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Abstract: Deep vein thrombosis (DVT) refers to the formation of abnormal blood clots within the inner vascular veins, 

typically in the legs, posing significant health risks. Traditional treatment involves suctioning the clot, monitored by 

X-ray angiography, which exposes patients and medical staff to radiation. This study aims to enhance DVT diagnosis 

and treatment by developing a 3D reconstruction method using B-mode ultrasound, linear 3D interpolation, and a 

multi-denoising filter approach for improved image segmentation. The research methodology includes ultrasound data 

acquisition with a B-mode scanner and optical tracking system, followed by 3D volume reconstruction through bin-

filling and hole-filling processes. Deep learning techniques are employed to segment the blood clot in ultrasound 

images, and the thrombus volume is estimated. Experiments were conducted in two scenarios: 3D reconstruction using 

a 2D ultrasound dataset from a DVT patient and thrombus area determination using artificial datasets with fat-injected 

balloon phantoms. Results demonstrate the proposed method achieved an accuracy of 0.824, a specificity of 0.583, 

and a sensitivity of 0.955. Thrombus volume estimation yielded a mean absolute percentage error (MAPE) of 27.5%. 

The findings indicate that the novel method is eligible to be an alternative to reconstruct thrombus volume and 

accurately identifies thrombus areas in ultrasound images, offering a safer alternative to traditional X-ray-based 

methods. 
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1. Introduction 

Deep vein thrombosis (DVT) refers to the 

occurrence of abnormal blood clots in the inner 

vascular veins. DVT generally occurs in the legs [1]. 

This condition can lead to amputation of the leg, even 

potentially life-threatening [1, 2]. Among the risk 

factors for DVT are advanced age (over 60 years), 

pregnancy, obesity, recent surgery, and cancer [1, 3, 

4]. Research indicates that the annual incidence of 

deep vein thrombosis (DVT) cases in the United 

States is approximately 900,000 individuals [4]. This 

implies that patients with symptoms of DVT are 

estimated to be around 1 per 1000 of the population 

[1, 3, 5]. 

DVT is a serious, yet preventable disease. Proper 

diagnosis and early treatment could reduce the 

morbidity and potential adverse effects [1, 2]. 

Currently, the standard treatment procedure is to 

suction the blood clot using a suction machine or 

manual suction. This process is referred to as 

aspiration. It offers excellent speed, effectiveness, 

and performance-to-price ratio. It employs a flexible 

aspiration catheter that is inserted into the blood 

vessel to open the blocked vessel. The process of 

aspiration is monitored by the use of X-ray 

angiography. Unfortunately, this process has 

radiation effects on both the patient and the medics. 

This calls for the use of other safer modalities, such 

as the use of freehand ultrasound. 
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To date, initial screening of Deep Vein 

Thrombosis patients generally uses ultrasound 

examination [6], and DVT screening is even used in 

children [7]. The limitation of employing freehand 

ultrasound is that the outcomes are presented as 2D 

images. Meanwhile, 3D ultrasound data is required to 

quantify DVT volume. Therefore, this study aims to 

reconstruct DVT volume from 2D ultrasound (US) 

images. The 3D US reconstruction consists of a 2D 

ultrasound probe, an optical tracking system, and a 

PC-based ultrasound system. During the procedure, 

the ultrasound probe is held freely by hand. The 

reconstruction of 3D data includes two phases: bin 

filling and hole filling. Following the acquisition of 

3D data, segmentation is implemented to identify the 

thrombus region. 

Previous research on DVT volume reconstruction 

from 2D US were conducted by Puentes et al. [8]. 

This research proposed an approach to reconstruct 

thrombus volume based on ultrasound images using 

a linear transducer and tracker sensors with 

electromagnetic signals. However, location scanning 

by electromagnetic tracking frequently suffers from 

interference caused by surrounding metal or 

electrical devices, and the device's range of efficacy 

is restricted. Furthermore, the research model 

employed classical segmentation techniques, like 

deformable contours [8]. Other research, Zhao et al. 

proposed thrombus reconstruction using the tracking 

system that  utilizes electromagnetic signals [9] and 

mechanical 3D ultrasound technology [10]. The 

thrombus segmentation procedure employed manual 

segmentation.  The limitation of manual 

segmentation results in subjective values, as 

outcomes vary among operators and lack consistency. 

The segmentation process is carried out aeqafter 

the data is obtained from the reconstruction process. 

An example of the use of the segmentation technique 

method is based on deep learning. Deep learning-

based automatic segmentation has found extensive 

application in the field of medical image 

segmentation, particularly in ultrasound images. 

Several previous researchers have employed deep 

learning frameworks, including U-net [11], VGG16 

[12], Resnet [13], and Inception [14]. Ultrasound 

images are often plagued by speckle artifacts, noise, 

and inadequate image quality, which can affect the 

accuracy of segmentation. In order to address these 

issues, denoising filters are commonly applied to 

reduce speckle noise [15, 16]. However, these filters 

can introduce additional challenges, such as loss of 

fine details, over-smoothing, and reduce contrast, 

potentially leading to the degradation of critical 

diagnostic information within image. Therefore, a 

more effective approach is required to reduce speckle 

noise while preserving important image features for 

accurate segmentation.  

Several researchers have employed segmentation 

to identify DVT from ultrasound images, including 

using clustering techniques [17]. Nonetheless, the 

researchers did not show clustering results that 

demonstrated successful segmentation. Other 

researchers have studied DVT segmentation using an 

elliptical approach. [18]. Unfortunately, using an 

ellipse to determine the contour of DVT is very 

difficult because of the obstruction of blood vessels. 

Meanwhile, other researchers performed DVT 

segmentation and classification based on ultrasound 

images using a convolutional neural network (CNN) 

[19, 20] and deep learning techniques [15, 16] for 

DVT detection [21] and prediction [22]. All of these 

studies employed two-dimensional ultrasound 

images. The drawback of using 2D ultrasound images 

is the difficulty in determining the volume of the 

blood clot. 

In response to the limitations and weaknesses of 

previous studies, this study aims to develop a 3D 

ultrasound system for thrombus detection by 

determining the thrombus volume and area based on 

freehand ultrasound segmentation. The first phase is 

3D ultrasound reconstruction using a 3D linear 

interpolation approach. Then, the volume of 

thrombus in the 3D ultrasound is determined from the 

segmentation stage based on deep learning method. 

Afterwards, to enhance the ultrasound image, we 

proposed a multi-enhanced method.  

This study integrates several key innovations. 

First, we develop a 3D reconstruction that utilizes a 

freehand ultrasound imaging system in combination 

with an optical tracking system. Second, we 

introduce a unique linear 3D interpolation method to 

minimize artifacts that arise during freehand 

ultrasound scanning. This technique leverages the 

voxel nearest neighbor algorithm to correct for 

missing or incomplete voxel data, thus improving the 

accuracy of 3D volume reconstruction. Finally, to 

enhance the quality of ultrasound images and 

improve segmentation accuracy, we propose a multi-

denoising filter approach. This method combines 

multiple filters, including non-local means and total 

variation, to reduce speckle noise while preserving 

important image details. The resulting enhanced 

images are then processed using deep learning-based 

segmentation models such as U-Net, VGG16, Resnet, 

and Inception enabling more accurate and consistent 

segmentation results. Two datasets are employed to 

evaluate the performance of this system. The first 

dataset used a 2D ultrasound from a DVT patient, 

whereas the second dataset used artificial datasets 

with fat-injected balloon phantoms. 
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Our main contributions to this work include: 

• Developing 3D reconstruction for deep vein 

thrombosis using a freehand ultrasound imaging 

system and optical tracking system. 

• Proposing a unique approach to the linear 3D 

interpolation method to minimize artifacts during 

volume reconstruction caused by freehand 

ultrasound scanning based on the voxel nearest 

neighbor algorithm.  

• Optimizing deep learning-based ultrasound 

image segmentation results with a novel multi-

denoising filter to improve segmentation 

accuracy while preserving fine details. 

The paper is structured in the following sections: 

Section 2 presents a description of the materials used 

and the research methodologies. Section 3 covers the 

experiment's results and discussion. Finally, the 

conclusions and further work are presented in Section 

4. 

2. Materials and research method 

In this study, automatic diagnosis of deep vein 

thrombosis based on freehand ultrasound 

segmentation is conducted through several processes. 

Those processes consist of scanning using freehand 

ultrasound equipped with an optical tracking sensor, 

reconstructing volume data from 2D serial images, 

segmenting blood vessels and blood clots that appear 

in the ultrasound image, calculating the volume of 

blood clots, and rendering the volume for 3D 

visualization. Afterward, the performance testing is 

conducted on the 3D reconstruction, segmentation, 

and volume estimation models. Fig. 1 illustrates the 

block diagram of the proposed technique and 

processing procedures, including 3D volume 

reconstruction, image segmentation, thrombus 

detection, and volume rendering. 

2.1. System setup 

The ultrasound image data acquisition device 

consists of a 2D ultrasound scanner (Telemed 

SmartUS EXT-1M with Probe Linear L15-7L40H-5) 

and an optical tracking system (Optitrack V:120 trio). 

For the reconstruction, we used Python 3. As for 

the segmentation, we employed the Adam optimizer 

with a learning rate (lr) of 1e-3. The loss function 

used was binary_cross entropy, and the evaluation 

metric used was mean IoU. The model was trained 

for 50 epochs, with early stopping implemented using 

a patience of 2 and monitoring the validation loss. 

The experiment was then run on a desktop computer 

with specifications: Intel i7-10700F (2.9 GHz), 32GB 

RAM, RTX 3080 GPU, and 1TB NVMe storage. 

2.2. Dataset 

In this research, there are two datasets for the 

development and validation of the proposed 3D 

reconstruction and segmentation method for DVT 

detection. The first dataset, referred to as the clinical 

DVT dataset, comprises ultrasound images collected 

from a clinical setting. The dataset includes 317 

frames extracted from 2D freehand ultrasound videos 

of four patients diagnosed with DVT. Image 

dimensions are 432 pixels in width and 576 pixels in 

height. These ultrasound images were manually 

annotated by medical professionals to provide ground 

truth labels for thrombus segmentation [15]. The 

second dataset, known as the artificial phantom 

dataset, was constructed using a set of fat-filled 

balloon phantoms submerged in water, designed to 

simulate the physical properties of thrombus tissue 

within human veins. The dataset is in the form of 3D 

ultrasound. We created 4 datasets using the approach 

created by F. Cenni et. al [23]. We opted for fat 

because it closely resembles the characteristics of a 

thrombus. This artificial dataset consists of 394 slices 

extracted from four 3D datasets of fat-filled balloon 

phantoms. The dimensions of the images are 

contingent upon the 3D reconstruction. An example 

of the dimensions of an ultrasound image is 594 

pixels in width and 569 pixels in height. The dataset 

used for testing the volume reconstruction 

capabilities of the proposed method. To enhance the 

generalizability of the model, data augmentation 

techniques, including rotation, were employed. These 

steps were particularly important given the relatively 

small size of the dataset. More details of the datasets 

used can be seen in Table 1. 

The datasets were split into training and testing 

sets with an 80:20 ratio. The training set was used to 

train the deep learning models, while the testing set 

was utilized to evaluate the performance of the 

proposed framework. The effectiveness of the 

proposed segmentation method was assessed using 

standard metrics such as the Dice Similarity 

Coefficient (DSC), Hausdorff distance (HD), and the 

Mean Absolute Percentage Error (MAPE) for 

thrombus volume estimation. 

 
Table 1. Dataset 

Dataset Data Source 

Dataset 1 317 frames Four patients with DVT 

symptoms 

Dataset 2 Four 3D 

datasets; 

394 slices   

Artificial dataset used 

water and fat-filled 

balloons 
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Figure. 1 Pipeline of the proposed model for developing 3D reconstruction and automatic segmentation of deep vein 

thrombosis (DVT) images to determine the thrombus volume area 

 

2.3. Volume reconstruction 

After obtaining the 2D ultrasound scan image and 

its spatial position information, the next procedure is 

the 3D reconstruction of the data. The process of 

ultrasound volume reconstruction of deep vein 

thrombosis consists of three main stages: grid volume 

reconstruction, bin-filling, and hole-filling. Grid 

volume reconstruction is used to determine the 

volume grid, which, for example, is related to the 

dimensions and grid spacing; the bin-filling is used 

for data placement in 3D space; and the hole-filling 

serves to fill the gaps between images based on 

neighboring points. 

 

 
Figure. 2 Visualization of grid volume reconstruction to 

position the 2D ultrasound frames into 3D voxel space 

Before performing the reconstruction procedure, 

we first configure the reconstructed voxel placement 

coordinate system. To do this, we apply the bounding 

box technique to determine the coordinate 

configuration of the volume. The dimensions of the 

3D bounding box are obtained by identifying the 

minimum and maximum values at the x, y, and z 

coordinates. The x, y, and z axes of the volume are 

determined by calculating the vectors from point 0 to 

point X (min), point 0 to point Y (min), and point 0 to 

point Z (max). The distance of the volume grid in this 

study is determined by the distance between pixels in 

the coordinate system that has been transformed into 

3D volume space, as illustrated in Fig. 2. 

2.3.1. Bin-filling stage 

The 2D ultrasound frame pixel is mapped into the 

3D volume data voxel during the bin-filling stage 

based on the orientation and acquisition location. [24-

27]. 

During volume reconstruction using a freehand 

ultrasound 3D system, the calibration process is a 

mandatory step to provide a set of fiducials that can 

be accurately localized both in the ultrasound images 

and the calibration phantom model [28, 29]. The 

purpose of the calibration process is to find the rigid 

transformation from Ultrasound image coordinates to 

the coordinate system of the tracking sensor mounted 

onto the probe [30, 31].  
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In this study, the calibration process used a 

double layer of N-wire phantoms [28, 29]. In the 

phantom, two string threads were attached. The first 

string has a position path of a1-c1-b1-d1. The second 

string follows the path position a2-c2-b2-d2, which is 

below the first string. The a-b points are on the front 

wall of the calibration phantom, while the b-d points 

are on the back wall of the calibration phantom. In 

Fig. 3, the first string is symbolized by a blue dashed 

straight line, and the second string is symbolized by 

a red dashed straight line.  The distance between the 

string points has been determined in advance, in 

millimeters. The calibration method in this study uses 

a closed-form method, as shown in Fig. 4. As for the 

transformation equation in the calibration process, it 

is shown in Eq. (1): 

 

 𝐻𝑋 =𝑇
𝐻 𝑇 .  𝑃

𝑇𝑇 .  𝑈
𝑃 𝑇 .  𝑈𝑋                   (1) 

 

with non-singular homogeneous transformation  

( 𝑇𝑈
𝑃 )−1 = 𝑇𝑃

𝑈 , So as to obtain the following Eq. (2): 

 

𝑇𝑈
𝑃 = ( 𝑇𝑃

𝑇 )−1. ( 𝑇𝑇
𝐻 )−1.  𝐻𝑋                (2) 

 

During the bin-filling process, every pixel in the 

2D frame undergoes translation and rotation. The 

translation and rotation process refers to the 

transformation result of the calibration matrix. This 

procedure is performed to determine the 

corresponding voxel position in three-dimensional 

space. If a voxel in 3D space is found to be unfilled 

with data, the voxel value is filled with the 

corresponding pixel value from the acquired 2D 

frame. The process of mapping each pixel to its 

corresponding position in the 3D voxel space using 

the transformation achieved during the calibration 

procedure can be defined by Eq. (3): 

 

V(x,y,z) = P
TT .  U

P T . 𝑋𝑇 , 𝑤𝑖𝑡ℎ 𝑋 = (

sxu
syv

0
1

)         (3) 

 

Where V(x,y,z) is the reconstructed 3D voxel space, 

𝑇𝑃
𝑇  is the transform of the marker on the ultrasound 

probe to the coordinate center of the optical tracking 

system, 𝑇𝑈
𝑃  is the transform of the ultrasound image 

plane to the marker on the ultrasound probe, u and v 

are the indices of in the 2D pixel image, sx and sy 

scaling factors from the pixel to millimeter ratio. 

Fig. 5 (a) is an example of a single slice of a 3D 

ultrasound volume that was cut from the bin-filling 

process. In the image, there is missing data, which 

occurs due to the data capture and reconstruction 

process. The missing data is illustrated in black for 

ease of visual recognition, while in the data matrix, 

the missing data is symbolized with a value of -1. 

Data manipulation to fill the missing data in this 

study employs three approaches: inverse distance 

weighted, improved Olympic hole-filling, and linear 

3D interpolation. Next, Fig. 5(b) and (c) are examples 

of slice images from 3D ultrasound, which are hole 

filled slices and mask hole filled slices, respectively. 

 

 
Figure. 3 Design of double N-wire phantom 

 

 
Figure. 4 The procedure chart of calibration with double 

N-wire phantom using closed-form method 

 

 
(a) 

 
(b) 

 
(c) 

Figure. 5 Example of hole filling procedure on a slice: (a) 

a sample of image slice, (b) a hole filled slice, and (c) a 

mask hole filled slice 
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2.3.2. Hole-filling stage 

The hole-filling procedure is performed when a 

gap occurs in the volume reconstruction process after 

the bin filling process is performed. The objective of 

hole-filling is to estimate the value needed to fill the 

gap by considering the known nearby voxels. The 

main challenge in the hole-filling procedure is to 

identify the most suitable data for filling the vacant 

voxels within the 3D volume while ensuring no loss 

of information or the addition of noisy data [24]. 

The procedures for data hole filling are first to 

detect the position of the empty voxel as a whole. 

Next, it seeks matching data to obtain patches 

throughout the volume. Subsequently, the empty 

voxels are replaced with matching data patches. This 

process is repeated until all empty voxels are filled 

iteratively based on the repetition of the processing 

procedure [27]. 

In this study, we propose linear 3D interpolation 

to obtain the optimal value estimation for filling gaps 

in voxels. To assert the performance, the methods 

were compared based on a simulated 3D ultrasound 

image volume, including inverse distance weighted, 

and improved Olympic hole-filling. 

A. Inverse distance weighted method 

The Inverse Distance Weighted (IDW) is 

commonly used for image interpolation [32]. It is 

applied to the interpolation of images from different 

types of spatial data  [33]. It is simple for 

implementation and intuitive deterministic 

interpolation [34]. This approach provides acceptable 

accuracy in a reasonable amount of time [35]. The 

IDW uses a 3D matrix as in Eq. (4) below. 

 

𝐼𝐼𝐷𝑊 = ∑ 𝑤𝑖𝑦𝑖
𝑁
𝑖=1                          (4) 

 

𝑤𝑖 =
𝑑𝑖

−2

∑ 𝑑𝑗
−2

𝑛

𝑗=1

                             (5) 

 

𝑑𝑖 = √(𝑥0 − 𝑥ℎ)2 + (𝑦0 − 𝑦ℎ)2(𝑧0 − 𝑧ℎ)2     (6) 

 

Where yi represents the data measured based on 

the value of the i-th neighboring voxel; N is the 

number of points; the weights wi for each data point; 

di is the Euclidean distance to calculate the distance 

between the position of the hole voxel and the 

neighboring voxel i=1,…n, where n is the number of 

neighbors. Whereas (xh, yh, zh) is the coordinate 

position of the hole voxel and (x0, y0, z0) is the 

coordinate position of the neighbouring voxel [35]. 

B. Improved olympic hole-filling method 

The improved olympic hole filling method was 

proposed by Dewi et. al [24]. Improved Olympic is a 

hole filling technique based on the Pixel Nearest 

Neighbor (PNN) algorithm. The PNN algorithm is 

characterized by its simplicity and computational 

power. Improved Olympic is able to determine the 

vacant voxel by applying a threshold to the range 

width of its nearby voxels and using an average filter. 

The threshold is determined by removing the n% of 

the upper and lower values after sorting the data. 

Taking n=10% has been implemented in research. 

Then adjusting it to the average values based on 

neighboring voxels [24].  
This study used the 3D nearby voxels technique 

to determine the new value for filling the vacant 

voxels. The estimation for empty voxels is obtained 

by the following Eq. (7): 

 

𝑥𝑒 = �̅�𝑛 − (
𝑅𝑛

𝑝
)                           (7) 

 
Where xe represents the estimated value to fill the 

empty voxels, �̅�𝑛  represents the average of the 

remaining sorted neighboring voxels, Rn represents 

the range width of the remaining sorted neighboring 

voxels, and p represents the threshold value, as in Eq. 

(8) below: 
 

𝑝 = {
𝑝1, 𝑅𝑛 ≤ 𝑘. �̅�𝑛

𝑝2, 𝑅𝑛 > 𝑘. �̅�𝑛
                         (8) 

 

Where �̅�𝑛  is the average of the range width 

among the neighboring voxels that are sorted in all 

existing vacant voxels, k is the threshold to classify 

the values, with k=0.8, p1 =20, and p2 =2.5 [24]. 

C. Linear 3D Interpolation. 

A technique for estimating the missing data based 

on the known surrounding data is interpolation. This 

refers to determining the intensity or value of a 

missing voxel in the context of medical imaging by 

analyzing its neighbors. Linier 3D interpolation 

method estimates the value of a missing voxel by 

taking a weighted average of its immediate neighbors. 

Bicubic and tricubic interpolation techniques take 

gradients or intensity variations into consideration 

while examining a broader neighborhood 

surrounding the absent voxel. Although it requires 

more computing power, this produces estimates that 

are smoother and more accurate [36], [37]. 

Linear 3D interpolation is referred to as linear 

tetrahedral interpolation. Linear tetrahedral 

interpolation extends the principle of triangle 

interpolation into 3D space. The data points are 

scattered in three-dimensional space (xi, yi, zi). The 

first step in this procedure is to divide the scattered 

point set in 3D space. Then, implement triangular 
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interpolation using the terms of the Bernstein-Bezier 

polynomial [38]: 

 

𝑝(𝑢, 𝑣, 𝑤) = 𝑐0 + 𝑐1𝑢3 + 𝑐2𝑢2𝑣 + 𝑐3𝑢𝑣2 +

 𝑐4𝑣3 + 𝑐5𝑣2𝑤 + 𝑐6𝑢𝑤2 + 𝑐7𝑤3 +

𝑐8𝑢𝑤2 + 𝑐9𝑢2𝑤 + 𝑐10𝑢𝑣𝑤 (9) 

 

Where u + v + w = 1. The coefficient c0, ..., c10 is 

the Bernstein-Bezier coefficient. The values of u, v, 

and w are the barycentric coordinates of triangle point.  

2.4. Segmentation 

This study used deep learning for segmentation. 

The input data is reconstructed data in the form of 3D 

volumes that are sliced into 2D images along the 

coronal plane. The accuracy of segmentation can be 

improved by utilizing image denoising [39]. Based 

on that, here we propose a new approach for 

enhanced ultrasound images with multi-denoising 

filters, as in Eq. (10). Furthermore, to test the 

accuracy, we compare the segmentation process 

either without filter or with multiple filters. Such 

filters include anisotropic diffusion, bilateral, 

gaussian, mean filter, median, non-local means, total 

variation, wavelet, and wiener. 

 

𝐼𝑖,𝑗 = 𝑚𝑎𝑥(𝑋𝑖,𝑗 ,  𝑌𝑖,𝑗)                  (10) 

 

Where Ii,j is the combined denoised image 

obtained from taking the maximum value between 

the two enhanced images using the X filter and Y filter. 

Where i, j is the x, y pixel position in the image. 

The U-Net convolutional neural network (CNN) 

architecture is employed for the purpose of 

segmenting blood vessel walls and clots in ultrasound 

image sequences. To obtain better 2D ultrasound 

image segmentation results, variants of U-Net CNN 

are used, including U-Net, VGG16, Resnet, and 

Inception. 

2.5 Evaluation metrics 

The Dice similarity coefficient (DSC) and 

Hausdorff distance (HD) are two metrics used to 

evaluate the performance of segmenting thrombus 

sequence images. DSC indicates the degree of 

conformity between the overlap area of the ground 

truth and the prediction mask, which is defined as 

follows: 

 

𝐷𝑆𝐶 =
2(𝑃 ∩  𝐺)

𝑃 ∪ 𝐺
                              (11) 

 

Where P is the prediction mask and G is the 

ground truth. On the other hand, HD indicates the 

matching difference of the image object based on the 

point, which is defined in the following equation: 

 

𝐻𝐷(𝐴, 𝐵) = 𝑚𝑎𝑥𝑖,𝑗 (ℎ𝑑(A𝑖 , B) , ℎ𝑑(B𝑗, A))    (12) 

 

where, 

 

ℎ𝑑(A𝑖, B) =  𝑚𝑖𝑛𝑘(ℎ𝑑(A𝑖, B𝑘))        (13) 

 

ℎ𝑑(B𝑗, A) =  𝑚𝑖𝑛𝑘 (ℎ𝑑(B𝑗, A𝑘))      (14) 

 

hd(A,B) is the distance measurement between 

pixel A and pixel B, while hd(B,A) is the distance 

between pixel B and pixel A [40]. 

Performance measurement of 3D freehand 

ultrasound reconstruction is checked based on 

neighboring points using mean absolute error (MAE) 

[24]. As for the accuracy of measurement of 

thrombus volume estimation, mean absolute 

percentage error (MAPE) is employed. 

3. Experiment result and discussion. 

3.1. Volume reconstruction performance 

In this study, we experimented with volume 

reconstruction using our first dataset type.  The first 

dataset comes from a patient with thrombus 

symptoms and is used for training and testing the 

reconstruction process. We randomly select one 

image from the 317 available images. Then, that 

image was duplicated into 312 images. Next, the 

image slice is arranged in a 3D plane sequentially to 

form 3D image data with a voxel size of 432 x 576 x 

312. Furthermore, in each slice, noise is given as hole 

data or missing data. Hole manipulation is generated 

randomly for each slice. The hole distribution varies 

from the capacity of 0.1%; 0.5%; 1%; 2%; 3%; 4%; 

5%; 6%; 8%; 10%; 12%; 15%; or 20% of the total 

number of pixels for each slice. 

The data manipulation for filling the missing data 

uses a voxel nearest neighbor algorithm-based 

technique. We propose linear 3D interpolation to fill 

in the missing data. To test the accuracy of our 

proposed method, we compare it with other voxel 

nearest neighbor methods, namely inverse distance 

weighted and improved Olympic hole-filling. 

The results of measuring the accuracy of data 

estimation for filling missing data can be seen in Fig. 

6. The No Hole Filling method, where no attempt is 

made to reconstruct or fill the missing data. The MAE 

trend shows a sharp increase as the percentage of 
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missing data grows. For instance, with 0.1% missing 

data, the Mean Absolute Error (MAE) is relatively 

low at 0.001448. However, as the absence of data 

escalates to 20%, the Mean Absolute Error (MAE) 

significantly increases to 0.257696. This indicates 

that the gap between actual and anticipated values 

widens as missing data rises. The average MAE 

before implementing the hole-filling method is 

75.37x10-3. 

The Improved Olympic Hole Filling method 

employs a sophisticated approach that handles 

outliers and utilizes neighboring data to estimate 

missing values. This method consistently 

demonstrates a low MAE rate across all percentages 

of missing data. For example, with 0.1% missing data, 

the MAE is remarkably low at 0.000202, and even 

with 20% missing data, the MAE remains 

comparatively stable at 0.032046. The trend shows 

that although the MAE increases as the percentage of 

missing data grows, the rate of increase is much 

slower compared to the other methods. This method 

provides robust performance even with larger 

amounts of missing data, making it highly effective 

for scenarios where data loss is substantial. The 

improved Olympic hole-filling method has an 

average MAE performance of 9.39x10-3. 

The Inverse Distance Weighted (IDW) approach 

computes missing values by assigning greater weight 

to proximate known data points. IDW performs well 

at low percentages of missing data, with a very low 

MAE of 0.00005 at 0.1% missing data. However, as 

the missing data increases, the MAE grows more 

rapidly compared to the Improved Olympic Hole 

Filling method. By the time 20% of data is missing, 

the MAE reaches 0.014684. While it performs 

admirably in situations where the missing data is 

minimal, IDW struggles to maintain accuracy when 

larger amounts of data are missing. Therefore, its 

performance degrades more quickly in the presence 

of substantial gaps in the data. the inverse distance 

weighted method has an average MAE value of 

2.44x10-3. 

Linear 3D interpolation assumes a linear change 

between points in 3D space and is computationally 

efficient. The method shows exceptional 

performance when dealing with small percentages of 

missing data. At 0.1% missing data, it has the lowest 

MAE at 0.000025. However, as the percentage of 

missing data increases, the error rises significantly, 

particularly after the 8% threshold. For example, at 

20% missing data, the error reaches 0.000576. While 

Linear 3D Interpolation is highly effective at lower 

levels of missing data, it loses its accuracy as the gaps 

in the data become larger. The method's assumption 

of  linearity  works  well  for  small,  simple  missing  

 
Figure. 6 Graphs of MAE measurement results for 

volume reconstruction performance accuracy. Orange 

line: by improved olympic hole-filling; gray line: by 

inverse distance weight; and yellow line: by 3D 

interpolation; while blue line: without hole-filling 

 

regions but fails to handle complex or larger missing 

areas effectively. The linear 3D interpolation 

produces an average MAE value of 0.11x10-3. 

Based on the research findings, Improved 

Olympic Hole Filling [24] is the most balanced and 

effective method, performing well across different 

percentages of missing data. On the other hand, IDW 

Hole Filling [32] perform well with smaller data gaps 

but experience a more rapid decline in accuracy as the 

amount of missing data increases. Furthermore, 

Linear 3D Interpolation shows the best performance. 

It has the smallest average MAE values. Whereas, 

The No Hole Filling Method, has the worst 

performance, as it does not attempt to fill the missing 

data, leading to the highest MAE values overall. 

Accordingly, Linear 3D Interpolation is then used in 

the next process, which is segmentation. 

3.2. Automatic segmentation performance 

Automatic thrombus segmentation uses a 

comparison of four segmentation models namely U-

net [11], VGG16 [12], Resnet [13], and Inception 

[14]. While denoising filters aim to enhance the 

quality of the image, used in this study are Wiener 

[41], Wavelet [42], Total Variation [43], Non Local 

Means [44], Median [45], Mean Filter [45], Gaussian 

[46], Bilateral [47], Anisotropic Diffusion [42], and 

combined non-local means and total variation filters 

(proposed method). We use dice similarity 

coefficient (DC) and hausdorff distance (HD) for the 

performance evaluation.  

Based on the comparison results of thrombus 

segmentation performance using various denoising 

filters, measured by the mean Dice coefficient. 

Without the application of denoising filters, the 

segmentation performance across all deep learning 

architectures U-Net, VGG16, ResNet, and Inception 

appears suboptimal, particularly on ResNet. The use 
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of denoising filters such as Total Variation, Non-

Local Means, and Wiener filter significantly 

improves the segmentation quality, particularly on U-

Net and VGG16. Best performance on U-net, ResNet, 

and Inception with Total Variation filter achieved the 

performance 0.7358, 0.7014, and 0.6904 respectively. 

In VGG16, the Median, Non-Local Means, and 

Wiener filters provided notable improvements with 

Dice coefficients of 0.7329, 0.7390, and 0.7349, 

respectively. The proposed method in this study 

achieved the highest performance in VGG16 with a 

mean Dice coefficient of 0.7489, surpassing other 

denoising filters. The performance results as shown 

in Table 2. 

 
Table 2. mean Dice Coefficient thrombus segmentation 

using multi denoising filter result. 

  U-Net VGG16 Resnet Inception 

No-filter 0.5909 0.6325 0.4829 0.5269 

Anisotropic 

Diffusion 
0.5677 0.7006 0.5567 0.5495 

Bilateral 0.6139 0.5842 0.5489 0.6550 

Gaussian 0.5787 0.5590 0.5393 0.6550 

Mean Filter 0.5147 0.6867 0.5190 0.5022 

Median 0.6178 0.7329 0.5529 0.5905 

Non Local 

Means 
0.6347 0.7390 0.4696 0.4755 

Total 

Variation 
0.7358 0.7125 0.7014 0.6904 

Wavelet 0.4922 0.5540 0.6464 0.4300 

Wiener 0.6788 0.7349 0.5547 0.5511 

Proposed 

Method 
0.6384 0.7489 0.4736 0.5723 

 

Table 3. The performance of thrombus segmentation 

using multi denoising filter based on Hausdorff Distance 

  U-Net VGG16 Resnet Inception 

No-Filter 1.8570 1.9000 2.1319 1.9588 

Anisotropic 

Diffusion 
1.8509 1.7258 1.8790 1.9361 

Bilateral 1.8827 1.8549 1.9006 1.7706 

Gaussian 1.8535 1.9267 1.9619 2.0149 

Mean Filter 2.0026 1.7024 1.9777 1.9668 

Median 1.7849 1.6396 1.9006 1.8207 

Non Local 

Means 
1.8122 1.6335 2.0399 2.0428 

Total 

Variation 
1.8122 1.6335 2.0399 2.0428 

Wavelet 1.9568 1.9006 1.8111 2.0655 

Wiener 1.7745 1.6769 1.9932 1.8463 

Proposed 

Method 
1.9661 1.6212 2.0547 1.8822 

Table 4. Thrombus Detection Results using VGG16 with 

multi denoising filter based on 2D ultrasound images 

Predictions 
Labels 

Positive Negative 

Positive 42 10 

Negative 2 14 

 

Table 3 presents the performance results of 

thrombus segmentation. Without any denoising, the 

no-filter baseline shows high HD values, with ResNet 

having the highest at 2.1319, indicating poor 

performance, while U-Net achieves a slightly lower 

value of 1.8570. When denoising filters are applied, 

VGG16 consistently shows the best improvements. 

For example, Anisotropic Diffusion reduces the HD 

for VGG16 from 1.9000 to 1.7258, and Bilateral 

filtering lowers the HD for Inception from 1.9588 to 

1.7706, demonstrating notable improvements. 

Among all methods, the proposed method stands out, 

achieving the lowest HD score of 1.6212 for VGG16, 

outperforming all other filters. Overall, VGG16 

consistently benefits the most from denoising, 

particularly with the proposed method, whereas 

ResNet tends to show higher HD values across the 

board, indicating less effective performance. 

Inception performs well with Bilateral, while U-Net 

delivers strong results with Non-Local Means and 

Total Variation. The proposed method proves to be 

the most effective filter. The significant performance 

improvement in VGG16 indicates that this method is 

highly suitable for image segmentation. 

The test results of the proposed thrombus 

detection based on VGG16 using multi denoising 

filter are shown in Table. 4. The test results used of 

68 ultrasound image slices. The confusion matrix 

shows 42 true positives, 2 false negatives, 10 false 

positives, and 14 true negatives. The model 

demonstrated a sensitivity of 95.45%, meaning it 

accurately identified the vast majority of thrombus 

positive cases. However, the specificity was 58.33%, 

indicating a higher rate of false positives, where some 

non thrombus cases were incorrectly classified as 

positive. Despite this, the model achieved an overall 

accuracy of 82.35%, reflecting solid performance in 

correctly classifying both positive and negative cases. 

These results suggest the model is highly effective at 

detecting thrombus cases, though improvements 

could be made to reduce the number of false positives 

and improve specificity. Meanwhile, Fig. 8 shows the 

frequency plot based on the dice coefficient and 

Hausdorff distance. Fig. 9 shows an example of the 

segmentation results using VGG16 by applying a 

multi-enhanced image filter. A slice is extracted from 

the original ultrasound image, as illustrated in Fig. 9 

(a). The image is further categorized into two 
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segments: the blood vessel ground truth image 

depicted in Fig. 9 (b), and the thrombus ground truth 

image illustrated in Fig. 9 (c). Meanwhile, Fig. 9 (d) 

illustrates the predicted blood vessel image, whereas  

 

 
(a) 

 

 
(b) 

 

Figure. 8 The frequency plot value of (a) Dice Similarity 

Coefficient (DSC), and (b) Hausdorff distance (HD) 

based on thrombus segmentation results. 

 

   
(a) (b) (c) 

   
(d) (e) (f) 

Figure. 9 Example of segmentation result using VGG16 

by applying multi enhanced image filter: (a) original 

ultrasound image, (b) blood vessel groundtruth image, (c) 

thrombus groundtruth image, (d) and (e) predicted blood 

vessel and thrombus segmentation results, and (f) a 

comparison of predicted (red) and manual segmentation 

(yellow) results 
 

Fig. 9 (e) illustrates the thrombus segmentation 

image. Fig. 9 (f) illustrates the comparison of 

predicted images (red) and the manually annotated 

images (yellow). 

3.3. Volume thrombus estimation 

Volume estimation uses the segmented thrombus 

contour, which is then used to calculate the volume 

of the thrombus clot. The thrombus volume 

estimation measurement uses the following equation: 

 

𝑉 = ∑ (𝑛𝑖)𝑘
𝑖=1                              (15) 

 

where V is the total estimated thrombus volume 

at the longitudinal distance between the intervertebral 

initial layer and the final layer in pixel units, k is the 

total number of layers, and ni is the number of 

segmented voxels in the i-th layer. 

Measurement results of thrombus volume 

estimation from reconstructed volume data using 

VGG16 automatic segmentation with multi-

denoising filter can be found in Table 5.  The 

predicted result of the total volume of thrombus 

obtained was 43423 unit pixels. Meanwhile, the 

manual measurement of ground truth data is 44823 

unit pixels. Based on the results of the thrombus 

volume estimation, the MAPE value is 27.5%. Fig. 

10 illustrates the three-dimensional volume 

reconstructed from the segmentation of clots and 

blood vessels automatically. The thrombus area is 

represented by the inside dark red 3D volume, 

whereas the vessel wall area is represented by the 

transparent outer wall. The 3D volume visualization 

was rendered using 3D-slicer (www.slicer.org). 

 

 
Figure. 10 Visualization of reconstructed 3D volumes 

from automated segmentation of blood vessels and clots. 

The thrombus area is represented by the inside dark red 

3D volume, whereas the vessel wall area is represented 

by the transparent outer wall 
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Table 5. Measurement of thrombus volume estimation 

between experts vs reconstructed volume using MAPE 

 Volume on 

ground truth 

(pixel) 

volume 

estimation 

(pixel) 

MAPE 

(%) 

Reconstructed 

volume vs 

Expert 

44823 43423 27.5 

4. Conclusion 

This research proposes a 3D volume 

reconstruction system based on freehand ultrasound 

segmentation. The experimental findings 

demonstrate the effectiveness of the proposed 3D 

reconstruction technique to reconstruct thrombus 

volume and a multi-denoising filter to enhance 

ultrasound images for automatic segmentation yields 

good results. The prediction results obtained 

sensitivity values of 0.955. The specificity value is 

0.583. While the accuracy value is 0.824. 

Furthermore, the thrombus volume estimation gets a 

MAPE value of 27.5%. In further research, the 

research will focus on automatic analysis and volume 

rendering of deep vein thrombosis. 

 

Notation list: 

Symbol Description 

HX 
Location of the cable phantom within the 

coordinate system 

𝑇𝑇
𝐻  

Transformation matrix from optical 

tracking system center to cable phantom 

center coordinate system. 

𝑇𝑃
𝑇  

Transformation matrix from cable phantom 

center to optical tracker center. 

𝑇𝑈
𝑃  

Transform matrix for image pixels to probe 

coordinates. 

UX 
Pixel positions on B-mode ultrasound 

images. 

XT Transpose X 

sx, sy 
Comparison of pixel scale to x or y axis 

measurements. 

u, v Spatial coordinate position in 2D image 

IIDW Inverse distance weighted 

wi Weight values assigned to each data point. 

di Euclidean distance 

x, y, z 
Position on a three-dimensional voxel 

coordinate system 

xh, yh, zh Coordinate location of the hole voxel 

x0, y0, z0 
Coordinate location of the neighbouring 

voxel 

V(x,y,z) The reconstructed 3D voxel space 

xe The estimated value to fill the empty voxels 

�̅�𝑛 
Average of the remaining sorted 

neighboring voxels 

Rn 
Range width of the remaining sorted 

neighboring voxels 

p Threshold value 

k Threshold to classify the value 

u, v, w the barycentric coordinates 

ci Bernstein-Bezier coefficient 

P(x,y,z) Coordinates point (x,y,z) 

p(u,v,w) Bernstein-Bezier polynomial 

Ii,j Combined denoised image 

DSC Dice similarity coefficient 

HD Hausdorff distance 

hd 
The distance between two points on a pixel 

grid 

P Prediction image 

G Ground truth image 

V Thrombus volume estimated 
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