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Abstract: Epilepsy is a pervasive chronic neurological disorder characterized through irregular electrical discharges 

in the brain which causes seizures. Epilepsy seizure is a disorder that affects the brain cells with an influence on an 

effectiveness of central nervous system. Electroencephalography (EEG) is a majorly utilized method for epileptic 

seizure detection and diagnosis. In this research, Deep Learning (DL) methods of 2-layer Convolutional Neural 

Network (CNN) with Long Short-Term Memory (LSTM) are proposed for an automatic detection and diagnosis of an 

epileptic seizure. In the pre-processing phase, a Butterworth filter method of order 2 is used to remove noise in the 

EEG signal. The 2-layer CNN is used for the process of feature extraction. In 2-layer LSTM, one layer is utilized to 

perform short-term dependencies, while another layer is utilized to perform long term dependencies. In the end, the 

proposed method classifies seizures into epileptic and non-epileptic. The results demonsrates that the proposed method 

delivers performance metrics of better accuracy of 99.90% and sensitivity of 90.06% using CHB-MIT and Bonn 

datasets which contains EEG signals as compared to the existing methods like CNN and Epilepsy-Net. 

Keywords: Butterworth filter, Convolutional neural network, Deep learning, Electroencephalography, Epileptic 

seizure, Long short-term memory. 

 

 

1. Introduction 

Epilepsy seizures are sudden bursts of electrical 

activity in the brain that disrupt its normal 

functioning [1]. Epilepsy is considered through 

recurrent, unprovoked seizures, affecting individuals 

of all ages with a substantial effect on the quality of 

life. It modifies the natural electrical activity among 

the brain’s neurons which leads to different clinical 

manifestations based on the affected region of the 

brain [2, 3]. The harshness of Epilepsy is based on the 

total amount of neurons affected in the regions of the 

brain. Worldwide, millions of people are diagnosed 

with epilepsy with the greatest impact on infants as 

well as adults between the age of 65 to 70 [4]. 

Therefore, identifying an effective diagnosis tool for 

epileptic seizure detection is examined as a 

significant problem. An epileptic seizure is 

categorized into two groups of focal and generalized 

epilepsy [5]. Generalized epilepsy begins in one 

region of the brain and spreads to other areas through 

an extensive neuronal network. Conversely, focal 

epilepsy is constrained to a particular area of the brain, 

with seizures limited to that area. Symptoms vary 

based on the affected region and do not initially 

spread across the entire brain [6, 7]. 

Electroencephalography (EEG) is a non-invasive 

manner developed for the effective detection of 

epileptic seizures [8]. Recording brain activities 

through EEG signals often contain a crucial amount 

of random noise, which impacts accuracy of the 

model [9]. But the manual seizure diagnosing is time 

consuming and expensive due to the stochastic and 

nonstationary nature of EEG signals [10]. Hence, it is 

important to develop an automated seizure 

diagnosing system to help experts in examining the 

EEG signals [11]. The EEG signals generally involve 

a number of channels and artefacts which arises to 

challenges and difficulties for specialists during the 

process of diagnosis. To overcome these problems, 

an automatic diagnosis based on Deep Learning (DL) 

can support to enhance the performance of the 
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epileptic seizure diagnosis [12, 13]. The DL based 

algorithms are employed for feature extraction and 

fusion approaches for epileptic seizure diagnosis. An 

aim of this paper is to design and implement an 

efficient approach for epileptic seizure detection 

using DL techniques approaches [14, 15].  

The significant highlights of this research are 

discussed as follows: 

• This research proposes a model that utilizes 

Neural Network classification algorithms and 

Deep Learning for seizure detection. 

• 2-layer CNN-LSTM is proposed in which one 

layer is utilized to perform short-term 

dependencies and another layer is used to 

perform long term dependencies. A 

Butterworth filter is utilized to remove noise in 

EEG signals in the pre-processing step. 

• The 2-layer CNN is used to extract the relevant 

features from epileptic seizure. At the end of 

classification, the result of the 2-layer LSTM 

is classified into epileptic and non-epileptic. 

This paper is arranged as follows: Section 2 

provides the literature review, Section 3 illustrates the 

proposed methodology of this research, while Section 

4 demonstrates the results and discussion, and 

Section 5 demonstrates the conclusion of this 

research. 

2. Literature survey 

The related works of epilepsy classification are 

given in this section along with its merits and 

limitations. 

Hassan [16] introduced an automatic feature 

extraction approach based on an integration of CNN 

and Machine Learning (ML) approaches. A 

Butterworth filter approach and Discrete Wavelet 

Transform (DWT) were used in pre-processing for 

classifying the EEG into multiclass, multichannel and 

multisubject. The introduced method was selected to 

minimize a dimensionality of a data through a 

utilization of correlative data for the identification of 

relevant features. The selected features were fed to 

the ML for classifying the signals. This method 

enhanced the capability of generalization of the 

classifier. However, the introduced approach faced 

challenges in generalizing over various subjects due 

to variations in EEG patterns, results in poor 

performance. 

Malekzadeh [17] developed a Computer Aided 

Diagnosis (CAD) for an automatic diagnosis of 

epileptic seizures. Initially, this approach utilized the 

band-pass filter with 0.5-40HZ cut-off frequency to 

eliminate objects of EEG data, while Tunable-Q 

Wavelet Transform (TQWT) was deployed to 

decomposition. Then, linear and non-linear features 

were extracted according to fractal dimensions. The 

CNN-RNN through number of layers were utilized 

for the classification process. CNN-RNN achieved a 

greater level of accuracy than all methods. However, 

the performance of TQWT heavily depends on 

parameters selection and redundancy, which required 

careful tuning. Inappropriate parameter settings 

affecting the quality of the extracted features. 

Lebal [18] presented Epilepsy-Net based on the 

DL in EEG signal to detect epileptic seizures with 

non-epileptic seizures without handcraft feature 

extraction. In Epilepsy-Net approach, the 1D CNN, 

Recurrent Neural Network (RNN), and Attention 

Mechanism were combined and depicted by ResNet 

and the Inception architectures of the CNN. The 

convolutional attention block had an efficient impact 

on EGG signal classification. A deep Transformer 

model was generated by a minimum number of 

epileptic patients. However, Epilepsy-Net does not 

rely on handcrafted features, it was still sensitive to 

the preprocessing steps applied to the EEG data. 

Shoka [19] developed an effective encrypted 

EEG data classification and identification approach 

utilizing Chaotic Baker Map and Arnold Transform 

method by CNN. The time series of the EEG was 

modified into 2D spectrogram image and encrypted 

by Chaotic Baker Map and Arnold Transform 

approaches. The obtained outcome was then provided 

for the CNN-based transfer learning approaches. The 

proposed method was accurate and helpful to health 

professionals handling epileptic patients. However, 

the process of encrypting EEG data potentially loses 

important features which are complex for accurate 

classification. This negatively impacts the CNN’s 

ability to learn and identify patterns. 

Duan [20] introduced an automatic approach to 

epileptic seizure according to deep Metric learning. 

Two 1D convolutional embedding approaches were 

developed as deep feature extractors for both single 

and multi-channel EEG signals. These approaches 

utilized a deep metric to map inputs into an 

embedding space, performing a stage-wise training 

scheme that incorporated an extended classification 

layer. The vote strategy method was used to enhance 

the efficiency of the embedding approaches. 

However, an effectiveness of the 1D convolutional 

embedding approaches vary across different EEG 

datasets. 

Usman [21] developed a prediction of epileptic 

seizure approach, which predicted the preictal state 

before the onset of seizure using EEG. The empirical 

model decomposition approach was utilized to 

eliminate the noise. The Generative Adversarial 

Networks (GAN) were used to develop preictal data 
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for performing the class imbalance issues. The CNN 

with three layers were utilized for the extraction of 

features and LSTM was utilized for classification 

among preictal and interictal conditions. However, 

the model’s dependence on synthetic data generated 

by GAN affected its capability to generalize to 

unseen data. 

Singh and Malhotra [22] implemented a cloud-

fog integrated neuro-care method, which performed 

temporal analysis of raw EEG with DL algorithms to 

detect epileptic seizures. This approach was 

performed with a greater variance-based channel 

selection process to select raw EEG signals, pursued 

through filtering and segmentation into various 

limited-time temporal segments. The CNN, RNN, 

and stacked autoencoder DL classifiers were used for 

the classification process.  However, the performance 

of proposed method was extremely sensitive to the 

quality of EEG data. Noise in the signals adversely 

affected the embeddings, results in poor reduced 

seizure detection accuracy. 

3. Proposed methodology 

In this research, epileptic seizure detection is 

developed by using the 2-layer CNN-LSTM. The 

proposed method involves two different datasets 

namely, CHB-MIT and BONN are collected. The 

pre-processing was carried out using Butterworth 

filter with 2 orders, while classification was done 

using 2-layer CNN-LSTM. Fig. 1 depicts the 

epileptic seizure detection using 2-layer CNN-LSTM. 

3.1 Dataset acquisition 

The developed research is analysed using two 

EEG signal datasets of CHB-MIT [23] and BONN 

[24]. A detailed description of these datasets is given 

as follows. 

3.1.1. CHB-MIT dataset 

The CHB-MIT is an open-source EEG data 

developed by Children’s Hospital Bostan and the 

Massachusetts Institute of Technology (MIT). It 

involves non-invasive recordings from 23 paediatric 

patients of male and female. EEG recordings are 

recorded utilizing a 10 to 20 system at the sampling 

range of 256Hz with 16-bit resolution. A binary 

classification approach is examined in a total of 1600 

and 800 cases for each category. Each case has a 

length of 5.0s, consisting of 1280 sampling points per 

channel. Fig. 2 illustrates the EEG signal of CHB-

MIT dataset. 

 

 

 
Figure. 1 Block diagram of the proposed method 
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Figure. 2 EEG signal of CHB-MIT dataset 

 

 
3.1.2. Bonn dataset 

The Bonn dataset is recorded from Bonn 

University and is majorly utilized in the region of 

epileptic seizure determination and detection. It is a 

publicly obtainable data with 500-EEG single-

channel data and is sampled with 173.6 Hz by 23.6 

duration. This dataset considers 5 classes of S, F, N, 

O and Z by 100 channel recordings in every class. 

Intercranial electrodes are utilized with 5 patients, 

endured from epilepsy to obtain the data of S, F and 

N classes. A relaxed and awaked state is offered to 

the class of O and Z EEG region. Fig. 3 depicts the 

EEG signal of Bonn dataset. 

3.2 Pre-processing 

Original EEG signals are acquired from a 

database with noise, which controls EEG signals with 

low-frequency spectrum and leads to the loss of some 

helpful data. The frequency range of this dataset is 0-

86.8 Hz and if the frequencies are greater than 50Hz, 

it is considered as noise. Hence, pre-processing of 

signals is essential to eliminate an unnecessary 

frequency. In this, 5 sets of EEG signals acquired 

from the collected dataset are transmitted by zero-

phase of band-pass filter with the 2nd order. The EEG 

recordings from datasets are transmitted through the 

Butterworth filter, which filters out a slower and 

higher frequency noise characteristic, and restricts a 

frequency signal data to a range of [0.5, 50] Hz. 

Finally, the pre-processed EEG signals are 

categorized three DNN models one after another. 

3.3 Feature extraction 

To achieve an FE step, a pre-processed signal is 

provided for feature extraction to extract the features 

in the dataset. The extraction of the feature is an 

actual device for extracting significant relevant 

features for dimension reduction. The feature 

extraction is utilized to minimize the problems of 

time complexity, over-fitting, decreases the number 

of required resources to handle large datasets for 

enhancing the accuracy of the model. In this phase, 

the network layers are utilized to extract the features 

and these are given to the classification process. 

 

 

 
Figure. 3 EEG signal of Bonn dataset 
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3.3.1. 2-layer convolutional neural network 

In DL, CNN [25] is a successful classification 

approach in Seep Neural Network (DNN) structures 

in a number of fields like image classification, 

Computer Vision (CV), and speech analysis. The 

significant aim of CNN is employed for developing a 

deeper network through smaller number of 

parameters. CNN is a positive method in numerous 

applications and the final output of CNN is 

entrenched in bias as well as weights of earlier layers, 

which are expressed in the following Eqs. (1) and (2). 

 

∆𝑊𝑙(𝑡 + 1) = −
𝑥𝜆

𝑛
𝑊𝑙 −

𝑥

𝑛

𝜕𝐶

𝜕𝑊
+ 𝑚∆𝑊𝑙(𝑡)             (1) 

 

∆𝐵𝑙(𝑡 + 1) = −
𝑥

𝑛

𝜕𝐶

𝜕𝐵𝑙
+ 𝑚∆𝑊𝑙(𝑡)                 (2) 

 

Where, 𝐶, 𝑚, 𝜆, 𝑥, 𝐵, 𝑡, 𝑛, 𝑙 and 𝑊 represent the 

function of cost, momentum, parameter of the 

regularization, leaning rate, bias, updating step, 

number of training samples, number of layers and 

weight.  

 

 
Figure. 4 CNN Architecture 

∆𝑊𝑙(𝑡 + 1)  demonstrates the change in the 

weight for the 𝑙th layer at the next time step (𝑡 + 1). 
𝜕𝐶

𝜕𝑊
  demonstrates a gradient of the cost function 𝐶  

with respect to the weights 𝑊 . ∆𝐵𝑙(𝑡 + 1) 

demonstrates the change in the bias for the 𝑙th layer 

at the next time step (𝑡 + 1) . 
𝜕𝐶

𝜕𝐵
 demonstrates the 

gradient of the cost function 𝐶  with respect to the 

bias 𝐵 respectively.  

The CNN contains multiple layers of input, 

convolutional, pooling layer, Fully Connected (FC) 

and output layer, these are associated through the 

learned weights and biases. This layer plays an 

important function in CNN work through utilizing the 

kernels as per size, padding, and number. Fig. 4 

demonstrates the basic architecture of CNN. 

• Convolutional layer: The convolutional layers 

are the elementary units utilized in CNN which is 

called filters. A recurrent form of these filters to 

an input data through the sliding window results 

in a feature map. The outcome of this is expressed 

in Eq. (3). 

 

𝑂𝑐 = ∑ 𝑥𝑖ℎ𝑐−𝑖
𝑁−1
𝑖=0                              (3) 

 

Where 𝑥  demonstrates the signal, ℎ  denotes a 

filter, 𝑁  is a number of essentials in 𝑥 . 𝑂𝑐 

demonstrates the Convolution operation at index 𝐶. 

𝑥𝑖 - 𝑖th element of input signal 𝑥; ℎ𝑐−𝑖 demonstrates 

the Convolution kernel applied at index 𝑐 − 𝑖. 

• Pooling layer: An outcome of the convolutional 

layer is fed to the pooling layer. These establish 

various feature maps for small signals in the 

feature locations. This problem is overcome by 

signal processing using down sampling. By 

performing this approach, the lower-resolution 

data version discards the fine details of the data. 

• Fully Connected (FC) layer: A pooling layer 

outcome is fed to the FC layer. A convolution 

with pooling is a beginning procedure for CNN. 

The outcome of this procedure is consumed into 

the FC neural network architecture, which 

controls the output of classification. A variation 

of several neurons occurs in a last layer of FC 

layer are epileptic and non-epileptic. The 

extracted feature from CNN is then provided to 

the LSTM approach. 

3.4 Classification  

The output of the extracted feature from the 2-

layer CNN is provided as input to the classification 

process. In this phase, the different epileptic seizures 

are classified utilizing 2-layer Long Short-Term 
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Memory architecture. A detailed description of this 

method is discussed as follows. 

3.4.1. 2-layer long short-term memory 

The LSTM is utilized for time series forecasting. 

A model that learns long-term temporal dependencies 

is an important feature to be estimated in time series 

data. The 2-layer LSTM is introduced in this method. 

One layer is used for short-term dependencies while 

the other is used for long-term dependencies. The 

LSTM has various memory cells in the hidden layers 

for read, write and delete operations, which are 

permitted by three gates of input, output and forget 

gate. The data transfers from one to another state 

through the cell states. The cell state and hidden state 

are utilized in obtaining data for processing in the 

following state. Control what data is moved to be 

stored in a cell state (𝑐𝑡) . An output gate (𝑜𝑡) 

identifies what data from the cell state is utilized as 

output (𝑜𝑡), whereas the forget gate (𝑓𝑡) examines 

what data will be passed away from the cell state (𝑐𝑡). 

With the utilization of these gates, both long and 

short-term time series are collected from the LSTM 

cells. Fig. 5 illustrates the general architecture of 

LSTM. 

• Input Gate: It becomes a significant part in the 

cell state’s changes and updates. A current input 

as well as prior hidden state are obtained by 

sigmoid function and 𝑡𝑎𝑛ℎ  function. The 

sigmoid function compresses the values among 0 

and 1 , where, 0  and 1  represent completely 

deprived and holding values. The 𝑡𝑎𝑛ℎ function 

helps in allocating a network through the 

flattened values among −1 and 1. The output of 

𝑡𝑎𝑛ℎ  and sigmoid function is accumulated, 

providing the desired outcome as expressed in 

Eqs. (4) and (5). 

 

 𝑖𝑡 =  𝜎 (𝑊𝑖ℎ𝑡 − 1 + 𝑏𝑖)                       (4) 

 

𝑔𝑡 = 𝑡𝑎𝑛ℎ (𝑊𝑔ℎ𝑡 − 1 + 𝑏𝑔)                         (5) 

 

• Forgot Gate: The significance of the sigmoid 

layer lies among 0  and 1 , an indicator of the 

amount of data permitted to be moved to the other 

layer, called forgot gate. This layer is managed 

by data maintenance or loss. The forgot gate can 

be expressed in Eq. (6). 

 

𝑓𝑡 =  𝜎 (𝑊𝑓ℎ𝑡 − 1 + 𝑊𝑓ℎ𝑡)               (6) 

 

• Cell State: The cell state is significant to LSTM, 

represented by 𝐶 . It is passed to the whole 

construction through less direct inter relation. 

These effects design a data pass while keeping it 

unmodified. However, a data flow is changed 

from one to another, discretely handled through a 

surround known as gates. Initially, an outcome of 

forgot gate is in a state of vectors that obtain 

pointwise multiplication through prior cell state, 

providing an intermediate cell state. At the same 

time, the extension of pointwise addition occurs 

between an output of input gate as well as an 

intermediate cell state. The cell state is expressed 

in Eq. (7). 

 

𝐶𝑡 = 𝑓𝑡 ∗ 𝐶𝑡−1 + 𝑖𝑡 ∗ 𝑔𝑡             (7) 

 

 

 

 
Figure. 5 LSTM Architecture 
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• Output Gate: It becomes a significant part in 

examining the following hidden state. A data 

about an input of the model is embraced in the 

hidden state. It is significant for prediction and 

classification. An outcome of output gate is 

developed during a current input as well as prior 

hidden state are moved by sigmoid function. A 

present hidden state contains two inputs: 

outcome of output gate and another one is 

developed during the present cell state is 

forwarded by 𝑡𝑎𝑛ℎ  activation. The 

multiplication is followed between the inputs, 

results to the present hidden state. The output 

gate is expressed in Eqs. (8) and (9). 

 

𝑂𝑡 =  𝜎 (𝑊𝑜ℎ𝑡 − 1 + 𝑊𝑜ℎ𝑡)            (8) 

 

ℎ𝑡 = 𝑂𝑡 ∗ tanh (𝐶𝑡)                       (9) 

 

Where, 𝜎 is logistic sigmoidal function, 𝑊𝑖,  𝑊𝑓, 

𝑊𝑜 are network weights matrices, and ℎ𝑡, ℎ𝑡 − 1  are 

the hidden states. The outcome of these layers is 

provided to the dense layer to effectively classify the 

EEG signal.  

3.4.2. Dense layer 

The 2-layer CNN-LSTM contains CNN for 

feature extraction and LSTM for the classification. 

An initial layer is the convolutional layer used for 

short-term dependencies and another layer is used for 

long-term dependencies. An input data is 23 × 1 and 

the number of filters utilized are 14, while the kernel 

size is 6. The max-pooling layer is subsequent by 

LSTM layer with 100 cells and dropout layer which 

supports in enhancing the effectiveness. These are 

succeeded by a flattened layer and 5 dense layers. A 

Rectified Linear Unit (ReLU) is used in the first 4 

dense layers, as well as a sigmoid activation function 

that is utilized in a final dense layer. 

4. Experimental results 

The proposed method is executed on Anaconda 

Navigator 3.5.2.0 (64-bit). Python 3.10.12 software 

tools and system specification with Windows 10 (64-

bit) operating system, Intel core i7 processor, and 

16GB RAM. The proposed epileptic seizure 

classification method utilizes several performance 

metrics to estimate the system performance. The 

assessment metrices of accuracy, precision, 

sensitivity/Recall, and F1-score are utilized for 

estimating the proposed method. The mathematical 

expression for each metric is described as the 

following Eqs. (10) to (13). 

 

𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =  
𝑇𝑃+𝑇𝑁

𝑇𝑃+𝑇𝑁+𝐹𝑃+𝐹𝑁
                (10) 

 

𝑆𝑒𝑛𝑠𝑖𝑡𝑖𝑣𝑖𝑡𝑦/𝑅𝑒𝑐𝑎𝑙𝑙 =  
𝑇𝑃

𝑇𝑃+𝐹𝑁
                   (11) 

 

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =  
𝑇𝑃

𝑇𝑃+𝐹𝑃
                     (12) 

 

𝐹1 − 𝑠𝑐𝑜𝑟𝑒 =  
2𝑇𝑃

2𝑇𝑃+𝐹𝑃+𝐹𝑁
                 (13) 

 

Where, 𝑇𝑃  demonstrates the True Positive, 𝑇𝑁 

illustrates the True Negative, 𝐹𝑃 is the False positive, 

𝐹𝑁 refers to the False Negative; 

4.1 Performance analysis 

This section verifies the dependability of 

proposed 2-layer CNN-LSTM approach using Bonn 

and CHB-MIT dataset and evaluates its performance 

based on accuracy and loss function in terms of the 

number of epochs. Fig. 6 illustrates the proposed 

method’s accuracy and loss function on the CHB-

MIT dataset. Fig. 7 illustrates the proposed method’s 

accuracy and loss function of the Bonn dataset. 

Fig. 6(a) represents the exponential curve for 

accuracy with the CHB-MIT dataset, which obtains 

flat return after an initial rise. Fig. 6(b) represents the 

exponentially decreasing curve for loss function on 

the CHB-MIT dataset in terms of the number of 

epochs (100) obtained at time of validation of the 

proposed method. The loss function from this dataset 

obtains minimum loss value with enhancements in 

epochs. Hence, this representation of accuracy and 

the proposed 2-layer CNN-LSTM model are 

provided with temporal EEG segments of minimum 

time to obtain accurate epileptic seizure detection. 

In Fig. 6(c) illustrates the performance of the 

proposed method of CHB-MIT, as shown in the form 

of a confusion matrix. In the first class, 1831 samples 

are correctly predicted and 15 samples are not 

correctly predicted. In the second class, 437 samples 

are correctly predicted while 17 samples are not 

correctly predicted. Hence, the misclassification rates 

of 15% and 17% are obtained for the non-epileptic 

and epileptic classification classes, respectively. 

Therefore, the accuracy plot and the confusion matrix 

act as evidence of better performance of the 

Transformer model.  

Fig. 7(a) represents the exponential curve for 

accuracy with the Bonn dataset, which obtains the flat 

return after an initial rise. Fig. 7(b) represents the 

exponentially decreasing loss function with Bonn 

dataset with respect to number of epochs (100) taken 

at the time of validation of a proposed method.  
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(a) 

 

 
(b) 

 

 
(c) 

Figure. 6 Performance of proposed method in terms of 

accuracy, loss function and confusion matrix of CHB-

MIT dataset 
 

The loss function from this dataset obtains minimum 

loss value with enhancements in epochs. Hence, this 

illustration of accuracy and the proposed 2-layer 

CNN-LSTM model are provided with temporal EEG 

segments of minimum time to obtain an accurate 

epileptic seizure detection. 

In Fig. 7(c) illustrates the effectiveness of the 

proposed method of Bonn dataset, shown in the form 

of a confusion matrix.  

 
(a) 

 

 
(b) 

 

 
(c) 

Figure. 7 Performance of proposed method in terms of 

accuracy, loss function and confusion matrix of Bonn 

dataset 

 

In the first class, 1837 samples are correctly predicted 

and 9 samples are not correctly predicted. In the 

second class, 446 samples are correctly predicted and 

8 samples are not correctly predicted. Hence, the 

misclassification rates of 9% and 8% are obtained for 

the non-epileptic and epileptic classification classes. 

Therefore, the accuracy plot and confusion matrix 

evidence a superior effectiveness of Transformer 

model.  
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Table 1. Comparative Analysis using CHB-MIT dataset 

Author Method Accuracy 

(%) 

Sensitivity/Recall 

(%) 

Specificity 

(%) 

Precision 

(%) 

F1-score 

(%) 

Hassan [16] CNN 97.1 N/A N/A N/A N/A 

Lebal [18] Epilepsy-Net 98.22 93.92 N/A 89.78 91.80 

Duan [20] Deep Learning 86.68 79.64 93.71 N/A N/A 

Proposed 
2-layer CNN-

LSTM 
99.90 98.06 98.89 98.72 98.66 

 

 

Table 2. Comparative Analysis using Bonn dataset 

Author Method Accuracy 

(%) 

Sensitivity/Recall 

(%) 

Specificity 

(%) 

Precision 

(%) 

F1-score 

(%) 

Hassan [16] CNN 94.00 90.20 N/A N/A N/A 

Lebal [18] Epilepsy-Net 97.00 97.57 N/A 97.71 97.43 

Duan [20] Deep Learning 98.60 97.20 100 N/A N/A 

Proposed 
2-layer CNN-

LSTM 
99.90 98.06 100 98.72 98.66 

 

 

4.2 Comparative analysis 

This section demonstrates the comparison of the 

proposed 2-layer CNN-LSTM in terms of number of 

performance metrics. Table 1 displays the 

comparative analysis using CHB-MIT dataset. Table 

2 presents the comparative analysis on the Bonn 

dataset. The outcomes of the proposed method are 

seen to be commendable, as opposed to the existing 

methods.  

4.3 Discussion 

This section explains the limitations of existing 

methods over the proposed method’s strengths. The 

limitations of the existing methods: CNN [16] faced 

challenges in generalizing over various subjects due 

to variations in EEG patterns, results in poor 

performance. The Epilepsy-Net [18] does not rely on 

handcrafted features, it was still sensitive to the 

preprocessing steps applied to the EEG data. In Deep 

learning [20], the effectiveness of the 1D 

convolutional embedding approaches vary across 

different EEG datasets. To overcome these 

challenges, this research aims to proposes the 2-layer 

CNN-LSTM approach for the epileptic seizure 

utilizing the EEG signals. This approach significantly 

integrates the advantages of CNN and LSTM 

networks, allowing it to surpass in feature extraction 

process. The CNN layers are proficient at capturing 

spatial features from the EEG signals, while the 

LSTM layers are accomplished at modelling the 

temporal dependencies, which are important for 

accurately identifying seizure patterns over time. The 

proposed 2-layer CNN-LSTM approach achieves a 

commendable outcome. It outclasses the pre-existing 

methods with an accuracy of 99.90%, and 

sensitivity/recall of 98.06%, using CHB-MIT and 

Bonn datasets. The proposed 2-layer CNN-LSTM 

approach illustrates the better performance compared 

to existing models, achieving higher accuracy, 

sensitivity, precision, and F1-scores across CHB-

MIT and Bonn datasets. This enhanced performance 

indicates a more reliable and robust detection of 

epileptic seizures, even in challenging conditions 

such as class imbalance or limited data availability. 

5. Conclusion 

In this research, Deep Learning (DL) methods of 

2-layer CNN with LSTM called 2-layer CNN-LSTM 

is proposed for an automatic detection and diagnosis 

of an epileptic seizure. In the pre-processing step, the 

Butterworth filter method with order 2 is used to 

remove the noise in the EEG signal. In 2-layer LSTM, 

one layer is used for short-term dependencies while 

the other is utilized for long-term dependencies. The 

outcome of the 2-layer CNN-LSTM is fed to the 

dense layer for an effective classification. In the end, 

the outcomes of the proposed method are classified 

as epileptic or non-epileptic. The results 

demonstrates that the proposed delivers 
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commendable performance on metrics of accuracy, 

sensitivity, precision and F1-score, with respective 

values of about 99.90%, 90.06%, 98.72%, and 

98.66%, ensuring superior results in comparison to 

the existing methods: CNN, LSTM and CNN-RNN. 

In the future, the proposed attention approach will be 

employed with other neurological pathologies 

utilizing EEG signals. 

 
Notation: 

Variables Description 

 𝐶 Cost function 

𝑚 Momentum 

𝜆 Parameter of the regularization 

𝑥 Leaning rate 

𝐵 Bias 

𝑡 Updating step 

𝑛 Number of training samples 

𝑙 Number of layers 

𝑊 Weight 

∆𝑊𝑙(𝑡 + 1)  Change in the weight for the 𝑙th layer at 

the next time step (𝑡 + 1) 
𝜕𝐶

𝜕𝑊
   Gradient of the cost function 𝐶   with 

respect to the weights 𝑊 

∆𝐵𝑙(𝑡 + 1)  Change in the bias for the 𝑙th layer at 

the next time step (𝑡 + 1) 
𝜕𝐶

𝜕𝐵
   Gradient of the cost function 𝐶   with 

respect to the bias 𝐵 respectively 

 𝑂𝑐  Convolution operation at index 𝐶 

𝑥𝑖  𝑖th element of input signal 𝑥 

ℎ  Filter 

𝑁  Number of elements in 𝑥 

ℎ𝑐−𝑖  Convolution kernel applied at index 

𝑐 − 𝑖 
 𝑖𝑡 , 𝑓𝑡 , and 

𝑂𝑡  

Input, forgot and output gate; 𝐶𝑡 

represents the cell state  

𝑔𝑡  Candidate cell state 

𝑏𝑖 and 𝑏𝑔  Bias term associated with the input gate 

and candidate cell state 

𝜎  Logistic sigmoidal function 

𝑊𝑖,  𝑊𝑓, 𝑊𝑜  Network weights matrices of input, 

forgot and output gate 

ℎ𝑡, ℎ𝑡 − 1   Hidden states 

∗  Element-wise multiplication 

tanh (𝐶𝑡)  Hyperbolic tangent of the 𝐶𝑡 
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