 

4.1 Result of toxic speech LSTM model 

The results showed that PISR_COMB had the 

best F1-score of 0.8909 or 89.09%, with the lowest 

MSE score of 0.1429. Meanwhile, PSR_COMB had 

a performance of about 7% better than ISR_COMB, 

with an F1-score of 0.8174 or 81.74%. Furthermore, 

ISR_COMB produced a high MSE score of 0.3571, 

making the lowest accuracy and performance. 

However, the F1-score of ISR_COMB still reaches 

0.7414 or 74.14%.  

 

 
Figure. 6 Graphical Accuracy of F1-Score of Best Result from Toxic Speech LSTM Model per its epoch 
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Table 3. Result of Toxic Speech LSTM Model 

Features MSE Recall Precision 
F1- 

score 

PSR_COMB 0.2500 0.8545 0.7833 0.8174 

ISR_COMB 0.3571 0.7818 0.7049 0.7414 

PISR_COMB 0.1429 0.8909 0.8909 0.8909 

 

 
Table 4. Confusion Matrix Result of Toxic Speech  

LSTM Model 

Features 
TP 

(0) 

TP 

(1) 

FP 

(0) 

FP 

(1) 
Score 

PSR_ 

COMB 
0.55 0.85 0.45 0.15 0.7500 

ISR_ 

COMB 
0.38 0.78 0.62 0.22 0.6429 

PISR_ 

COMB 
0.79 0.89 0.21 0.11 0.8571 

 

In addition, graphical accuracy of F1-score 

achieved by using PISR_COMB, PSR_COMB, and 

ISR_COMB feature set is shown in Fig. 6. In Fig. 6, 

accuracy is depicted per its epoch, which in 

PISR_COMB case, stopped automatically at 939; in 

PSR_COMB case, stopped automatically at 971; in 

PSR_COMB case, stopped automatically by early 

stopping scheduler technique at 993.  

In addition, Table 3 shows the result of Toxic 

Speech LSTM Model based on MSE, Recall, 

Precision, and F1-score; while Table 4 shows the 

Confusion Matrix result of Toxic Speech LSTM 

Model. The Confusion Matrix validation on the 

Toxic Speech LSTM model produced features with 

the best score following the LSTM model 

classification results. PISR_COMB obtained the best 

evaluation score of 0.8571 or 85.71%. The accuracy 

of PISR_COMB on the Confusion Matrix in 

predicting the Non-Toxic class was 0.79 or 79%, 

while the correct prediction for the Toxic class was 

0.89 or 89%. These results were good because the 

wrong class predictions were only 0.21 or 21% for 

Non-Toxic and 0.11 or 11% for Toxic, respectively. 

PSR_COMB and ISR_COMB received evaluation 

scores of 0.7500 or 75.00% and 0.6429 or 64.29%, 

respectively. In this case, PSR_COMB correctly 

predicted that the toxic class was quite good, reaching 

0.85 or 85%, but the correct prediction for the Non-

Toxic class was only 0.55 or 55%. 

4.2 Result of toxic text LSTM model 

Using binary cross-entropy, the Toxic Text 

LSTM model conducted 50-100 epochs with Adam 

optimizer. The Toxic Speech LSTM Model was less 

in epochs because the range of sequences in the Toxic 

Text LSTM Model was longer.  

Table 5. Result of Toxic Text LSTM Model 

Features MSE Recall Precision F1 

BOW_ 

UNIGRAMS 

0.1429 0.8909 0.8909 0.8909 

BOW_BIGRA

MS 

0.2857 0.9636 0.7067 0.8154 

BOW_ 

TRIGRAMS 

0.3452 0.9455 0.6667 0.7820 

BOW_CHAR_ 

UNIGRAMS 

0.1905 0.8364 0.8679 0.8519 

BOW_CHAR_ 

BIGRAMS 

0.0952 0.9273 0.9273 0.9273 

BOW_CHAR_ 

TRIGRAMS 

0.2262 0.7455 0.8913 0.8119 

TFIDF_ 

UNIGRAMS 

0.2976 0.8909 0.7206 0.7967 

TFIDF_BIGRA

MS 

0.2738 0.9818 0.7105 0.8224 

TFIDF_ 

TRIGRAMS 

0.3333 0.9818 0.6667 0.7941 

TFIDF_CHAR

_UNIGRAMS 

0.3452 1.0000 0.6548 0.7914 

TFIDF_CHAR

_BIGRAMS 

0.3214 1.0000 0.6707 0.8029 

TFIDF_CHAR

_TRIGRAMS 

0.2857 1.0000 0.6962 0.8209 

 

Table 6. Confusion Matrix Result of Toxic Text  

LSTM Model 

Features 
TP(

0) 
TP(1) FP(0) FP(1) Score 

BOW_ 

UNIGRAMS 
0.79 0.89 0.21 0.11 0.8571 

BOW_ 

BIGRAMS 
0.24 0.96 0.76 0.04 0.7143 

BOW_ 

TRIGRAMS 
0.10 0.95 0.90 0.05 0.6548 

BOW_CHAR_

UNIGRAMS 
0.76 0.84 0.24 0.16 0.8095 

BOW_CHAR_

BIGRAMS 
0.86 0.93 0.14 0.07 0.9048 

BOW_CHAR_

TRIGRAMS 
0.83 0.75 0.17 0.25 0.7738 

TFIDF_ 

UNIGRAMS 
0.34 0.89 0.66 0.11 0.7024 

TFIDF_ 

BIGRAMS 
0.24 0.98 0.76 0.02 0.7262 

TFIDF_ 

TRIGRAMS 
0.07 0.98 0.93 0.02 0.6667 

TFIDF_CHAR

_UNIGRAMS 
0.00 1.00 1.00 0.00 0.6548 

TFIDF_CHAR

_BIGRAMS 
0.07 1.00 0.93 0.00 0.6786 

TFIDF_CHAR

_TRIGRAMS 
0.17 1.00 0.83 0.00 0.7143 

 

Furthermore, more than 100 epochs do not show 

significant results on the Toxic Text LSTM model.  
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Figure. 7 Graphical Confusion Matrix of Best Result from Toxic Speech LSTM Model (PISR_COMB) and Toxic Text 

LSTM Model (BOW_CHAR_BIGRAMS) 

 

Table 5 shows the result of Toxic Text LSTM Model 

based on MSE, Recall, Precision, and F1-score; while 

Table 6 shows the Confusion Matrix result of Toxic 

Text LSTM Model. The results show that BoW word 

unigram performance was about 10%, superior to TF-

IDF with an F1-score of 0.8909 or 89.09%.  

However, TF-IDF word bigram and trigram 

performance were better, though it was only a 

difference of about 1%. For character n-grams, BoW 

performance was much better by 20% than TF-IDF. 

BoW bigram’s character resulted in the best F1-score 

of 0.9273 or 92.73%, with a very low MSE of 0.0952. 

BoW and TF-IDF had the lowest performance for 

word and char trigrams compared to unigram and 

bigram. This suggests that simpler n-gram models 

may capture the key features needed for toxic speech 

detection more effectively. Moreover, these results 

highlight the importance of choosing the right feature 

representation for different types of input data. 

Additionally, both graphical confusion matrix of the 

best result from Toxic Speech LSTM and Toxic Text 

LSTM is shown in Fig. 7. 

The confusion matrix validation on the Toxic 

Text LSTM model produced features with the best 

score following the classification results. The 

character BoW bigram obtained the best evaluation 

score of 0.9048 or 90.58%, correctly predicting the 

Non-Toxic class by 0.86 or 86% and the Toxic class 

by 0.93 or 93% (Fig. 7). This result was good because 

the wrong class predictions were 0.14 or 14% for 

Non-Toxic and 0.07 or 7% for Toxic, respectively. 

The Toxic Text LSTM model experiment found that 

character n-grams with TF-IDF had overfitting 

problems. The Confusion Matrix evaluation showed 

that the correct prediction for the Toxic class was 

1.00 or 100%, while for the Non-Toxic was only less 

than 0.20 or 20%. This means the wrong prediction 

for the Toxic class was high, ranging from 0.83 or 

83% to 1.00 or 100%, which was not recommended.  

Moreover, the evaluation of the Cross-Validation 

method on the Toxic Text LSTM model was quite 

different.  
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Table 7. F1-Score Result using Cross-Validation (k=5)  

in Toxic Speech LSTM Model and  

Toxic Text LSTM Model 

Features k-Fold 
Stratifie

d 

Repeate

d 

Time 

Series 

PSR_ 

COMB 
0.8070 0.7928 0.7890 0.8043 

ISR_ 

COMB 
0.7679 0.7241 0.7578 0.7416 

PISR_ 

COMB 
0.8155 0.8224 0.8257 0.8276 

BOW_ 

UNIGRAMS 
0.8571 0.8829 0.8814 0.8200 

BOW_ 

BIGRAMS 
0.7879 0.7874 0.7727 0.7664 

BOW_ 

TRIGRAMS 
0.7794 0.7669 0.7634 0.7850 

BOW_CHAR_ 

UNIGRAMS 
0.7636 0.7961 0.8000 0.7959 

BOW_CHAR_ 

BIGRAMS 
0.7563 0.7458 0.7478 0.7347 

BOW_CHAR_ 

TRIGRAMS 
0.8095 0.7840 0.7937 0.7885 

TFIDF_ 

UNIGRAMS 
0.8548 0.8095 0.8421 0.7736 

TFIDF_ 

BIGRAMS 
0.7969 0.7874 0.8000 0.8174 

TFIDF_ 

TRIGRAMS 
0.7794 0.7761 0.7789 0.8174 

TFIDF_CHAR

_UNIGRAMS 
0.7794 0.7737 0.7794 0.7679 

TFIDF_CHAR

_BIGRAMS 
0.7794 0.7737 0.7794 0.8103 

TFIDF_CHAR

_TRIGRAMS 
0.7794 0.7737 0.7794 0.8103 

 

BoW word unigram obtained the best score on the k-

fold, Stratified, Repeated, and Time Series (Table 7) 

methods. Additionally, the Character BoW Bigram 

only obtained a Cross-Validation score of around 

74%, while the TF-IDF character was overfitting in 

Cross-Validation. 

Besides, the evaluation of the Cross-Validation 

method on the Toxic Speech LSTM model was 

appropriate. PISR_COMB obtained the best score on 

the k-fold, Stratified, Repeated, and Time Series 

methods. Based on the experimental results of the 

Toxic Speech model, all the combinations of speech 

features worked well without overfitting. 

In addition, graphical accuracy of F1-score 

achieved by using BOW_UNIGRAMS, 

BOW_BIGRAMS, and BOW_TRIGRAMS feature 

set is shown in Fig. 8. In Fig. 8, accuracy is depicted 

per its epoch, which in BOW_UNIGRAMS case, 

stopped at 100; in BOW_BIGRAMS case, stopped at 

100; and in BOW_TRIGRAMS case, stopped 

automatically by early stopping scheduler technique 

at 88. 

Next, graphical accuracy of F1-score achieved by 

using BOW_CHAR_UNIGRAMS, BOW_CHAR_ 

BIGRAMS, and BOW_CHAR_TRIGRAMS feature 

set is shown in Fig. 9. In Fig. 9, accuracy is depicted 

per its epoch, which in BOW_CHAR_UNIGRAMS 

case, stopped automatically by early stopping 

scheduler technique at 96; in 

BOW_CHAR_BIGRAMS case, stopped 

automatically by early stopping scheduler technique 

at 84; in BOW_CHAR_TRIGRAMS case, stopped at 

100. 

 

 

 
Figure. 8 Graphical Accuracy of F1-Score of Best Result from Toxic Text LSTM Model per its epoch for 

BOW_UNIGRAMS, BOW_BIGRAMS, and BOW_TRIGRAMS 
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Figure. 9 Graphical Accuracy of F1-Score of Best Result from Toxic Text LSTM Model per its epoch for 

BOW_CHAR_UNIGRAMS, BOW_CHAR_BIGRAMS, and BOW_CHAR_TRIGRAMS 

 

 

 
Figure. 10 Graphical Accuracy of F1-Score of Best Result from Toxic Text LSTM Model per its epoch for 

TFIDF_UNIGRAMS, TFIDF_BIGRAMS, and TFIDF_TRIGRAMS 

 

 

Another graphical accuracy of F1-score achieved 

by using TFIDF_UNIGRAMS, TFIDF_BIGRAMS, 

and TFIDF_TRIGRAMS feature set is shown in Fig. 

10. In Fig. 10, accuracy is depicted per its epoch, 

which in TFIDF_UNIGRAMS case, stopped 

automatically by early stopping scheduler technique 

at 84; in TFIDF_BIGRAMS case, stopped 

automatically by early stopping scheduler technique 

at 97; in TFIDF_TRIGRAMS case, stopped 

automatically by early stopping scheduler technique 

at 96. 

The last graphical accuracy of F1-score achieved 

by using TFIDF_CHAR_UNIGRAMS, 

TFIDF_CHAR_BIGRAMS, and TFIDF_CHAR_ 

TRIGRAMS feature set is shown in Fig. 11. In Fig. 

11, accuracy is depicted per its epoch, which in 

TFIDF_CHAR_UNIGRAMS case, stopped 

automatically by early stopping scheduler technique 

at 94; in TFIDF_CHAR_BIGRAMS case, stopped 

automatically by early stopping scheduler technique 

at 99; in TFIDF_CHAR_TRIGRAMS case, stopped 

automatically by early stopping scheduler technique 

at 92. 
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Figure. 11 Graphical Accuracy of F1-Score of Best Result from Toxic Text LSTM Model per its epoch for 

TFIDF_CHAR_UNIGRAMS, TFIDF_CHAR_BIGRAMS, and TFIDF_CHAR_TRIGRAMS 

 

 

4.3 Result of feature importance ranking 

The Random Forest (RF) model is a robust 

ensemble   learning   method   comprising   numerous 

 
Table 8. Importance Ranking based on Different  

Feature Set in Toxic Speech Recognition 

Feature Set 
Importance 

Rank 

F1-

Score 

k-fold 

Accuracy 

PSR_COMB 0.8664 0.8174 0.8070 

ISR_COMB 0.8752 0.7414 0.7679 

PISR_COMB 0.8992 0.8909 0.8155 

BOW_ 

UNIGRAMS 
0.9111 0.8909 0.8571 

BOW_ 

BIGRAMS 
0.7181 0.8154 0.7879 

BOW_ 

TRIGRAMS 
0.7712 0.7820 0.7794 

BOW_CHAR_ 

UNIGRAMS 
0.7453 0.8519 0.7636 

BOW_CHAR_ 

BIGRAMS 
0.8646 0.9273 0.7563 

BOW_CHAR_ 

TRIGRAMS 
0.7124 0.8119 0.8095 

TFIDF_ 

UNIGRAMS 
0.7767 0.7967 0.8548 

TFIDF_ 

BIGRAMS 
0.6544 0.8224 0.7969 

TFIDF_ 

TRIGRAMS 
0.8893 0.7941 0.7794 

TFIDF_CHAR_ 

UNIGRAMS 
0.8184 0.7914 0.7794 

TFIDF_CHAR_ 

BIGRAMS 
0.7866 0.8029 0.7794 

TFIDF_CHAR_ 

TRIGRAMS 
0.9201 0.8209 0.7794 

decision trees, commonly employed for classification 

and regression tasks. Notably, RF can assess the 

significance of features. In this section, following the 

feature importance ranking by RF, we reorganized 

the features to train the model at the shortest sequence 

length. The classification performance is shown in 

Table 8 below. 

4.4 Discussion 

The experimental results showed that the speech 

features comprising pitch, intensity, speaking rate, 

and text features consisting of the word and character 

n-grams produced the best F1-score of more than 

85%. Fig. 12 shows a comparison of the performance 

of the train or test split, confusion matrix, and Cross-

Validation (k=5) using a heatmap.  

In addition, Table 9 and Table 10 shows a 

comparison of the experimental results with several 

previous studies, for textual data and speech data, 

respectively. These previous studies are the state-of-

the-art speech detection studies with almost the same 

speech and text features also LSTM model employed. 

Mazari et al. employed Bidirectional Encoder 

Representations from Transformers (BERT) as a pre-

trained model, stacking Bidirectional Long-Short 

Term Memory (BiLSTM) and/or Bidirectional Gated 

Recurrent Units (BiGRU) on GloVe and fastText 

word embeddings [88]. However, their approach 

achieved an F1-score of only 62%. In contrast, 

Marshan et al. (2023) used a BiLSTM model with 

various n-gram feature settings, incorporating a 

feature selection method based on Mutual 

Information, resulting in a significantly higher F1-

score of 88% [89]. 
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Figure. 12 Graphical Heatmap Result of Train/Test Split, Confusion Matrix, k-Fold, and Cross-Validation (k=5) methods 

 

 
Table 9. Accuracy Result Comparison for Text Data 

with Previous Works 

Authors Model and Features 
F1-

Score 

Mazari et al. 

[88] (2022) 

BERT with GloVe and 

fastText word embeddings 

62% 

Marshan et al. 

(2023) [89] 

BiLSTM with Text Feature 

n-gram and feature selection 

Mutual Information (MI)  

88% 

Our 

Proposed 

Work 

LSTM (Time Distributed 

and Flatten) + Text 

Features of 

BOW_CHAR_BIGRAMS 

92% 

 

 
Table 10. Accuracy Result Comparison for Speech Data 

with Previous Works 

Authors Model and Features 
F1-

Score 

Islam et al. 

(2022) [90] 

3DCNN + Time Distributed 

and Flatten + Bi-LSTM with 

MFCC + Short Time 

Fourier Transform (STFT) + 

Chroma STFT 

87% 

Jacobs et al. 

(2023) [91] 

CAE-RNN with Acoustic 

Word Embeddings  

77% 

Our 

Proposed 

Work 

LSTM (Speech Features of 

PISR_COMB) 

89% 

 

Despite extensive research on hate speech 

detection, studies focusing on actual speech datasets 

(audio recordings) remain relatively rare, as most 

research targets textual data. Nevertheless, some key 

studies have explored multimodal approaches that 

include speech. Islam et al. (2022) proposed a model 

combining 3D Convolutional Neural Networks 

(3DCNN), Time Distributed layers, Flatten layers, 

and BiLSTM. Their method used comprehensive 

features, including Mel-Frequency Cepstral 

Coefficients (MFCC), Short-Time Fourier Transform 

(STFT), and Chroma STFT, achieving an accuracy of 

87% [90]. 

Jacobs et al. (2023) focused on detecting toxicity 

from radio recordings and utilized a Contextual 

Autoencoder with RNN (CAE-RNN) for model 

learning. This represents one of the few state-of-the-

art studies on toxic speech detection using LSTM 

models. Their research, conducted in Swahili, 

employed Acoustic Word Embeddings (AWE)—

analogous to GloVe and fastText but specifically 

designed for voiced speech—and achieved an F1-

score of 77% [91]. 

Meanwhile in our study, the Toxic Speech LSTM 

model structure worked well. The combination of 

speech feature functions PISR_COMB detected toxic 

speech with the best F1-score of up to 89.09% and the 

best evaluation of confusion matrix of 85.71%. 

Additionally, PSR_COMB obtained an F1-score of 

81.74%, while ISR_COMB reached an F1-score of 

74.14%. 

The experimental results also showed that the 

Toxic Text LSTM model performed better than the 

Toxic Speech LSTM model in detecting toxicity in a 

conversation. The Toxic Text LSTM model obtained 

the best F1-score of 92.73% and the best confusion 

matrix evaluation of 90.48% using the bigram 

character (BoW). Furthermore, the F1-score of 
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89.09% and the best Cross-Validation score of 

around 88% were obtained using word unigram. 

5. Conclusion 

This study detected toxic speech using speech 

features and text features. We developed the Toxic 

Speech LSTM model and Toxic Text LSTM models 

for toxic classification. The best accuracy with an F1-

score of 89.09% and a confusion matrix of 85.71% 

was obtained on the Toxic Speech LSTM model 

using PISR_COMB comprising pitch, intensity, and 

speaking rate. In the Toxic Text LSTM model, the 

LSTM model constituting the Time-Distributed and 

Flattened layers and adjusted batch size, and input 

shape was optimized and obtained the best accuracy. 

The results were an F1-score of 92.73% and a 

confusion matrix of 90.48%, using BoW or bigram 

characters. The Cross-Validation best score was 

around 88% using BoW or word unigram. Based on 

the Toxic Text LSTM model result, character bigram 

and word unigram performed better than other 

combinations of n-grams.  

We suggest that further studies should examine 

toxic speech detection using PISR_COMB speech 

features comprising pitch, intensity, and speaking 

rate, and text features consisting of the word and 

character n-grams using the LSTM method. Studies 

on text features from transcription text with short 

sentence variations should use bigram characters and 

word unigrams. Random Forest as the feature 

importance ranking method can also be further 

utilized as the reasoning behind using text and/or 

speech feature set, especially in a recognition task. 

 

Nomenclature 
Term Definition 

AWE Acoustic Word Embeddings 

BERT Bidirectional Encoder Representations 

from Transformers 

BoW Bag-of-Words 

CAE Contextual Auto Encoder 

CNN Convolutional Neural Network 

GDP Gross Domestic Product 

GRU Gated Recurrent Unit 

HNR Harmonic-to-Noise Ratio 

ISR_COMB Intensity and Speaking Rate 

Combination of Speech Features 

LPC Linear Predictive Coding 

LSTM Long Short-Term Memory 

MFCC Mel-Frequency Cepstral Coefficients 

NMT Neural Machine Translation 

PISR_COMB Pitch, Intensity, and Speaking Rate 

Combination of Speech Features 

PSR_COMB Pitch and Speaking Rate Combination 

of Speech Features 

Term Definition 

RF Random Forest 

RNN Recurrent Neural Network 

sklearn Scikit-Learn 

tanh Hyperbolic Tangent Function 

TF-IDF Term Frequency-Inverse Document 

Frequency 

UIT-ViCTSD University of Information Technology 

- Vietnamese Constructive and Toxic 

Speech Detection 

VDCNN Very Deep Convolutional Neural 

Network 
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