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Abstract: Physicians are likely to expend significant labor and time while manually calculating blood smears. 

Automatic computer-based methods for classifying acute lymphoblastic leukemia have trouble correctly lighting 

stained white blood cell microscopy images and accurately separating cells that touch or overlap. Additionally, 

incorporating machine learning techniques into medical services is very hard because doctors can deal with rough 

guesses as long as the results aren't too bad, but they can't use these calculations for actual medical care. Enabling a 

deep network to have knowledge of the accuracy of its own predictions is a fascinating and crucial issue. Most instance 

segmentation frameworks weigh the mask quality during the instance segmentation process based on classification 

confidence. Here, we consider the context of this problem and present Mask Cell of multi class deep network (MCNet) 

as a new network that has the module to learn about the quality of the predicted instance masks. Our proposal entails 

using faster R-CNN, such as segmentation on white blood cell microscope images, to accurately categorize acute 

lymphoblastic leukemia cases. This approach aims to enhance the efficiency and effectiveness of the diagnostic process. 

The suggested network block combines the instance feature with the matching anticipated mask to estimate the 

proposed mask IoU. In this work, we used the transfer learning approach to apply Mask R-CNN to segment white 

blood cells on a microscope image. To address the issue of poor lighting in stained white blood cell microscopy pictures, 

we included a contrast enhancement procedure in the image dataset. The comparative experiment applies YOLO v9 

for classification and Mask R-CNN. The MCNet approach adjusts the discrepancy between the quality of the mask 

and its proposed detection, enhancing the effectiveness of instance segmentation. The final results for two datasets 

trained using PBC and BCCD are as follows: the accuracy of mAP@IoU0.50 for the PBC dataset is 95.70, while the 

accuracy for the BCCD dataset is 96.76, with recall and precision both coming in at 97.23 and 96.72 respectively. 

Keywords: YOLO 9, R-CNN, Blood smear detection. 

 

 

1. Introduction  

Blood supplies nutrition and oxygen to the live 

cells found in many organs and tissues. It removes the 

waste so that detoxification can occur. It controls 

body temperature and delivers hormones to their 

intended locations of action to battle infections [1].  

A peripheral blood smear is a standard laboratory test 

that offers the doctor comprehensive information on 

a patient's overall condition. It provides a statistical 

and qualitative assessment of blood components, 

including primary cells and platelets. 

The colored liquid of blood which is called 

Plasma forms 55% of the whole blood while the cells 

make up 45% [2]. Human blood comprises three 

types of blood cells: white blood cells (leukocytes), 

red blood cells (erythrocytes), and platelets 

(thrombocytes) [3]. Erythrocytes are the most 

abundant blood cells and contain the hemoglobin 

protein, which gives the cell its red hue and facilitates 

oxygen transport from the lungs to the body's tissues. 

Thrombocytes, also referred to as platelets, are 

smaller in size compared to erythrocytes and do not 

possess a nucleus. They play a crucial role in the 

formation of blood clots and the prevention of 

bleeding [4].  
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 White blood cells (WBC) are non-granular, 

without color, and consist of a varying number of 

nuclei surrounded by a small quantity of cytoplasm 

[4]. The lymphatic system contains a large number of 

leukocytes. WBCs play a crucial role in the immune 

system by protecting the body from infectious 

illnesses and external threats in the bloodstream. 

Lymphocytes, eosinophils, neutrophils, basophils, 

and monocytes are the five distinct kinds of nucleated 

cells comprising leukocyte [5]. Pathologists will be 

able to tell the difference between several blood 

diseases and illnesses, including anemia, leukemia, 

and malaria, if they can correctly identify, count, and 

group WBC and see how the percentages change 

between subtypes. Enhanced information will 

facilitate therapies, mitigate detrimental medication 

interactions, and oversee the patient's health [6]. 

Certain diseases can cause changes in the 

appearance or number of blood cells, so blood cell 

detection is crucial for the diagnosis and treatment of 

blood and diseases [2]. Blood cell detection has 

become an important auxiliary tool in the medical 

field [7]. Pathologists manually identify blood cells, 

a process that is sometimes susceptible to human 

error and produces incorrect findings. Pathologists 

may use this method with variations both within and 

between various courses, resulting in a laborious and 

time-consuming process [8]. In the conventional 

approach for identifying WBC, RBC, and platelets, 

distinguishing them from other components of blood 

is challenging because of their comparable textures 

and irregular borders. Furthermore, WBCs exhibit a 

diverse array of color, shape, form, and intensity [9]. 

Varied staining and illumination circumstances 

further complicate the identification of white blood 

cells. Furthermore, the inclusion of multi-class 

categorization enhances the complexity of the entire 

system and costs a significant amount of processing 

time. Therefore, it is imperative to utilize computer-

aided systems for these purposes. 

The rapid progress in artificial intelligence (AI), 

especially in the field of deep learning (DL), presents 

a chance to completely transform this crucial area of 

healthcare [10, 11]. Deep learning, an area of 

artificial intelligence, utilizes artificial neural 

networks with numerous layers to effectively 

represent and comprehend intricate patterns. Within 

the realm of medical imaging, deep learning models 

can undergo training to achieve exceptional precision 

in identifying and categorizing various cell kinds, 

illnesses, or irregularities [12]. This skill's potential is 

highly significant in the field of hematology because 

it plays a critical role in accurately detecting and 

classifying blood cells, which is essential for 

diagnosing a variety of illnesses [9]. 

The strong point of this work is that we modify 

the Faster RCNN [13] for generic object 

identification and instance detection to specifically 

identify cells in blood images. The method's main 

advantage is that it improves detection accuracy 

while reducing training time. Faster RCNN was used 

as the base network to generate the feature map which 

will be fed to the Region Proposal Network (RPN) 

[14]. RPN is usually used to segment and detect 

WBCs in medical images, i.e. blood smear images, 

because of their capability to identify regions of 

interest with high speed and precision. Researchers 

have introduced different methods and techniques for 

the detection and classification of leukemia. While 

there are still some limitations in this field, the 

challenges present in current methodologies drive the 

motivation behind this study.  The main contributions 

of this study are as follows: 

1. We have developed a hybrid framework for 

extracting features from WBCs. This approach 

combines moment classification with CNN-based 

feature extraction, using feature fusion. 

2. We modified the faster RCNN framework, which 

is used for generic object identification and 

instance segmentation to specifically identify 

cells in blood images. And used ResNet 50 for 

backbone model for best feature extraction with 

RPN Network  

3. We show that training MCNet on a dataset with 

pixel-level annotations for several tasks not only 

enhances the identification of blood cells on this 

dataset, but also enables labelling of bold 

cell areas on an unlabeled dataset. 

4. Fine tune YOLO v9 for show the comparative 

results with MASK RCNN and Faster RCNN  

The remainder of the paper is organized as 

follows. Section 2 provides an overview of several 

related works. Section 3 describes the proposed 

model for detection Model for blood cells with 

MCNet.  The dataset, experimental results, and 

analysis are presented in Section 4, and the proposed 

study is concluded in Section 5. 

2. Literature review  

Researchers have shown increasing interest in the 

use of DL in recent years [11]. Several application 

areas extensively utilize it to address segmentation, 

classification, and detection issues. In addition, 

hematology and blood smear analysis have been 

prominent areas of research, garnering interest from 

professionals in the medical field and the technology 

industry for many years. Researchers in the IT 

discipline have mostly concentrated on three specific 

areas in relation to the analysis of peripheral blood 
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smears: detecting malaria, diagnosing leukemia, and 

classifying blood cells [15]. 

The authors of this study [16] developed a 

classification method that uses a convolutional neural 

network (CCN) to effectively discriminate between 

eight unique cell types present in the circulation. The 

authors proposed a method of refining the training 

process for an all-inclusive classifier by leveraging a 

dataset of more than 17,000 cell images collected 

from clinical practice. The classifier uses a 

combination of Vgg-16 and Inceptionv3 models. the 

overall classification accuracy is at 96.2%. However, 

this method has longer trained times due to its depth 

and complexity, and classification accuracy is still 

low.  

This study [17] presented a technique for 

automatically classifying blood cells. This method 

used advanced deep learning models, such as vision 

transformers with a 16-bit patch size (ViTb16) and 

pre-trained convolutional neural networks. It also 

used a custom multi-layer modified convolutional 

neural network model. Researchers have achieved 

impressive outcomes on the 11-class PBC dataset by 

employing transfer learning, fine-tuning, and 

ensemble learning techniques. The most remarkable 

achievement is the exceptionally optimized 

EfficientNetV2 B0 model, which demonstrated 

exceptional performance on the original PBC dataset. 

The model obtained a macro-average precision, recall, 

and F1-score of 91%, 90%, and 90%, respectively, as 

well as an impressive average accuracy of 93%.  

In this article [18], The authors compared Google 

ViT and DL ImageNet CNNs, which could classify 

four kinds of white blood cells (WBCs) from two sets 

of peripheral blood smears. This PBC dataset 

comprises 17,092 superb images of eight distinct 

categories of blood cells. The use of the three 

balanced PBC datasets provides conclusive evidence 

of Google ViT's advantages and superior 

performance compared to ImageNet CNNs. 

Contrarily, the BCCD dataset consists of 349 low-

quality images of four different types of white blood 

cells (WBCs). Three well-balanced datasets (DS-4, 

DS-5, and DS-6) accompany it, generated using data 

augmentation techniques. This research showcased 

the robustness, reliability, and resistance of Google 

ViT while dealing with noisy data, in contrast to 

ImageNet CNNs. This approach needs a substantial 

quantity of labeled training data to achieve optimal 

performance. 

This study [19] demonstrated and applied the 

blood cell detection technique using the YOLOv5 

(YOLOv5-ALT) model. The goal of this research 

was to improve detection precision using YOLO 

methods. This study introduces an improved 

technique that addresses the limitations of the 

previous approach. The author changed the bounding 

box regression loss function, added an attention 

mechanism to the feature channel, and tweaked the 

SPP module in the YOLOv5 backbone feature 

extraction network to make this happen. Additionally, 

the author assesses the model's efficacy by comparing 

each evaluation index using the deep learning object 

detection technique. This approach is more aligned 

with the efficacy of the blood cell detection job. 

However, YOLOv9 has a propensity for generating 

an increased number of false negatives. It adopts a 

more cautious detection methodology, which 

mitigates false positives but heightens the likelihood 

of overlooking genuine objects.  

In this study [20], the researchers designed an 

object detector to identify various blood components, 

including white blood cells, red blood cells, and 

platelets. The detector, called FED (Fast and Efficient 

YOLOv3), is a one-stage detector similar to YOLOv3. 

It performs detection on three distinct scales. To 

improve efficiency and adaptability, the proposed 

object detector uses the Efficient Net Convolutional 

Neural Network at its core. Furthermore, the authors 

used dilated convolution to improve the backbone's 

receptive field. In addition, they employed the Depth 

wise Separable Convolution technique to reduce the 

detector's parameters. The training dataset, the 

BCCD dataset, yielded average accuracy values of 

90.25% for platelets, 80.41% for red blood cells, and 

98.92% for white blood cells. Nonetheless, YOLOv3 

has difficulties recognizing tiny objects in images 

because of the configuration of its bounding box 

predictions. 

The author presents a one-stage network that 

utilizes an enhanced version of YOLOv5 to 

accurately detect blood cells [21]. The first step is to 

integrate the transformer and bidirectional feature 

pyramid network (BiFPN) into both the backbone 

network and neck network. The purpose of this step 

is to improve and refine the adaptation. The outputs 

of the neck network also include the Convolutional 

Block Attention Module (CBAM), which improves 

important features in both space and across channels. 

Furthermore, introducing an Efficient Intersection 

over Union (EIoU) aims to improve the model's 

accuracy and performance in terms of localization. 

The improvements have been integrated into the 

YOLOv5s model, resulting in the creation of 

YOLOv5s-TRBC. The studies conducted on the 

blood cell dataset (BCCD) demonstrate that the 

proposed technique achieved a mean average 

accuracy (mAP) of 93.5% in detecting the three types 

of blood cells. 
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In this paper [22], the authors presented a novel 

neural network architecture that combines the 

features of convolutional neural networks, notably 

Xception, with recursive neural networks, 

specifically LSTM. As a result, the author used the 

combined Xception-LSTM framework to categorize 

blood cell pictures. This approach preserves both the 

chronological and geographical details of the visual 

input and is capable of extracting organized 

information from these components. The 

methodology differs from previous manual feature 

extraction methods in that it does not rely on 

cytoplasmic or nuclear segmentation. Alternatively, 

it has the capability to automatically extract and 

classify the underlying features hidden inside cell 

image patches. The author's proposed approach 

surpassed the previously established approaches in 

terms of classification accuracy when applied to the 

blood cell dataset. The classification accuracy is 

90.79%. However, this framework is more resource-

intensive and has low classification accuracy. 

This study introduced WS-YOLO [23], which is 

light weight enhanced blood detection method. 

DWS-YOLO achieves a favorable trade-off between 

detection accuracy, computational complexity, and 

inference speed. We improve the YOLOv5-Nano's 

network architecture by adding a lightweight C3 

module, a better attention mechanism, an effective 

loss function, and more soft non-maximum 

suppression. Thanks to the improvements, our 

detector shows significant promise in the realm of 

cell detection applications. The author suggested 

model has significantly improved several evaluation 

criteria, including the number of parameters, 

computational complexity, and detection accuracy. 

Experimental findings on various datasets have 

verified this improvement. Our model outperforms 

the most sophisticated object detection algorithms in 

terms of achieving state-of-the-art (SOTA) outcomes 

and demonstrating superior resilience performance 

on the BCCD dataset. Furthermore, it has exceptional 

generalization capabilities when used with the 

Raabin-WBC dataset. The information above clearly 

indicates that our suggested detector is a smaller, 

faster, and more precise blood cell detector. The 

average blood detection accuracy is 93.8. 

Nonetheless, YOLOv5 has difficulties recognizing 

tiny objects in images because of the configuration of 

its bounding box predictions. 

In this paper [24], the authors introduced the 

Enhanced Channel Attention Module (ECAM), a 

method that utilizes an attention mechanism to 

enhance the accuracy of blood cell detection. When 

applied to the BCCD dataset, the method produced 

results comparable to those of other attention 

processes. They created Enhanced-CBAM by 

combining the spatial attention mechanisms in 

CBAM and ECAM. The author then utilized this to 

develop a new network known as the Enhanced 

Channel Attention Network (ENCANet). By 

comparing and testing many different methods, 

ENCANet clearly does a better job than other 

methods for finding blood cells with just 6.5 million 

parameters. Nevertheless, this methodology may lack 

efficacy in more intricate cases, such as images with 

excessively congested blood cells. The network 

achieved an accuracy of 90.3 AP with a parameter 

size of only 6.5 M, even though the classification 

accuracy is still low. 

3. Methodology  

First, we attempted to solve the problem of 

instance detection. Therefore, the application is part 

of the natural evolution of object detection 

technology. To shift from grainy box-level category 

recognition to precise pixel-level classification, we 

choose to use the convolutional neural network 

(CNN) for the purpose of feature extraction and 

classifying the blood cell. In order that, Deep learning 

enables the use of images as input, resulting in 

speedier analysis. Additionally, by considering that 

each pixel in a medical image has valuable 

information, the risk of data loss due to feature 

extraction may be avoided.   

The ResNet50 [25] model designs its input layer 

to handle data from a dataset with dimensions of 

224x224. Afterwards, the convolution layer, which 

follows the input layer, modifies its values. The 

hybrid model modifies layers with numbers 177 and 

above. More specifically, we eliminated the previous 

five levels and replaced them with 10 new tiers. As a 

result, the model's overall layer count increased from 

177 to 182. Furthermore, the new model eliminates 

the input, convolution, activation, pooling, fully 

connected, SoftMax, and classification layers from 

the ResNet50 model, forming its foundation. We 

append two distinct layers, completely 

interconnected, to this foundation. Neural networks 

employ batch normalization as a technique to 

standardize the input values of each layer, leading to 

enhanced stability and accelerated model 

performance. Normalizing the data dimensions from 

other levels is advantageous. This not only improves 

the design's efficiency, but also adjusts the size and 

plots the input data within a specific range. The 

process of normalization may be represented by Eq. 

(1) and (2). 

 



Received:  August 4, 2024.     Revised: November 2, 2024.                                                                                             325 

International Journal of Intelligent Engineering and Systems, Vol.18, No.1, 2025           DOI: 10.22266/ijies2025.0229.23 

 

𝑥𝑛 =
𝑥𝑛−𝐸[𝑥𝑛]

√𝐴𝑣𝑒(𝑥𝑛)+𝜀
                                          (1) 

 
n

x : represent the dimension of the first input 

layer. [ ]
n

E x : represent the function of average 

dimension.  

The standard deviation adds to ( )
n

Ave x + . 

The primary objectives of pooling are to reduce the 

input size of the data for the next layer. The structures 

on this layer do not include any learning process. The 

primary purpose of this layer is to minimize 

computing complexity. Commonly used techniques 

include Average Pooling and Maximum Pooling. 

 

𝑆 = 𝑤 ∗ ℎ ∗ 𝑑 ∗ 2                                         (2) 
 

were, 

𝑤 =
𝑤−𝑓

𝐴+1
, ℎ =

ℎ−𝑓

𝐴+1
  

w :  width of input image, h :  high of input image, 

d : depth of input image,  f : filter size. A :  steps. 

S :  size of generated information. 

The SoftMax layer receives the data from the 

preceding layer and generates the probabilistic value 

as part of the classification process. The SoftMax 

layer gives a value to indicate the class to which it is 

most similar while doing classification. The deep 

learning network utilizes probabilistic calculations to 

determine the value produced in each layer.  Eq. (3) 

and (4) represent the process of SoftMax Layer and 

probability consecutively. 

 

𝑝[𝑦 = 𝑗𝑥𝑛, 𝑤, 𝑏) =
𝑒𝑥𝑝𝑥

𝑛𝑤𝑗

∑ 𝑒𝑥𝑝𝑥
𝑛𝑤𝑗𝑛

𝑗=1

                        (3) 

 

𝜎[𝑦 = 𝑗𝑥𝑛, 𝑤, 𝑏) =
𝑒𝑥

𝑛𝑤𝑗

∑ 𝑒𝑥
𝑛𝑤𝑗𝑛

𝑗=1

                             (4) 

 

were, 

𝑝 : denote probability. 

𝜎 : denote SoftMax layer. 

x: is main classes. 

W, b:  a weight vector.  

This section will analyze the result of the instance 

segment carried out by the Mask R-CNN model and 

the classification results obtained using the majority 

vote procedure. We will evaluate it using both 

quantitative and qualitative measures. 

The first phase involves the use of the RPN. It 

suggests potential boundary boxes for objects 

without considering their specific classifications. The 

second step is referred to as the R-CNN stage. In this 

stage, features are extracted using RoIAlign for each 

proposal. The stage also involves performing 

proposal classification, bounding box regression, and 

mask prediction. In the first level, a Faster R-CNN 

enables the detection and extraction of individual 

white blood cells. This model is an object 

identification method that enhances Fast R-CNN by 

including an RPN with the Resnet model. In the 

Faster R-CNN framework, the Region Proposal 

Network uses an image to produce a collection of 

rectangular objects. Each item is assigned a score that 

represents its likelihood of being an actual object. 

These suggestions are generated by moving a tiny 

network over the feature map produced by the last 

shared convolutional layer, using a n x n spatial 

window that is mapped to a feature with lower 

dimensions. 

To build a feature map while the procedure is 

being carried out, the whole picture is first processed 

by using several convolutional and maximum 

clustering layers. A region of interest (RoI) clustering 

layer is charged with the responsibility of extracting 

a feature vector of a specified length from the feature 

map for each individual item proposal in the 

subsequent phase. The input of each feature vector is 

then sent into a sequence of completely linked layers, 

which ultimately split out into two output layers that 

are sister to one another.  

As opposed to the other layer, which provides a 

general "background" type, one of these layers 

generates SoftMax probability estimates over N 

object types. One further layer is responsible for the 

generation of four real-valued numbers for each of 

the N object classes that the objects belong to the 

SoftMax layer takes all input vector from (n1 ……., 

nk) then apply normalize into probability for n classes.  

Fig.1 illustrates the connection between the final 

convolution feature map of the Convolution Network 

and a sliding window (SW), as indicated by the 

yellow arrows in the diagram. The Region Proposal 

Network (RPN) has two output layers that yield the 

categorization scores and bounding boxes (Bbox) for 

the suggested regions. The red arrows demonstrate 

the salient characteristic of the Fast R-CNN Network. 

We link the last convolutional feature map to a 

Region of Interest (RoI) Pooling Layer. The term 

"region of interest" (RoI) denotes the designated area 

under consideration.  

However, a residual network ResNet50 and a 

region proposal network RPN serve as the foundation 

for this architecture.  

The ResNet-RPN can produce multi-scale feature 

maps since it only requires a single-scale input image 

to be processed.  
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Figure. 1 The suggested cancer cell detector utilizes the MCNet architecture 

 

The RPN [26] is a method that generates potential 

object-like regions by systematically moving a 

predetermined set of filters with a single receptive 

field over the highest-level convolutional feature 

maps. For instance, the region proposal network 

(RPN) plays a key role in generation of full various 

sizes and different aspect ratios. This infrastructure is 

built out from the sliding subnetwork at every point 

from the multi-level feature maps. The anchor 

referred to box of dimension and abrasive is 

presentation, and it is used to distinguish every plan 

proposal. The keys in the features pyramid represent 

different levels which are basically discussed by 

anchor scales. To capture all cells, regardless of their 

size or form, our method adheres to the default 

arrangement of RPN anchors. An application of a 

deep detector for cancer cells is presented in this 

work, which is built on the framework of Faster R-

CNN. This detector is intended to be used in medical 

image processing. And then, taking into 

consideration the data shown above. A network that 

traverses the RoIAlign layer to extract a vector of 

features for each item proposition are the bounding 

box recognition and mask prediction network. The 

features patch of each proposal is taken from the 

features pyramid at a certain level, with the level 

being chosen based on the size of the proposal. 

Following this, the characteristics of the proposal 

are input into two subnetworks. These subnetworks 

are the mask prediction network and the object 

classification and bounding box regression network. 

When compared to a ground truth box, an item 

proposal with an Intersection over Union (IoU) value 

equal to or greater than 0.5 receives a foreground 

label. We do this to assist in training the bounding 

box recognition and mask prediction networks. 

Meanwhile, these prominent concepts are 

accountable for sampling 33 percent of the total 

number of picture areas of interest. 

3.1 Using mcnet for blood cell detection 

The convolutional feature extractor may accept 

an image of any dimension as input and generate 

many hierarchical features as output. The feature 

extractor's design is critical because it directly 

impacts the detector's speed, memory use, and overall 

performance. The number of parameters and the 

types of layers employed determine this. Cell-pixel-

level annotations train the entire MCNet model, 

including both detection and semantic segmentation 

networks, but the detection phase only predicts the 

bounding box locations and classification 

probabilities. Disregarding the mask branch can 

reduce the inference time without affecting the 

detection result. The masking procedure involves 

creating a mask and labeling a bounding box for each 

cell's ground truth. During the detection procedure, 

we exclude any regions without cells and without 

annotated centroids from further consideration. The 

lack of adherence to industry standards in histology 

facilities regarding the staining and acquisition 

procedures accentuates the variation in hue observed 

in histological pictures. Prior to calculating the cell 

mask and bounding box labels, we normalize the 

blood cell images using the stain normalization 

technique described in [3]. This enables us to 

overcome the challenge that we are now encountering. 

3.2 Estimate cells mask and bounding box labels 

In the case of blood cell datasets, we do not have 

individual pixel-level annotations to rely on and only 

those images which are classified with each class are  
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Figure. 2 MCNet framework to generate the cell mask 

and bounding box (bb) for unlabeled dataset 

 

provided to us. However, even though the results of 

detections in most cases will be insufficient to L train 

our model within cell detection and segmentation, we 

need a ground truth for instances and cell masks 

ground truth that is an extremely difficult and time-

consuming task. This vision holds such because the 

imagery present contains more than 17000 images. 

We add automatic annotation to MCNet model to 

generate masks for all images. 

3.3 Faster RCNN 

Fig. 2 illustrates the object identification 

framework we have developed. The four main 

components of Faster R-CNN are as follows: To 

begin with, let's discuss convolutional layers. The 

Faster R-CNN [5] begins the process by extracting 

the feature maps of the picture using a series of 

fundamental convolutional, ReLU, and pooling 

layers. These maps then find their way to the RPN 

and fully linked layers below. Furthermore, there are 

regional proposal networks. We utilize the RPN 

network to generate regional proposals. The layer 

uses the SoftMax function to categorize whether the 

anchors belong to the foreground or background. 

Afterwards, it uses bounding box regression to 

correct the anchors and provide accurate suggestions. 

Additionally, ROI pooling is a computer vision 

approach employed to extract distinctive 

characteristics from specific areas of interest. This 

layer collects the input feature maps and 

recommendations. Following the synthesis of the 

input, we extract the feature maps and forward them 

to the next fully connected layer for object 

categorization. Furthermore, categorization, we use 

the bounding box regression technique to precisely 

determine the final position of the detection frame. 

Furthermore, the proposal feature maps are used to 

determine the proposal's category. These two 

operations are performed together. Faster R-CNN is 

a competitive option in the field of region-based  

 
Figure. 3 Representation of Faster R-CNN segmentation 

for our proposed model 

 

detection networks, as seen in Fig. 3. To estimate 

blood cell masks and bounding box labels for the 

unlabeled dataset, MCNet was used. 

To construct the cell mask and bounding box 

labels for the unlabeled dataset, every segmented 

blob that was predicted by MCNet is used. Following 

the completion of many convolutions, it creates a 

single feature map, then generates proposals by 

means of the RPN network, and finally, it executes 

object detection on the last layer of the feature map 

once the ROI pooling process has been completed.   

During training phase, we determine the 

parameters as W of the proposal network label, arned 

from a set of training samples  
1

[ , ]
N

s n n n
T X Y

=
=  ,  

where Xn    is a training image patch, and Yi = (yi, bi) 

the combination of its class label, yi ∈ {0, 1, 2, · · · , 

K} and bounding box coordinates bi = (bxi , by i , bwi , 

bhi ). This is achieved with a multitask loss function. 

Eq. (5), (6) and (7) represent the loss functions. 

 

𝑙𝑤 = ∑ ∑ 𝛼𝑛𝑙
𝑛[𝑋𝑖, 𝑌𝑖,𝑖∈𝑠𝑛

𝑁
𝑁=1 𝑤]                       (5) 

 

Lw: total loss function  

αn:  weight coefficient that determines how much 

each task or dataset contributes to the overall loss. 

The variable N represents the number of detection 

branches. The weight of the loss is represented by the 

variable m. S is a set consisting of S1, S2…, SM, 

where Sm holds the samples of scale m. Understand 

that scale only influences the selection of a specific 

subset of training samples, denoted as Sm, and this 

subset is the only one that impacts the loss of 

detection layer m. The loss function of each detection 

layer integrates these two objectives.  

 

𝑙(𝑋, 𝑌|𝑤) = 

−𝑙𝑜𝑔 𝑝𝑦 (𝑥) + 𝜆(𝑦 ≥ 1) 𝑙𝑜𝑔( 𝑅𝑏 , 𝑅𝑏)
−

              (6) 

 

Where, p(X) = (p0(X), · · ·, pK(X)) is the 

probability distribution for classes, λ: denote a trade-

off coefficient, −log py(X) denote the cross-entropy 
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loss and 
b

R
−

 denote the regressed bounding box. The 

bounding box loss is only used for positive samples 

and the optimal parameters W. 

3.4 Object detection network 

While the proposal network has the potential to 

function as a detector, its effectiveness is limited 

because of its inadequate coverage of objects with its 

sliding windows. An additional detecting network 

has been included. The first step involves using a ROI 

pooling layer to extract features with a predetermined 

dimension. The characteristics are then input into a 

fully linked layer and output layers.  

 

ℓ(𝑤,𝑤𝐷) = ∑ ∑ 𝛼𝑛 ∗ 𝑙
𝑛(𝑋, 𝑌|𝑤)𝑖∈𝑠𝑛

𝑁
𝑛=1            (7) 

 

l(w, wD): represents the total loss function. 

α n: weight. 

The variables "n" and "n+1" denote the loss and 

training samples for the detection subnetwork. The 

classification and a smoothed loss for bounding box 

regression. The detection sub-network utilizes a 

subset of the proposal sub-network parameters W and 

introduces supplementary parameters WD. approach 

utilizes a cross-entropy loss for the parameters to be 

adjusted in unison. The recommended solution 

applies ROI pooling to the "conv4-3" layer instead of 

the "conv5-3" layer. Our research bases the decision 

on the exceptional performance of the "conv4-3" 

feature maps. One possible theory is that the feature 

map "conv4-3" exhibits a higher level of complexity 

and is better suited for precise prediction of bounding 

box placement. 

4. Result and discussion  

4.1 The experiment setting 

We assigned the values for momentum and 

weight decay to 0.9 and 0.0001, respectively. At the 

outset, we train the network heads for 50,000 

iterations with a learning rate of 0.001. Afterwards, 

we proceed to train the layers beginning from stage 4 

of ResNet-50 using the identical learning rate for a 

total of 80,000 iterations. Finally, we adjust all of the 

network layers using a learning rate of 0.0001 for a 

total of 40,000 iterations. 

4.2 Dataset 

The classification of blood cells was performed 

using the peripheral blood cells dataset (PBC) [27], 

which consists of 17,092 RGB image of normal blood 

cells. These images were obtained using the 

CellaVision DM96 analyzer. The image has a 

dimension of 360x363 each of them which has been 

labelled by experienced pathologists of Clinical 

Hospital Barcelona. Privacy of individuals was 

maintained by removing their connections with the 

data as well as the source, thus creating a set without 

personal records yet with the same level of accuracy 

for scientific purposes. What we would like to stress 

is the fact that the subjects were chosen from those 

individuals who had not been previously diagnosed 

with any infections, blood disorders, cancer and those 

who were on any medication at the time of cheque. 

We divided the dataset, keeping 80% of the samples 

in each class for training, 20% for testing. We 

ensured that the ratio of samples per class in all sets 

remained the same as in the original dataset.

 

 

 
Figure. 4 displays representative examples from 8 distinct classes of the PBC dataset: (a) These classes include 

Basophils, (b) Eosinophils, (c) Erythroblasts, (d) Lymphocytes, (e) Monocytes, (f - h) IGs, (i) Neutrophils, and (j) 

Platelets. IG1, IG2, and IG3 correspond to the metamyelocytes, myelocytes, and promyelocytes, respectively. 
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Figure. 5 Metrics of YOLOv9 as baseline performance of detection 

 

The PBC dataset has a total of eight distinct cell 

types, including neutrophils, eosinophils, basophils, 

lymphocytes, monocytes, immature granulocytes 

(IGs), erythroblasts, and platelets. Fig. 4 presents 

exemplary instances from eight different classes of 

the PBC dataset.  In addition, we used a second type 

of dataset named BCCD. It is publicly available 

dataset of annotated blood cell images called Blood 

Cell Count Dataset (BCCD)[28]. 

4.3 Fine tune yolov9 on blood cell 

YOLOv9 is the most recent version in the YOLO 

(You Only Look Once) family of real-time systems 

used for detecting objects.  

This version of the software improves upon its 

predecessors by integrating state-of-the-art deep 

learning algorithms and architectural design, 

resulting in exceptional performance in tasks related 

to object identification. 

YOLOv9 enhances the previous version, 

YOLOv7, by using the Generalized ELAN (GELAN) 

architecture and Programmable Gradient Information 

(PGI) to broaden its functionalities. This firmly 

establishes itself as the foremost real-time object 

detector of the present age. Because of the 

considerable impact that the YOLO model has had on 

the area of computer vision, researchers have been 

motivated to continually enhance and broaden the 

capabilities of the model. After increasing both the 

size of the image and the pace at which it is learned, 

it has been discovered that there is an improvement.  

In comparison to the results of the other studies, this 

one was able to produce a mAP50 value of 0.953, 

which is much higher. The hyper-parameter setting is 

tune for lr = 0.001, lrf = 0.01, momentum = 0,937, 

weight decay = 0.0005, warmup_epochs=3.0, 

warmup_momentum = 0.8, warmup_bias_lr =0.1, 

box=7.5 optimizer: SGD (lr=0.01), 0.785 mAP50. 

Fig. 5 illustrates the training and validation results 

metrics of YOLO v9.  On the other hand, Loss of 

training and validity show in the same figure which 

is decreasing gradually to improve the performance.  

Fig. 6, and 7 show the confusion matrix. A matrix 

is a tabular representation that provides a concise 

summary of a classification model's performance by 

comparing the predicted labels with the actual labels. 

The output shows the count of true positives (TP), 

true negatives (TN), false positives (FP), and false 

negatives (FN) resulting from the model's predictions. 

A precision-recall curve illustrates the relationship 

between precision and recall, showing that precision 

often decreases as recall increases. Alternatively, one 

can compare data for a specific level of one measure 

with another (e.g., precision at a recall level of 0.75), 

or combine both measures into a single measure. The 

effectiveness of our proposed model in terms of 

precision and recall is shown in Fig. 8 illustrate the 

precision recall cure of MaskRNN model. 
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Figure. 6 confusion matrix of Mack RCNN 

 

 
Figure. 7 confusion matrix for MCNet model 

 

 

The PR curve analysis in Fig.8 indicates that the 

model has strong performance for several classes 

(e.g., eosinophil and erythroblast), however 

encounters accuracy challenges for others, 

particularly when recall rises. Mitigating class 

imbalance and enhancing the model may result in 

improved performance across all categories. 

Fig. 9 shows a Precision-Recall Curve for a multi-

class classification of our proposed model MCNet, 

illustrating many classes represented by distinct 

colored lines. Each line illustrates the trade-off 

between accuracy and recall for a particular class. 

Figure. 8 Precision – recall Curve of Mask RCNN 

 

 
Figure .9 Precision – recall Curve of MCNet 

 

 

Fig. 10, 11, and 12 the detection results of using 

three models (YOLOv9, MASK RCNN, and MCNet). 

They show that MCNet is more accurate than the 

others. To show the effectiveness of our model, we 

utilized another dataset named Blood Cell Count 

Dataset (BCCD).  

Fig. 13 and 14 illustrate the average precision- 

recall curve that reveals the effectiveness of our 

proposed model MCNet. Fig. 15 shows the detection 

results when running MCNet on the BCCD dataset. 

Fig 16 illustrates ROC curve of our proposed model 

MCNet for BCCD dataset. The figure shows the 

AUC results related platelets, RBC and WBC. 
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Figure. 10 depicts the results of detection for YOLOv9 

 

 
Figure. 11 the results of detection for Mask RCNN 

 

 
Figure. 12 The detection results of MCNet model 

 
Figure. 13 comparison precision- recall curve of MCNet, 

Mask RCNN, and YOLOv9 using BCCD dataset 

 

 
Figure. 14 comparison precision- recall curve of MCNet, 

Mask RCNN, and YOLOv9 using PBC dataset 

 

 
Figure. 15 the detection result of MCNet using BCCD 

dataset 
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Figure. 16 ROC curve of our proposed model MCNet for 

BCCD dataset. The figure shows the AUC results related 

platelets, RBC and WBC. 

 

 
Table 1. comparison of three implement models on PBC 

dataset 

Method  Recal

l  

Precisio

n  

mAP@IoU0.5

0 

mAP 

YOLOv

9 (ours) 

73.46 77.86 94.35 0.78

5 

MASK 

RCNN 

(ours) 

75.38 80.34 93.22 78.5

3 

Faster 

RCNN 

(ours) 

79.83 81.41 94.46 0.81

5 

MCNet 

(ours) 

81.23 81.72   95.70 0.82 

 

 
Table 2. Comparison of proposed model on BCCD 

dataset 

Method Recall

% 

Precision 

% 

mAp@Io

U0.50% 

mAP 

YOLOv9  88.46 87.86 85.45 88.36 

MASK 

RCNN  

90.38 89.34    88.36 86.53 

Faster 

RCNN  

93.83 92.41 93.98 91.56 

YOLOv5s

-TRBC [5]  

 

88.80 87.40 93.50 * 

YOLOv5 

[5] 

87.70 87.90 92.20 * 

AYOLOv

5 [29] 

91.50 86.20 89.90 * 

YOLO5-

csw 

[30] 

85.70 84 89 * 

MCNet 

(proposed) 

97.23 96.72   96.76 95.76 

Table 1 describe that MCNet model outperforms 

the other models in all metrics for PBC dataset.  

Table 2 describes that MCNet model outperforms 

the other models in all metrics for BCCD dataset, 

demonstrating the highest recall, precision, 

mAP@IoU 0.50, and mAP. It is probable that the 

model is more sophisticated, with enhanced object 

localization and feature extraction capabilities. In the 

majority of metrics, Faster R-CNN outperforms 

YOLOv9 and Mask R-CNN, particularly in terms of 

mAP, and follows MCNet. Mask R-CNN and 

YOLOv9 exhibit comparable performance; however, 

Mask R-CNN exhibits a minor advantage in overall 

mAP@IoU 0.50, as YOLOv9 has inferior precision 

and recall. 

5. Conclusion  

In this context, we introduce the Mask Cell of the 

multi-class deep network (MCNet) as an innovative 

architecture designed to enhance the learning quality 

of predicted instance masks. Our concept entails 

using a faster R-CNN to segment white blood cell 

microscopic images, enabling precise classification 

of cases of acute lymphoblastic leukemia. This 

method seeks to improve the efficiency and efficacy 

of the diagnostic procedure. The proposed network 

block evaluates the proposed mask, Intersection over 

Union (IoU), by integrating the instance feature with 

the corresponding expected mask. This study 

employed a transfer learning methodology to 

implement Mask R-CNN for the segmentation of 

white blood cells in microscopic images. To rectify 

the problem of inadequate illumination in stained 

white blood cell microscopy images, we incorporated 

a contrast enhancement process into the image 

dataset. The comparison experiment utilizes YOLO 

version 9 for classification and Mask R-CNN. The 

MCNet methodology calibrates the disparity between 

mask quality and suggested detection; hence, it 

augments the efficacy of instance segmentation. The 

conclusive outcomes for the two datasets trained 

using PBC and BCCD are as follows: The 

mAP@IoU0.50 accuracy for the PBC dataset is 95.70, 

but the accuracy for the BCCD dataset is 96.76, with 

recall and precision recorded at 97.23 and 96.72, 

respectively. In our future work, we will further 

investigate other deep learning algorithms to 

participate in the development of healthcare models. 
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