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Abstract: As the prevalence of Internet of Things (IoT) devices increases, Cyber incidents are also increasing 

significantly. These Cyber incidents are mainly caused by various attacks, such as Distributed Denial of Service 

(DDoS), Denial of Service (DoS), intrusions, and web-based attacks. This type of attacks can severely impact valuable 

IoT system resources, compromise stored data, and lead to substantial financial losses if not adequately mitigated. 

Detecting these attacks within network traffic is complex and requires intelligent Intrusion Detection Systems (IDS). 

This paper proposes a Machine Learning (ML) based hybrid IDS model for edge computing networks. The feature 

selection process employs the ‘Recursive Feature Elimination technique’ (RFE) combined with ‘Random Forest’ (RF) 

to identify optimal features for attack detection. The Hybrid IDS model integrates ‘Random Forest’ (RF), ‘Decision 

Tree’ (DT), ‘Extra Tree’ (ET), and ‘K-Nearest Neighbor’ (KNN) algorithms. The Hybrid IDS model is evaluated on 

four datasets: ‘CIC-IDS-2017’, ‘NSL-KDD’, ‘UNSW-NB15’, and ‘CSE-CIC-IDS-2018’. The results of the proposed 

model show maximum prediction accuracy of 99.92%, 99.89%, 99.50%, and 99.13%, and F1-score values obtained 

are 99.95%, 99.90%, 99.23%, and 99.13% on ‘CIC-IDS-2017’, ‘NSL-KDD’, ‘UNSW-NB15’, and ‘CSE-CIC-IDS-

2018’ datasets, respectively. The experimental results clearly demonstrate that the proposed model performs better 

than the models reported in the existing studies. 

Keywords: IoT devices, Edge computing, Feature selection, Cyber-attacks, Feature engineering. 

 

 

1. Introduction  

Recently IoT devices have been used to create 

smart environments including smart cities, homes, 

and vehicles. All these latest advancements cover a 

variety of services and enable significant 

advancements in connectivity, efficiency, and 

convenience. This marks a crucial milestone in the 

evolution of the Internet and digital transformation.  

Integrating IoT systems with intelligent computing 

has introduced many fascinating elements into our 

daily lives. However, IoT systems are vulnerable to a 

wide range of security threats, including malware, 

exploits, ‘DoS (Denial of Service)’, ‘DDoS 

(Distributed Denial of Service)’, ‘Heartbleed’, 

‘Infiltration’, ‘SQL injection’, and ‘Web-based 

attacks’ [1]. Detecting these threats or attacks within 

network traffic is complex due to their evolving 

nature. Protecting against and preventing these 

increasingly sophisticated attacks with traditional 

security measures, such as web server security, 

firewalls, e-mail security, and antivirus programs, is 

no longer feasible. Such deadly attacks can disrupt 

critical services creating IoT and smart environments, 

potentially leading to data breaches as well as 

financial losses. An Intrusion Detection System 

(IDS) precautions the communication system by 

identifying imminent and potential threats or attacks 

[2]. 

Consequently, designing intelligent IDS systems 

to combat IoT attacks is crucial for researchers and 

developers [3]. In the IoT era, a vast amount of data 

is generated in real-time, making AI based systems a 

prime target [4]. Traditionally, this data is processed 

on cloud servers, but this has several drawbacks, 

including increased latency, higher connection costs, 

and privacy concerns. Edge computing (EC) 
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solutions have been proposed to overcome these 

challenges. In EC, devices are positioned near the IoT 

devices that generate the data and at the network's 

edge. This proximity enables computations to be 

performed nearer to the data sources, effectively 

addressing latency and bandwidth issues. However, 

security risks remain a significant concern in 

dynamic EC and IoT networks. Deploying intelligent 

machine learning (ML) systems or models to secure 

EC networks can mitigate these risks, offering a 

promising solution [5]. At the forefront of intrusion 

detection research, ML-based IDS are proving highly 

effective [2]. 

This study leverages ML algorithms including 

'Random Forest (RF), Decision Tree (DT), Extra Tree 

(ET), and K-Nearest Neighbors (K-NN)' to build a 

robust hybrid intrusion detection system (IDS) for 

identifying critical attacks ("DoS, DDoS, Heartbleed, 

Intrusion, SQL Injection, and Web-based Attacks") 

in EC networks. The ‘Recursive Feature Elimination 

with RF (RFE-RF)’ method is applied to identify the 

most important and relevant features. The proposed 

hybrid IDS model is evaluated using four important 

datasets: ‘CIC-IDS-2017’, ‘NSL-KDD’, ‘UNSW-

NB15’, and ‘CSE-CIC-IDS-2018’, all containing 

sophisticated cyber-attack network traces that have 

also been used in recent studies [6-7]. The proposed 

model aims to help administrators manage attacks in 

real-time or implement preventive measures and can 

be further enhanced to optimize detection processes 

in intrusion-based applications. 

This paper is structured as follows. Section 2 

examines the existing body of study. Section 3 

presents a detailed methodology for intrusion 

detection, while Section 4 thoroughly evaluates the 

model. Section 5 presents the experimental results 

and does a comparison analysis with previous 

investigations. Section 6 summarizes the findings and 

discusses potential next directions. 

2. Related work  

Cyber-attacks, including DoS, DDoS, Heartbleed, 

Infiltration, SQL injection, and Web-based attacks, 

have surged with the widespread adoption of the 

Internet. Traditional IDS struggle to classify these 

attack patterns due to their hidden and sophisticated 

nature, allowing them to persist undetected within 

systems for prolonged periods. Consequently, these 

systems often need to identify attacks and their 

patterns [6] accurately. To enhance accuracy and 

detection rates (DR), ML-based techniques such as 

RF, DT, ET, and KNN have emerged, focusing on 

anomaly detection in network behavior or in IoT [7]. 

Various features and techniques have been 

investigated and utilized below to identify these 

attacks. 

Saini et al. [7] proposed a system to detect 

Advanced Persistent Threat (APT) attacks using deep 

learning (DL) and ML models, including ‘MLP 

(Multi-Layer Perceptron)’, and ‘CNN (Convolutional 

Neural Network)’, and RF, DT. They used datasets 

such as ‘CSE-CIC-IDS-2018, CIC-IDS-2017, NSL-

KDD, and UNSW-NB15’. Their hybrid ensemble 

model, which consisted of RF and XGBoost 

classifiers, achieved a remarkably high prediction 

accuracy of 98.92%, 99.91%, 99.24%, and 97.11%, 

with false positive rates (FPR) of 0.52%, 0.12%, 

0.62%, and 5.29%. The effective features are 

achieved using, Information Gain (IG), Pearson 

correlation, and SHAP (SHapleyAdditive 

exPlanations) approaches. The proposed model failed 

to achieve sufficient accuracy on the CIC-IDS-2018, 

NSL-KDD, and UNSW-NB15 datasets, indicating its 

limitations in detecting attacks within these datasets. 

Particularly, the FPR was exceptionally high on the 

UNSW-NB15 dataset, which is our main concern in 

the studies to mitigate FPR. 

Tripathi et al. [8] proposed a new strategy for 

improving feature selection in ML systems for 

network intrusion detection. Using the CICIDS-2017 

dataset, their approach optimizes feature selection 

and reduction by focusing on high-impact 

characteristics. The approach reduced irrelevant 

attributes by 51%, increasing the tuned RF detection 

accuracy with 40 essential features to 99.9% with a 

precision of 99.80%, recall at 99.89%, and f1-score 

of 99.85%. However, forty features are selected using 

the CHI-REV based approach. These features are 

reported to be relevant for improving model 

performance. However, practical feature selection 

approaches are needed to improve model 

performance further to obtain essential features. 

However, FPR has not been utilized in their study. 

Mokbal et al. [9] presented an IDS framework 

that combines the extreme gradient boosting 

(XGBoost) algorithm with an integrated feature 

selection method. Their framework underwent 

rigorous evaluation with extensive test data, 

including binary and multi-classification scenarios. 

They selected fifty important features using an 

embedded feature selection approach. Authors 

achieved good performance in various metrics, 

including overall accuracy of 99.86%, precision of 

99.69%, detection rate (DR) of 99.75%, specificity of 

99.69%, F-score of 99.72%, false negative rate (FNR) 

of 0.17%, FPR of 0.2%, error rate of 0.14%, and area 

under the curve (AUC) of 99.72%. These fifty 

features have proven sufficient to improve the 

model's performance.  However, the precision and 
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DR are relatively low, which is very important for the 

classification-based model. 

Manokaran et al. [10] enhanced anomaly 

detection performance by integrating optimized 

ensemble learning algorithms, including Adaptive 

Boosting (AdaBoost), RF, XGBoost, and Light 

Gradient Boosting Machine (LGBM), with a novel 

hybrid feature selection method. They developed an 

Improved Particle Swarm Optimization (IPSO) 

algorithm, combining elimination and opposition-

based learning, hybridized with the Chi-square 

method (Chi-IPSO). The model was evaluated on the 

UNSW-NB-15 dataset and reached 94.58% accuracy 

using network traffic features. Moreover, the model 

achieved 99.70% accuracy using CIC-IDS-2017 

dataset containing the several features of statistical 

network traffic. However, the proposed model failed 

to detect attacks efficiently which utilizes the 

UNSW-NB15 and ‘CIC-IDS-2017’ datasets due to 

the complex selection of the features. 

Arif Faizin et al. [11] proposed an IDS integrating 

mutual information (MI) with thresholding feature 

selection and the XGBoost classification algorithm. 

By measuring the dependency between input and 

target features, they applied thresholding to optimize 

the number of features for classification. The UNSW-

NB15 dataset has been used to select the best feature 

selection method and thresholding value. The 

accuracy of the proposed model is 87.63% which is 

low compare to the existing studies. 

OYELAKIN et al. [12] conducted a study using 

the CIC-IDS-2017 intrusion dataset to build a Cyber 

threat detection model. They utilized the XgBoost 

feature importance approach for selecting thirty-four 

features.  They achieved good accuracy in identifying 

cyber intrusions using these features. The model 

substantiated impressive performance with an 

average accuracy of 98%, recall of 0.98, F1-score of 

0.98, precision of 0.98, and an AUC-ROC score of 

0.99. However, based on the relative results and the 

selected features, the proposed model is not sufficient 

to detect attacks on the CIC-IDS-2017 dataset. 

Hasanah et al. [13] proposed a comprehensive 

intrusion detection system model that consists of 

three stages: data preprocessing, feature selection 

using ANOVA F-value with cross-validation, and 

classification using a weighted voting classifier. This 

classifier combines RF, kernel neural network, and 

logistic regression. Furthermore, the proposed 

technique has achieved an average accuracy of 

95.51% and precision of 98.66%. 

According to related work, many ML based 

approaches have been recognised in the past few 

years, but they still suffer several shortcomings. 

Moreover, they failed to find the optimal set of 

features to detect attacks, and the selection of 

irrelevant features significantly affected the 

classification performance. We understand that 

optimal feature selection will enhance the 

performance of IDS, which is the primary concern of 

our work. Therefore, the RFE-RF technique 

efficiently selects the optimal set of features for our 

proposed model, resulting in improved performance. 

Moreover, for critical distributed EC networks, the 

performance of a single classifier is not a reasonable 

approach Therefore, we utilized an amalgamation of 

ML Classifiers designed to provide a significant 

performance boost through a soft voting method. 

This method reduces variance and bias, leading to 

more effective model training and improved 

performance.  

3. Methodology  

The process for managing all datasets and hybrid 

models intended for attack detection and 

classification is illustrated in Fig. 1. Interestingly, our 

novel strategy—which uses the hybrid model with 

soft voting—creates a new standard and greatly 

improves the performance of the current models in 

every scenario. This performance improvement is 

most noticeable in the pre-processing stage of data 

preparation, followed by efficient feature 

optimization utilizing the RFE-RF technique—

essential for the high accuracy, detection rate and low 

FPR. Classifiers are then assessed to build the best 

possible model. Four datasets, including historical 

and modern ones, will be used to evaluate the 

effectiveness of the suggested model: CIC-IDS-2017, 

NSL-KDD, CSE-CIC-IDS-2018, and UNSW-NB15 

[14-17]. 

3.1 Datasets description 

The NSL KDD, UNSW-NB15, CIC-IDS-2017, 

and CIC-IDS-2018 datasets capture intrusion 

incidents in edge computing and IoT networks. These 

datasets highlight unauthorized and potentially 

malicious actions that threaten the security and 

integrity of edge and IoT devices and data. Such 

intrusions can lead to significant consequences, 

including data breaches, service interruptions, and 

privacy violations, underscoring the critical need for 

robust Cybersecurity measures in these environments. 

3.1.1. NSL-KDD 

The NSL-KDD dataset, a precocious version of 

the KDD Cup 1999 dataset, is valued for evaluating 

IDS. The NSL-KDD dataset features diverse network  
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Figure. 1 Proposed Hybrid IDS Model Architecture 

 

traffic data divided into regular and attack classes. 

The dataset comprises 67,342 benign and 58,630 

malicious records, totalling 125,973 records with 41 

features. The attacks are categorized into four 

primary types: DoS (45,927 records), Remote to 

Local (R2L, 955 records), User to Root (U2R, 52 

records), and Probe (11,656 records), offering a 

comprehensive evaluation resource for IDS [14]. 

3.1.2. UNSW-NB15 

The ‘UNSW-NB15’ dataset is a comprehensive 
synthetic network traffic dataset created by the ‘University 

of New South Wales (UNSW)’ designed for evaluating 

IDSs. It includes a varied range of attack scenarios 

categorized into nine types: ‘Backdoors (1,746 records), 

DoS (12,264), Shellcode (1,133), Exploits (33,393), 

Fuzzers (18,184), Analysis (2,000), Generic (40,000), 

Reconnaissance (10,491), and Worms (130)’, alongside 

56,000 records of normal traffic. The dataset included 49 

features using Argus and Bro-IDS tools, which provided a 

comprehensive contribution to the evaluation of IDS [15]. 

The dataset contains 56,000 benign and 119,341 malicious 

records, totalling 175,341 records. These are used to detect 

malicious traffic in network traffic. 

3.1.3. CIC-IDS-2017 

The CIC-IDS2017 dataset is a valuable resource 

for evaluating network traffic and recent attack 

patterns, comprising eight CSV files: one with 

normal flows (2,273,097 records) and seven with 

malicious flows. The dataset contains total 2,830,743 

records and 80 features, providing comprehensive 

coverage of network scenarios and attacks [16]. The 

malicious categories include DoS Hulk (231,073 

records), PortScan (158,930), DDoS (128,027), FTP-

Patator (7,938), SSH-Patator (5,897), DoS Slowloris 

(5,796), DoS Slowhttptest (5,499), Bot (1,966), Web 

Attack Brute Force (1,507), Web Attack XSS (652), 

Infiltration (36), Web Attack SQL Injection (21), and 

Heartbleed (11). 

3.1.4. CSE-CIC-IDS-2018 

The CSE-CIC-IDS2018 dataset, developed by 

CIC, aims to advance network security research by 

covering various Cyber-attack scenarios with 80 plus 

features. It includes aprox millions records of benign 

traffic and multiple attack types. This study collected 

attacks types: DDOS Attack-HOIC (68,692 records), 

DoS Attack-Hulk (45,983), Bot (28,705), FTP-

Bruteforce (19,469), SSH-Bruteforce (18,875), DoS 

Attack-SlowHTTPTest (14,154), Infiltration (6,864), 

DoS Attack-GoldenEye (4,157), DoS Attack-

SlowLoris (1,139), DDOS Attack-LOIC-UDP (181), 

Brute Force-Web (25), Brute Force-XSS (8), and 

SQL Injection (5). The dataset provides a 

comprehensive overview of network security 

advancements [17]. Table 1 shows the attack 

statistics including benign/normal attacks for CIC-

IDS-2017, NSL-KDD, and UNSW-NB15. 

 
Table 1. Normal and malicious flows/records in datasets 

Attacks 

Types 

 

CIC-

IDS-

2017 

NSL-

KDD 

UNSW-

NB15 

CSE-

CIC-

IDS-

2018 

Benign 2,271,32

0 
67,342 56,000 

10,00

00 

Maliciou

s/Attacks 
5, 565,56 58,630 

1,19,34

1 

10,00

00 

Total 28,27,87

6 

1,25,97

32 

1,75,34

1 

20,00

00 
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3.2 Pre-processing 

Data pre-processing transforms raw or noisy data 

into a clean dataset, ensuring accuracy and usability 

through error removal and formatting. Therefore, 

three kinds of processes are included in data pre-

processing: Data cleaning, Label encoding, and Data 

Normalization, which are briefly explained below. 

3.2.1. Data cleaning 

The CIC-IDS-2017 dataset, containing 2,830,743 

records, was cleaned, and 2,867 records with missing 

and infinite values were removed. Table 1 details the 

attack statistics for ‘CIC-IDS-2017, NSL-KDD’ 

(which has no duplicate values), and UNSW-NB15 

(which includes both normal and malicious flows and 

has no duplicates). These datasets offer 

comprehensive resources for evaluating network 

traffic and attack scenarios. The CSE-CIC-IDS2018 

dataset, an extensive collection of CSV files with 

millions of records, required substantial time and 

computational resources, leading to stratified random 

sampling to select 0.10 fractions from each file. 

Experience the power of our approach, where every 

dataset is carefully allocated: 80% for training to 

build robust models and 20% for rigorous testing to 

ensure reliability. 

3.2.2. Label encoding 

Label encoding is an ML technique that converts 

categorical data into a numerical format by assigning 

each category a unique integer. The dataset includes 

both numerical and non-numerical label values. The 

machine learning process is based on numerical 

calculations. This requires the transformation of non-

numerical objects into numerical objects. This 

transformation assigns 0 ('malicious') and 1 ('normal') 

to the eight attributes in the labels - 'normal, brute 

force, DoS, DDoS, intrusion, botnet, portscan, and 

web attack', ensuring clear and accurate classification. 

3.2.3. Data normalization 

Data normalization scales data to a standard range, 

typically from 0 to 1. This enhancement significantly 

boosts algorithm performance and convergence by 

mitigating biases arising from variations in feature 

magnitudes. 

 
 

𝑋𝑠𝑐𝑎𝑙𝑒𝑑 =
𝑦−𝑚𝑖𝑛(𝑦)

𝑚𝑎𝑥(𝑦)−𝑚𝑖𝑛(𝑦)
    (1) 

 

Where 𝑚𝑎𝑥(𝑦)  = maximum, 𝑚𝑖𝑛(𝑦) = 

minimum records of the feature 𝑥. The high variance 

values given by Eq. (1) are normalized using the min-

max scaling technique. 

3.2.4. Feature selection 

Feature selection is critical for identifying the 

relevant features and minimizing data dimensions. 

This work employed the RFE method with an RF 

classifier to pick the right features. This method 

allows to selection of effective features that 

effectively reduce the data dimensions while 

maintaining or improving the model accuracy. 

Algorithm 1 shows the RFE with the RF process. Fig. 

2, 3, 4, and 5 display the significant features selected 

using ‘CIC-IDS-2017, NSL-KDD, UNSW-NB15, 

and CSE-CIC-IDS-2018’, respectively. 

 

Algorithm 1: RFE with RF Process 

Input: Nf: All Sub set of Features 

Pf: Group optimal Features 

Output: Pf 

1. For i in range 1 to Nf: 

2. Sel←RFE(RandomForestClassifier(n_estimat

ors←50,random_state←0), 

n_features_to_select←features) 

3. Sel.fit (x_train, y_train) 

4. X_trainrfe ←Sel.transform(x_train) 

5. X_testrfe ←Sel. transform(x_test) 

6. Print ('Selected Feature: ', i) 

7. Clasif←RandomForestClassifier(n_estimator

s←50, random_state←0, jobs←-1) 

8. Clasif.fit (X_trainrfe, y_train) 

9. Features ←x_train. columns 

[Sel.getsupport()] 

10. Return Pf 

11. end 

 

The algorithm1 proposes a feature selection 

procedure that uses RFE with an RF classifier to 

identify a subset of insightful features from the 

dataset. The algorithm iterates over each subset of 

features (Nf), starting from 1 up to the total number of 

features (Nf). For each subset, RFE is initialized with 

an RF classifier. This is done with 50 estimators 

(trees) and a fixed random position for consistency. 

n_features_to_select←features ensure that the 

algorithm selects a specific number of features to 

keep. The RFE model is fitted to the training data 

(x_train, y_train). This step identifies which features 

are necessary to predict the output based on the RF 

performance. The fitted RFE model transforms both 

the training (X_trainrfe) and testing data (X_testrfe 

variables) by reducing the dataset to only the selected 

features. For each iteration i, the algorithm displays 

or prints which subset of features is currently being 
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evaluated. A new RF classifier with 50 estimators is 

created and is enabled by parallel processing (jobs← 

-1). This classifier is trained using the reduced 

training set (X_trainrfe) with only the selected 

features. The algorithm obtains the names of the 

selected features by applying the Sel.getsupport() 

method on the original feature set (x_train.columns). 

After completing the iterations, the optimal subset of 

features (Pf) is returned as the final output. 

 

 
Figure. 2 List of optimal features using CIC-IDS-2017 

 

 

 
Figure. 3 List of optimal features using NSL-KDD 

 

 
Figure. 4 List of optimal features using UNSW-NB15 

 

 
Figure. 5 List of optimal features using CIC-IDS-2018 

3.3 Proposed model 

This section emphasizes the effectiveness of 

ensemble learning techniques in developing the 

proposed hybrid model for attack detection. 

Ensemble learning, a comprehensive ML strategy, 

enhances predictive accuracy by combining multiple 

model predictions. It encompasses three types: 

bagging, boosting, and stacking/voting. Bagging 

applies one algorithm to various training subsets with 

replacement but its reliance on random selection can 

affect classification performance.  Boosting trains 

weak learners to improve model accuracy, though its 

interdependent inputs make parallelization 

challenging [9]. Both bagging and boosting utilize 

homogeneous classifiers and perform well on small 

datasets. In contrast, stacking/voting is more 

effective with large datasets and diverse models, 

enhancing prediction accuracy. This study adopts the 

soft voting approach, which assigns probability 

values to data items for class assessment, yielding 

better results by prioritizing confident votes [9]. The 

proposed hybrid IDS model integrates RF, DT, ET, 

and K-NN classifiers with soft voting, as depicted in 

Figure 1, which showcases a thorough model 

development process. 

4. Evaluation of model  

Fig. 6 shows a typical confusion matrix with four 

elements (TP, TN, FP, and FN). Different 

performance indicators were utilized to evaluate the 

model, which is presented in Eqs. (2)-(9).  

Understanding True Positives (TP), True 

Negatives (TN), False Positives (FP), and False 

Negatives (FN) are crucial for accurately identifying 

attacks and normal activities. TP indicates correctly 

identified attacks, while TN indicates accurately 

classified normal activities. Conversely, FP 

represents normal activities mistakenly classified as 

attacks, and FN denotes attacks incorrectly identified 

as normal. 
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Figure. 6 Confusion matrix 

 

 

Accuracy 

 

Accuracy = 
𝑇𝑝+𝑇𝑛

𝑇𝑝+𝐹𝑝+𝑇𝑛+𝐹𝑛
    (2) 

 

Recall (RC) or DR 

 

RC = 
𝑇𝑝

𝑇𝑝+𝐹𝑛
      (3) 

 

Precision (PR) 

 

PR= 
𝑇𝑝

𝑇𝑝+𝐹𝑝
      (4) 

 

FPR 

 

FPR = 
𝐹𝑝

𝐹𝑝+𝑇𝑛
     (5) 

 

F1-Score 

 

F1-score = 
2∗𝑃𝑅∗𝑅𝐶

𝑃𝑅+𝑅𝐶
     (7) 

 

FNR 

 

FNR = 
𝐹𝑛

𝑇𝑝+𝐹𝑛
     (8) 

 

4.7 MCC (Matthew’s correlation coefficient) 

The MCC is a powerful metric that evaluates the 

accuracy of binary classifications. It provides a clear 

and concise measurement on a scale from -1 to +1. 

This metric is calculated using the formula [10]: 

 

MCC = 
𝑇𝑝∗𝑇𝑛−𝐹𝑝∗𝐹𝑛

√((𝑇𝑝+𝐹𝑝)(𝑇𝑝+𝐹𝑛)(𝑇𝑛+𝐹𝑝)(𝑇𝑛+𝐹𝑛))
  (9) 

 

5. Experimental results & discussion  

This proposed work utilizes a new ML-based 

hybrid model to distinguish between normal and 

malignant attack classes. Using RFE with RF for 

optimal feature selection, this research focuses on 

improving detection accuracy, recall, precision, and 

high FPR. The hybrid model was carefully evaluated 

on benchmark datasets, including CIC-IDS-2017, 

NSL-KDD, UNSW-NB15, and CSE-CIC-IDS-2018, 

chosen for their widespread use in Cybersecurity and 

the representation of diverse attack scenarios. Our 

novel approach employs ML classifiers, including RF, 

DT, ET, and KNN, in a unique ensemble-based 

hybrid model. 

In Table 2,  presented the individual performance 

of models RF, DT, ET, and KNN alongside our 

hybrid model using the CIC-IDS-2017 dataset, and 

the accuracies achieved are 99.92%, 99.92%, 99.89%, 

99.90%, and 99.34%, respectively, demonstrating the 

robustness and reliability of our hybrid model.  

Table 3 shows the results which utilizes the NSL-

KDD dataset; for the hybrid model, RF, DT, ET, and 

KNN, the accuracies achieved are 99.89%, 99.91%, 

99.82%, 99.83%, and 99.56%. Table 4 also provides 

insights utilizing the UNSW-NB15 dataset results, 

the accuracies achieved for the hybrid model, RF, DT, 

ET, and KNN being 99.50%, 99.32%, 99.38%, 

99.31%, and 98.77%. Additionally, Table 5 presents 

the accuracies and several other evaluation indicators 

achieved which utilizes the CIC-IDS2018 dataset. 

Table 6 provides a comprehensive summary of 

the results, indicating that the suggested hybrid 

model delivers superior performance across multiple 

key measures such as accuracy, precision, recall, F1-

score, FNR, and MCC.  
 

 

Table 2. Evaluation results for CIC-IDS-2017 

Models Accuracy (in %) PR (in %) RC (in %) F1-Score (in %) FPR (in %) 

RF 99.92 99.97 99.93 99.95 0.001 

DT 99.89 99.94 99.92 99.93 0.002 

ET 99.90 99.94 99.93 99.94 0.002 

KNN 99.34 99.72 99.46 99.59 0.011 

Hybrid Model 99.92 99.97 99.93 99.95 0.001 
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Table 3. Evaluation results for NSL-KDD 

Models Accuracy (in %) PR (in %) RC (in %) F1-Score (in %) FPR (in %) 

RF 99.91 99.91 99.93 99.92 0.001 

DT 99.82 99.88 99.79 99.84 0.001 

ET 99.83 99.85 99.84 99.84 0.001 

KNN 99.56 99.70 99.48 99.59 0.003 

Hybrid Model 99.89 99.91 99.88 99.90 0.001 

 
Table 4. Evaluation results for UNSW-NB15 

Models Accuracy (in %) PR (in %) RC (in %) F1-Score (in %) FPR (in %) 

RF 99.32 99.23 98.63 98.93 0.003 

DT 99.38 98.87 99.22 99.04 0.005 

ET 99.31 98.95 98.94 98.95 0.004 

KNN 98.77 97.95 98.26 98.11 0.009 

Hybrid Model 99.50 99.27 99.18 99.23 0.003 

 
Table 5. Evaluation results for CSE-CIC-IDS-2018 

Models Accuracy (in %) PR (in %) RC (in %) F1-Score (in %) FPR (in %) 

RF 99.20 99.94 98.47 99.20 0.0006 

DT 99.18 99.95 98.40 99.17 0.0004 

ET 99.05 99.61 98.50 99.05 0.003 

KNN 99.10 99.73 98.47 99.10 0.002 

Hybrid Model 99.13 99.73 98.53 99.13 0.002 

 

 
Figure. 7 Confusion matrix of Hybrid model using CIC-

IDS-2017 

 
Figure. 8 Hybrid model confusion matrix based on NSL-

KDD 

 
Figure. 9 Hybrid model confusion matrix based on 

UNSW-NB15 

 

 
Figure. 10 Confusion matrix of Hybrid model using CSE-

CIC-IDS2018 



Received:  August 24, 2024.     Revised: October 22, 2024.                                                                                               44 

International Journal of Intelligent Engineering and Systems, Vol.18, No.1, 2025           DOI: 10.22266/ijies2025.0229.04 

 

The proposed hybrid model achieved prediction 

accuracies of 99.92%, 99.89%, 99.50%, and 99.13%, 

high average precision values of 99.97%, 99.91%, 

99.27%, and 99.73%, and recall values of 99.93%, 

99.88%, 99.18%, and 98.53% using CIC-IDS-2017, 

NSL-KDD, UNSW-NB15, and CSE-CIC-IDS2018 

dataset and compared existing techniques such as 

Hybrid-IDS-Model (RF+XGBoost) [7], Chi-rev [8], 

XgBoost [9], Chi-IPSO-RF [10], MI with 

thresholding feature selection with XGBoost 

classification algorithm [11], XgBoost  [12], 

ANOVA F-value CV with Weight based voting 

classifier [13], and PACENIDS [18]. Furthermore, 

the proposed model validated low FPR of 0.001%, 

0.001%, 0.003%, and 0.002%, high F1-scores of 

99.95%, 99.90%, 99.23%, and 99.13%, low FNRs of 

0.0007%, 0.001%, 0.008%, and 0.014% compared 

existing techniques Hybrid-IDS-Model 

(RF+XGBoost) [7], XgBoost [9], and PACENIDS 

[18]. A Chi-IPSO-RF model was also established by 

[10] for intrusion detection, with MCC values of 

63.38% on UNSW-NB15 and 99.49% on CIC-IDS-

2017 datasets. In comparison, the proposed hybrid 

model shows good MCC values of 99.73% on CIC-

IDS-2017, 99.77% on CIC-IDS-2018, 98.86% on 

UNSW-NB-15, and 98.27% on the CIC-IDS-2018 

dataset. Fig. 7-10 visually represents the confusion 

matrices, illustrating our model's effectiveness with 

different datasets. 

 

Table 6. Comparison results of proposed Hybrid model 

Author

s 

Techniques 

applied 

Dataset 

used 

Accurac

y 

PR TPR/RC/ 

Sensitivity/D

R 

FPR F1-

Score 

FNR MCC 

[7] Hybrid-IDS-

Model 

(RF+XGBoost

) 

CSE-CIC-

IDS2018 

  

98.92% 

 

99.47% 98.35% 0.52% 98.90% 1.65% - 

CIC-

IDS2017 

99.91% 99.88% 99.95% 0.12% 99.91% 0.05% - 

NSL-KDD 99.24% 99.28% 99.09% 0.62% 99.18% 0.91% - 

UNSW-

NB15 

97.11% 95.89% 97.44% 5.29% 97.44% 0.96% - 

[8] Chi-rev, RF CIC-IDS-

2017 

99.90% 99.80% 99.89% - 99.85% - - 

[9] XgBoost CIC-IDS-

2017 

99.86% 99.69% - 0.2% 99.72% 0.17% - 

 

[10] 

Chi-IPSO-RF UNSW-

NB15 

94.58% 95.90% 98.55%  - 98.59% - 63.38%  

CIC-IDS-

2017 

99.70% 99.64 99.32% - 99.55% - 99.49% 

[11] MI with 

thresholding 

feature 

selection and 

XGBoost 

classification 

algorithm 

CICIDS201

7  

99.89% 99.75% 99.60% - 99.68% - - 

NSL-KDD 80.51% 68.06% 96.73% - 79.90% - - 

UNSW-NB-

15 

87.63% 96.35% 83.66% - 89.56% - - 

[12] XgBoost CIC-IDS-

2017 

98% 98% 98% - 98% - - 

[13] ANOVA F-

value CV and 

Weight based 

voting 

classifier 

UNSW-

NB15 

95.51% 98.66% 96.09% - 96.73% - - 

[18] PACENIDS NSL-KDD 96.59% 94.69% 99.29% 6.62% 96.93% - - 

Proposed Work 

Hybrid Model 

(RF+DT+ET+KNN), 

Feature Selection 

RFE with RF 

 

CIC-IDS-

2017 

99.92% 99.97

% 

99.93% 0.001

% 

99.95

% 

0.0007

% 

99.73

% 

NSL-KDD 99.89% 99.91

% 

99.88% 0.001

% 

99.90

% 

0.001% 99.77

% 

UNSW-

NB15 

99.50% 99.27

% 

99.18% 0.003

% 

99.23

% 

0.008% 98.86

% 

CIC-IDS-

2018 

99.13% 99.73

% 

98.53% 0.002

% 

99.13

% 

0.014% 98.27

% 
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5.1 Comparative analysis 

This section mainly deals with the results 

obtained utilizing several ML-based classifiers, and 

other existing studies are compared. The simulation 

results retrieved by the proposed approach are 

portrayed in Table 6. It is clearly stated that the 

proposed hybrid model achieves better accuracy than 

all other existing studies. Improvements in results 

were also noticed in terms of several evaluation 

metrics. Furthermore, the proposed study computed 

the FPR and FNR, while some existing studies have 

not considered or obtained high FPR and FNR. FPR 

and FNR are two important evaluation indicators in 

any AI-based model. High FPR and FNR leads to 

misclassification results in any detection model. 

Therefore, our primary concern in this research work 

is to mitigate both FPR and FNR. The FPR and FNR 

are very low when compared to the existing studies 

[7, 9, 18]. We also utilized an optimal subset of 

features using the REF-RF-based method which 

enhances the mechanism of the proposed IDS model. 

6. Conclusion  

This study proposes a hybrid model using RF, DT, 

ET, and K-NN algorithms to classify attacks. Many 

IDS using ML based techniques and faces issues such 

as insufficient features, low detection accuracy, high 

FNR, and high FPR. Therefore, in this study features 

were obtained using the RFE-RF technique for 

optimal feature selection. The model was rigorously 

tested on four diverse datasets: CIC-IDS-2017, NSL-

KDD, UNSW-NB15, and CSE-CIC-IDS-2017. The 

Hybrid IDS model delivered impressive results 

across four datasets with prediction accuracies of 

99.92%, 99.89%, 99.50%, and 99.13%. It achieved 

high average precision values of 99.97%, 99.91%, 

99.27%, and 99.73%, and recall or DR values of 

99.93%, 99.88%, 99.18%, and 98.53%. The model 

also attested low FPR of 0.001%, 0.001%, 0.003%, 

and 0.002%, and high F1-scores of 99.95%, 99.90%, 

99.23%, and 99.13%. Additionally, it showed low 

FNR of 0.0007%, 0.001%, 0.008%, and 0.014%, with 

perfect MCC of 99.73%, 99.77%, 98.86%, and 

98.27%. These metrics underscore the model's 

effectiveness and reliability in detecting attacks with 

high accuracy and minimal errors. These results 

highlighted our Hybrid IDS model's superiority over 

existing solutions, demonstrating its effectiveness in 

enhancing the security of edge computing against 

advanced Cyber-attacks in real-time. 
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