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Abstract: Digital Image Forgery (DIF) detection involves identifying instances where a portion of image is copied 

and placed in different areas within same image to create a seemingly authentic but altered version. However, the 

detection of small duplicated regions is challenging, especially when noise is present in the image. This issue becomes 

more significant when the model is trained on noisy data as it negatively affects its accuracy. This research proposes 

an Elite Opposition-based Learning with Black Widow Spider Optimization (EBWSO) for feature selection and Cyclic 

Symmetry Convolutional Neural Network (CSCNN) for detection to enhance accuracy in image forgery detection. 

Pre-processing techniques such as Single Image Super-Resolution (SISR) and Histogram Equalization (HE) are used 

for image enhancement. The VGG16 and ResNet50 are used for feature extraction in digital images, done through 

identifying the key features such as edges and shapes. The EBWSO technique is utilized for feature selection by 

updating the relevant features and balancing exploration and exploitation. Detection is carried out using the CSCNN 

technique, which is designed to be rotation-invariant and aims to enhance detection accuracy. The EBWSO-CSCNN 

model accurately classifies image forgery when compared to the existing techniques such as Stacked Sparse Denoising 

Autoencoder (SSDAE) and Simple Linear Iterative Cluster (SLIC) algorithm. The proposed method achieves a better 

accuracy of 99.15% on MICC-F220, 98.10% on MICC-F600, 99.25% on MICC-F2000, and 98.95% on the CASIA 

2.0 dataset. 

Keywords: Black widow spider optimization, Cyclic symmetry convolutional neural network, Digital image forgery, 

Elite opposition-based learning, Simple linear iterative cluster. 

 

 

1. Introduction 

The widespread availability of digital image 

editing tools has raised serious concerns about image 

forgery and manipulation, impacting fields such as 

forensic investigation, journalism, and the 

preservation of digital archives [1].  Image forgery 

can be easily achieved using tools such as image 

editing software, PhotoPlus, etc. In the era of 

digitalization, images have become one of the most 

significant communication tools used in media and 

everyday life, making image forgery a prevalent issue 

[2]. The major approaches for detecting image 

forgery are divided into active and passive methods. 

The active approach involves inserting watermarks or 

digital signatures onto images during their creation, 

while the passive approach focuses on identifying 

changes that have altered correct information to 

incorrect information, or obscured important image 

details [3, 4]. However, continuous advancements in 

technology have led to the development of image 

tampering techniques that overcome traditional 

methods [5]. There are several post-processing 

operations such as rotation, resizing, and blending 

which can be used to modify images [6]. The most 

common models of image manipulation using deep 

learning techniques are copy-move and image 

splicing. These techniques involve replacing one or 

more fragments of an image with fragments from the 

same or various other images [7, 8]. 
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A traditional detection method extracts particular 

image attributes including the image-compression 

characteristics, multiple objects, edge inconsistencies, 

and photo-response with no uniformity noise [9]. The 

explosion of digital images has led to the 

development of numerous image editing tools. In the 

digital era, several image processing techniques are 

used to improve image quality, aiding the pre-

processing stage by focusing on image quality 

improvement [10]. Consequently, image forensics 

linked with digital image identification has become 

significant in network-based communities. The next 

phase is the feature extraction process which detects 

features in digital images such as edges, shapes, and 

motion. This improved identification allows for 

better data processing, facilitating various tasks 

related to image analysis [11, 12]. Counterfeiters also 

try to hide tampering effects by performing 

transformations, followed by parameter adjustments 

and noise addition before pasting the copied region. 

Optimization techniques update the current position 

to a new position by using feature selection to reduce 

dimensionality and enhance the opposition solution 

for efficient learning [13, 14]. Image forgery 

detection is challenging due to noise and poor image 

quality. Digital image forgery is classified into two 

categories: forgery and non-forgery using deep 

learning techniques [15]. However, recognizing very 

small duplicated areas in the image is challenging, 

and handling noise in the image can degrade 

performance if noise patterns in the training data 

affect accuracy. This research proposes an Elite 

Opposition-based Learning with Black Widow 

Spider Optimization (EBWSO) for feature selection 

and detection using a Cyclic Symmetry 

Convolutional Neural Network (CSCNN) to enhance 

accuracy in image forgery detection. 

The main contributions of the research are shown 

below: 

• Feature extraction is performed using pre-trained 

models like VGG16 and ResNet50 which 

effectively detect crucial features in digital 

images such as edges and shapes. 

• The EBWSO technique optimizes feature 

selection by updating current location and 

opposite solution, enhancing model's ability to 

select relevant features and avoid local optima. 

• The proposed EBWSO-CSCNN method 

significantly enhances detection accuracy, 

handles noise, and recognizes rotationally 

invariant features, leading to more robust image 

forgery detection. 

The paper is organized as follows: Section 2 

provides a literature review that summarizes digital 

image forgery detection by using DL, Section 3 

introduces the proposed method utilized by CSCNN, 

while Section 4 discusses the result and comparative 

analysis, and Section 5 discusses the conclusion. 

2. Literature review 

This research conducts studies on digital image 

forgery (DIF), providing insights into various 

techniques along with their advantages and 

limitations. 

Ye [16] presented a DIF detection method that 

involved copying and pasting regions of the original 

image. This method detected the tampered regions 

using deep learning techniques. The Simple Linear 

Iterative Cluster (SLIC) algorithm, without threshold 

was used in the super-pixel segmentation algorithm 

to obtain the tampering local region extraction 

algorithm using MICC-F220 & MICC-F2000 

datasets. However, the performance of SLIC was 

highly dependent on chosen parameters such as the 

number of superpixels, noise in the image and the 

compactness factor. 

Vijayalakshmi [17] introduced a DL-based 

technique using a Convolutional Autoencoder for 

DIF. This method manipulated the original contents 

of image using the MICC-F220 dataset. It reduced the 

dimensionality of data by learning a compressed 

encoding of the input and compressing data into a 

lower-dimensional space while retaining the essential 

information. The challenge with DIF in autoencoders 

was the difficulty in interpretation, making it 

inefficient to learn information and degrading the 

quality of reconstructed data, particularly if the 

autoencoder is not well-tuned, affecting accuracy in 

highly complex data. 

Khalil [18] developed a deep neural network 

(DNN) for DIF using pre-trained models such as 

VGG19, ResNet50, MobileNetV2, Xception, and 

DenseNet on the CASIA 2.0 dataset. These models 

used residual connections to solve the vanishing 

gradient issue, enabling the training of deeper 

networks and efficient image classification due to 

their depth and effective learning capabilities. 

However, the pre-trained models limited the ability 

to learn features that distinguish authentic images 

from the manipulated ones when trained on large 

datasets. 

Hammad [19] presented a conventional copy-

move forgery detection (C-MFD) approach using 

AlexNet for deep learning and logistics techniques to 

extract features from images using the MICC-F600 & 

MICC-F2000 datasets. This approach was suitable 

for identifying and categorizing various objects 

within images and effectively detecting the high-

level features. Nonetheless, AlexNet required 
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significant computational resources for training on 

large datasets, resulting in challenges in accuracy and 

high computational costs for image classification. 

Gupta [20] introduced a DL-based Stacked 

Sparse Denoising Autoencoder (SSDAE) to classify 

image forgery and non-forgery using MICC-F2000, 

MICC-F220, MICC-FF600 & CASIA 2.0 datasets. 

The SSDAE, combined with Grasshopper 

Optimization Algorithm (GOA) and Spotted Hyena 

Optimizer (SHO), performed DIF detection with 

faster convergence rates and avoided local optima 

trapping. Nevertheless, recognizing very small 

duplicated areas in the image was challenging, and 

while denoising autoencoders were designed to 

handle noisy data, their performance was still 

degraded when noise patterns in training data 

affected accuracy. 

Saleh Al Omari [21] presented a Doll Maker 

Optimization Algorithm (DOA) was derived from 

two natural behaviours in the doll making process. 

These was ability to exploration and exploitation 

them during the search process, which was help to 

avoid local optima and ensure more through coverage 

of solution space. However, DOA sensitive to choice 

of parameters such as population size, number of 

iterations and ability to explore diverse regions of the 

search space limited to algorithm.  

Purba Daru Kusuma and Meta Kallista [22] 

developed a Migration-Crossover Algorithm (MCA) 

was single search evaluated to assess the essential of 

each search space. These was efficiently searching 

performed in third step by using of combination 

directed and crossover technique. However, 

unbalanced search space during neighbourhood 

search performed in 3 process it affects the accuracy.  

Tareq Hamadneh [23] implemented an Addax 

Optimization Algorithm (AOA) was achieved 

effective solution for optimization approaches.  

These was high ability in exploration, exploitation 

and establishing a balances between search spaces. 

However, AOA approach struggle to maintain a 

balance between exploration and exploitation 

become excessive. 

From the overall analysis, the existing techniques 

are seen to struggle with accurately detecting small, 

duplicated areas in the image, resulting in the 

performance often being degraded by noise, 

particularly when noise patterns in the training data 

affected the accuracy. Therefore, this research 

proposes EBWSO for feature selection and detection 

using a CSCNN to enhance accuracy in image 

forgery detection. This approach selects relevant and 

reduces high dimensionality, contributing to 

improving the classification accuracy. 

3. Proposed methodology 

In this section, EBWSO and CSCNN are used for 

image forgery detection to enhance accuracy. 

Initially, data is acquired from MICC-F220, MICC-

F600, MICC-F2000, and CASIA 2.0 datasets. Pre-

processing using SISR and HE is performed to 

enhance the image quality. Feature extraction using 

pre-trained models such as VGG-16 and ResNet 50 is 

performed to detect forged images and colourization 

from sources. The feature selection uses the 

optimization technique EBWSO to enhance the 

positions of the current and opposite solutions and to 

reach the global optimum. CSCNN is then used to 

classify and detect forged images and colourization 

from online sources. Fig. 1 illustrates block diagram 

of the proposed method. 

3.1 Dataset 

In this section, proposed EBWSO-CSCNN 

technique is calculated using MICCF-220, MICCF- 

600, MICCF-2000, and CASIA 2.0 benchmark 

datasets for classifying the digital image forgery. 

 

 
Figure. 1 Block diagram of proposed method 
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Table 1. represents the CASIA 2.0 dataset for digital image forgery 

Number of image total Authentic Forged Total Size Format 

7491 5123 12614 320x240x900x600 BMP, JPEG, TIFF 

 

 

3.1.1. MICC-F220 

The MICC-F220 [24] dataset consists of 220 

images, evenly split between 110 tampered images 

and 110 original images. The dimensions of these 

images range between 722x480 to 800x600 pixels, 

with manipulated region comprising 1.2% of total 

image area. 

3.1.2. MICC-F2000 

The MICC-F2000 [25] dataset considers images 

2000, consisting of 700 tampered images and 1300 

original images. These high-resolution images 

measure 2048x1536 pixels, with manipulated regions 

comprising 1.12% of total image area. 

3.1.3. MICC-F600 

The MICC-F600 [26] dataset consists of 600 

images, including 152 images with tampered regions 

and 448 original images. The dimensions of these 

images vary, ranging between 800x532 to 3888x2592 

pixels. Notably, size of manipulated region various 

across images within this dataset. 

3.1.4. CASIA 2.0 

The CASIA 2.0 [27] dataset includes a total of 

12,614 images, with 7,491 original images and 5,123 

forged images, including 1,849 spliced images. These 

images are in JPEG and TIFF formats, with pixel 

dimensions ranging from 320x240 to 900x600. Table 

1 provides a detailed description of the CASIA 2.0 

dataset. 

3.2 Pre-processing 

After collecting data, pre-processing using Single 

Image Super-Resolution (SISR) and Histogram 

Equalization (HE) is employed for image 

enhancement and forgery detection [28]. These 

techniques maximum contrast between original and 

copied parts of an image. The enhancement 

assumption in forgery detection is that parts of the 

image are copied and edited. Motion cause pixel 

shifts, resulting in low-resolution images and missing 

information that high-resolution images provide. 

Image blurring and down-sampling degrade high-

resolution images, but the SISR algorithm causes 

high-resolution images from minimized-resolution 

ones without external data. The goal of this technique 

is to increase image resolution, allowing the detection 

of small forgeries and improving the matching 

process. The pre-processed image is then used for 

feature extraction to detect features such as edges, 

shapes, and motion in digital images. 

3.3 Feature extraction  

After pre-processed data, feature extraction is 

carried out using ResNet-50 and VGG16 to extract 

image forgery. The ResNet-50-layer residual 

network’s increased accuracy comes at the cost of 

higher computational resources. Training and 

inference with this model demand more memory and 

processing power. Due to its depth and complexity, 

ResNet-50 requires longer training time when 

compared to lightweight architectures [29]. In this 

research, it is necessary to consider this trade-off 

when choosing a model. Adapting deeper networks is 

advantageous for deep learning methods, and in this 

case, networks with 20-30 layers are utilized. The 

residual units allow training of a 152-layer model, 

where the extracted feature is 2046 for each image. 

There is a shallower learning curve due to the novel 

residual structure. 

The VGG16 architecture involves taking weights 

and parameters learned from the existing VGG-16 

model and applying DIF detection, wherein features 

include a max-pooling layer preceding a stack of 13 

convolutional (Conv) layers and arrangements of 

Conv 16 model chosen for this study due to its 

sequential architecture. The extracted feature is used 

in 2096 for image forgery. Despite having more 

parameters and longer inference in forger, images are 

fine-tuned by adding layers and adjusting parameters 

based on model. The features extracted are given as 

input to feature selection to select relevant features 

involved in the DIF. 

3.4 Feature selection  

After feature extraction, feature selection using 

EOBL with BWSO referred to as the EBWSO 

method, selects relevant features for DIF detection. 

This process begins with the initial population of 

candidate solutions and generates opposition-based 

learning solutions by considering the opposite of each 

candidate solution. The EOBL enhances the 

exploration of search space, leading to selection of 
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more relevant features, while BWSO maintains 

diversity in population through crossover, mutation, 

and operations. This helps algorithm avoid getting 

stuck in local optima and increases the chances of 

finding the global optimum. This optimization 

technique reduces dimensionality of feature space by 

focusing on relevant features, wherein 78 % of 4096 

and 2048 selected 3194 & 1597 features are taken in 

for forgery detection. The proposed algorithm starts 

with an initial population of spiders, where each 

spider represents a candidate solution. 

3.4.1. Initial population  

To optimize, each widow spider is assigned an 

appropriate structure for the solution, where position 

values of every black widow spider represent 

variables. The dimensional optimization is denoted as 

𝑀𝑣𝑎𝑟  with widow's array being 1 × 𝑀𝑣𝑎𝑟 , as 

expressed in Eq. (1). 

 

𝑊𝑖𝑑𝑜𝑤 = [𝑧1, 𝑧2, … , 𝑧𝑀𝑣𝑎𝑟
]        (1) 

 

Where, (𝑧1, 𝑧2, … , 𝑧𝑀𝑣𝑎𝑟
)   indicate variable 

values as assigned by floating point numbers, fitness 

of a widow is evaluated by fitness function, which is 

denoted as 𝑓 at widow's position (𝑧1, 𝑧2, … , 𝑧𝑀𝑣𝑎𝑟
). 

The mathematical expression of fitness function is 

denoted by Eq. (2). 

 

𝐹𝑖𝑡𝑛𝑒𝑠𝑠 = 𝑓(𝑤𝑖𝑑𝑜𝑤) = 𝑓(𝑧1, 𝑧2, … , 𝑧𝑀𝑣𝑎𝑟
)        (2) 

 

To begin optimization algorithm, a candidate in 

widow matrix of size 𝑀𝑝𝑜𝑝 × 𝑀𝑣𝑎𝑟 is generated with 

an begin population of spiders. During procreation 

phase, male black widow is eaten by the female after 

mating. 

3.4.2. Procreate 

As the pairs are independent, they simultaneously 

begin mating to produce the next generation and each 

pair mates within its isolated web. Initially solitary, 

female and male spiders eventually unite for mating 

and reproduction. During mating, around 1000 eggs 

are produced, but only some spider eggs survive with 

the stronger ones prevailing. The algorithm 

reproduce and generate an array with random 

numbers containing offspring. Using Eq. (3), the 

offspring 𝑎1 and 𝑎1 are derived from the parents 𝑏1 

and 𝑏2, as shown below. 

 

{
𝑏1 = 𝛼 × 𝑎1 + (1 − 𝛼) × 𝑎2

𝑏2 = 𝛼 × 𝑎2 + (1 − 𝛼) × 𝑎1
                 (3) 

As long as the randomly chosen numbers are not 

duplicated, this process is repeated  𝑀𝑣𝑎𝑟 2 times. 

After being added to an array, the parents and kids are 

arranged according to their fitness values. The best 

people are added to the created population based on 

the cannibalism evaluations. The next stage is to 

couple each person. 

3.4.3. Cannibalism 

There are three kinds of cannibalism:  
1. Male and female black widows eat each other during 

and after mating.  

2. The female recognizes and eats the male based on 

their fitness function. 

3. Baby spiders often eat their mother, with fitness 

values determining the strongest spiderlings 

3.4.4. Movement 

The black widow optimization considers 

movements within spider web in both linear and 

spiral fashion as represented in Eq. (4) & (5). 

 

�⃗�𝑖(𝑡 + 1) = �⃗�∗(𝑡) − 𝑚�⃗�𝑟1(𝑡)     (4) 

 

�⃗�𝑖(𝑡 + 1) = �⃗�∗(𝑡) − 𝑐𝑜𝑠(2𝜋𝛽)�⃗�𝑖(𝑡)       (5) 

 

Where, �⃗�𝑖(𝑡 + 1) denotes separated position then 

improved in �⃗�𝑖(𝑡)  which denotes recent optimal 

separated position. The values are generated 

arbitrarily and fall within range of 0 to 1, with 

floating point values ranging from [0.4,0.9], when 𝛽 

ranges from [-1,1]. Integer values are assigned by 𝑟1  
and movement of black widow spider is determined 

by comparing the arbitrarily generated number to 

movement. 

3.4.5. Sex pheromones  

Sex pheromones play an essential role in 

behaviour of black widow spiders. Female black 

widows produce delay when they are well-fed 

compared to when they are starving. Male spiders are 

highly responsive to sex pheromones emitted by 

females, as these pheromones indicate a higher 

likelihood of fertility. By detecting these pheromones, 

male spiders avoid cost and risk associated with 

mating potentially hungry female spiders. The rate of 

pheromone production in black widow spiders is 

defined by Eq. (6). 
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𝑝ℎ𝑒𝑟𝑜𝑚𝑜𝑛 (𝑖) =
𝑓𝑖𝑡𝑛𝑒𝑠𝑠𝑚𝑎𝑥−𝑓𝑖𝑡𝑛𝑒𝑠𝑠(𝑖)

𝑓𝑖𝑡𝑛𝑒𝑠𝑠𝑚𝑎𝑥−𝑓𝑖𝑡𝑛𝑒𝑠𝑠𝑚𝑖𝑛
        (6) 

 

Where, the 𝑓𝑖𝑡𝑛𝑒𝑠𝑠𝑚𝑎𝑥& 𝑓𝑖𝑡𝑛𝑒𝑠𝑠𝑚𝑖𝑛 denote the 

best and worst of values in recent population and 

𝑓𝑖𝑡𝑛𝑒𝑠𝑠(𝑖) solution of values in individual gender of 

𝑖 , respectively. The Pheromones vector contains a 

normalized fitness range is [0,1]. The updated 

position to individual gender is assigned in Eq. (7). 

 

�⃗�𝑖(𝑡 + 1) = �⃗�∗(𝑡) +
1

2
[�⃗�𝑟1(𝑡) − (−1)𝜎�⃗�𝑟2(𝑡)] 

                                                                          (7) 

 

Where, �⃗�𝑖(𝑡) denotes the place of female black 

widow spiders with minimum pheromone levels 

considered being 𝑟1 & 𝑟2  with arbitrary integers 

from one to zero population size and 𝑟1 ≠ 𝑟2.  The 𝜎 

denotes the arbitrarily binary numbers of the range. 

3.4.6. Mutation 

In this stage, an arbitrarily selected number of 

individuals from the population undergo mutation. 

Each chosen solution arbitrarily exchanges 2 

elements in the array. The mutation rate determines 

the mute pop. The stop conditions for the algorithm 

include a predefined number of iterations, which does 

not change in the fitness values over several 

consecutive iteration and reaches a specified level of 

accuracy. The BWSO method iteratively explores the 

solution until either desired level of accuracy is 

reached, or high amount of iterations is completed, 

aiming to identify the optimal outcome. 

3.4.7. Proposed Elite Opposition-based Learning with 

Black Widow Spider Optimization 

The algorithm search range and capabilities are 

increased by the EOBL technique, which is combined 

with BWSO to calculate both the current solution and 

opposite solution. The best people are chosen for 

population of the future generation by combining 

opposite population with current population through 

use of opposition-based learning technique. By doing 

this, likelihood of algorithm reaching a local 

optimum is decreased. The algorithm's convergence 

speed is accelerated by elite individuals' search data 

in current EOBL population, denoted as 𝑎𝑛(ℎ) and 

𝑎𝑛
∗ (ℎ) for the opposition solution’s generation ℎ. The 

𝑎𝑛,𝑚(ℎ) and 𝑎𝑛,𝑚
∗ (ℎ) are values on dimension m of 

𝑎𝑛(ℎ)  and 𝑎𝑛
∗ (ℎ) , repectively. 𝑒(2 ≤ 𝑒 ≤ 𝐺)  elite 

individuals are denoted as: 
{𝑟1(ℎ), 𝑟2(ℎ), … . , 𝑟𝑟(ℎ)} ⊆
{𝑢1(ℎ), 𝑢2(ℎ), … . , 𝑢𝐺(ℎ)},  and then 𝑎𝑛,𝑚

∗ (ℎ)  is 

defined the Eq. (8). 

 

𝑎𝑛,𝑚
∗ (ℎ) = 𝜆(𝑑𝑚(ℎ) + 𝑓𝑚(ℎ)) − 𝑎𝑛,𝑚(ℎ)       (8) 

Where, 𝑎𝑚(ℎ) = min (𝑒1,𝑚(ℎ)) , 𝑓𝑚(ℎ) =

max (𝑒1,𝑚(ℎ), . . , 𝑒𝑒,𝑚(ℎ).  The 𝜆  denotes the 

arbitrarily number of (0,1). The set of the bound 

treatment is as follows: if 𝑎𝑛,𝑚
∗ (ℎ) > 𝑓𝑚(ℎ),  then 

𝑎𝑛,𝑚
∗ (ℎ) = 𝑓𝑚(ℎ); 𝑖𝑓𝑎𝑛,𝑚

∗ (ℎ) < 𝑑𝑚(ℎ), followed by 

𝑎𝑛,𝑚
∗ (ℎ) = 𝑎𝑚(ℎ). It is also shown that balancing 

exploitation and exploration of features helps achieve 

better accuracy. The elite opposition technique is 

introduced into original BWOA denoted as EBWOA 

which is executed at end of every iteration and select 

feature is fed to detection for copy-move forgery. 

3.5 Detection 

The detection using CSCNN techniques 

efficiently handles the feature process, reducing 

computational and training time while achieving high 

accuracy in classifying images as authentic or forged. 

CSCNN's ability to recognize rotationally invariant 

features is a significant advantage. Cyclic symmetry 

ensures that a network is unaffected by rotations of 

input image. This is particularly beneficial for image 

forgery detection, where image orientation is a 

crucial factor. The CNN potentially struggles with 

rotated images, whereas CSCNN handles such 

variations effortlessly and focuses on cyclic 

symmetric features, reducing complexity and 

improving efficiency of detection process. CSCNN 

has higher accuracy in image forgery detection due to 

its ability to extract more relevant and invariant 

features and reduce risk of overfitting on training data. 

Adding cyclic symmetric Conv layer in strategic 

positions within network maximizes benefit of 

rotation invariance. Training data to enhance CNN 

model by using standard backpropagation techniques 

ensures that cyclic symmetric properties are learned 

effectively.  

The CNN model detects and handles DIF by 

involving its primary operational layers and input 

filters, enhancing outcomes efficiently based on CNN 

techniques. The network is designed to maximize the 

accuracy of model by optimizing use of input image. 

The CNN layers are arranged in a specific sequence 

to function as a feature extraction system, utilizing 

filters of fixed sizes. These filters are arranged to 

cover regions of input with some overlap known as 

stride. The subsequent convolutional layer extracts 

feature from maps learned by earlier layer.  The 

subsequent Conv layers extract features from maps, 

which are learned from earlier Conv layers. Batch 

normalization is commonly applied in CNNs to 

classify output images, addressing challenges such as 
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information changes across layers and vanishing 

gradient issue. This is mathematically represented by 

Eq. (9) to (12), as shown below. 

 

𝜇𝜌 ←
1

𝑚
∑ 𝐼𝑡

𝑚
𝑡=1                                            (9) 

 

𝜎𝛽
2 ←

1

𝑚
∑ (𝐼𝑡 − 𝜇𝛽)2𝑚

𝑡=1                             (10) 

 

𝐼�̂� =
𝐼𝑡−𝐸[𝐼𝑡]

√𝜎𝛽
2+∈

                                                (11) 

 

𝐼𝑡
𝑜 = 𝛾𝐼�̂� +                                                (12) 

 

Where, 𝐼𝑡 represents the 𝑖𝑡ℎ training sample and 

batch sample amount is denoted as m, the mini batch 

input data is indicated as 𝛽 = {𝐼𝑡 … … . . 𝑚} . The 

symbols  𝜎𝛽 and 𝜇𝛽 represent standard deviation and 

mean 𝜖 denoted as a constant used to prevent division 

by zero while  𝛾 and 𝛽 are the parameters. The CNN 

goal by involving different architecture and different 

layers combined with cyclic symmetric, classifying 

the forgery image.  

The cyclic slicing and pooling aggregate 

predictions from different rotated copies of input are 

deployed in permutation-invariant pooling function. 

The pooling operation occurs after 1 or more dense 

layers, where feature maps lose their spatial structure 

and inverse rotation realigns the feature map. To 

adapt an existing network architecture to be 

equivariance, a slicing layer is introduced at the input 

and a pooling layer at the output. Applying rotational 

augmentations to the training data ensures that the 

model learns rotationally invariant features. The 

model is then trained using the prepared data, 

monitoring loss and accuracy to ensure proper 

convergence. The cyclic slicing operation is 

represented as 𝑆(𝑛) = [𝑛, 𝑟𝑛, 𝑟2𝑥, 𝑟3𝑥]𝑇; in practice, 

the column vector indicates that the rotated feature 

maps are stacked across the batch dimension. The 2 

layers are straightforwardly modified to make the 

existing network invariant by including a slicing 

layer at the input side and a pooling layer at the 

outcome side.  

To formalize this operation, the first image's 

equivariance properties are considered for slicing 

operation 𝑆. When involved input by it performing 

rotationally 𝑟𝑥 , 𝑆(𝑛) = [𝑛, 𝑟𝑛, 𝑟2𝑥, 𝑟3𝑥]𝑇 =
𝜎𝑆(𝑥) is acquired, where the elements are moved 

backward along the batch dimension by cyclic 

permutation, indicated by the symbol 𝜎. A row vector 

is produced by realigning feature maps 

corresponding to various paths and stacking them 

along feature dimension using stacking method 

𝑇(𝑥) = [𝑥0, 𝑟−1𝑥1, 𝑟−2𝑥2, 𝑟−3𝑥3].  The Conv layer 

uses padding is a cyclic symmetric manner, though it 

has not been fully explored. This cyclic Conv 

padding allows convolutional kernel to perform 

cyclic translation, sliding twice horizontally to 

capture complete translational variation. There are 

discrete filter with size of (2𝑛 + 1)2(𝑛 ∈ ℤ)  and 

stride of cyclical Conv layer denoted as 𝑠. The filter 

is represented 𝒦  successively from left to right 

mapped image, sliding and part beyond the border 

padding analysed left to right of the image until filter 

reappears on left of the image. The 2cycle is assigned 

to horizontal direction while the image mapped to 

translate the direction horizontally is expressed by 

Eqs. (13) and (14). 

 

ℎ𝑜𝑢𝑡 =
ℎ𝑖𝑛−𝑓−1+2𝑝

𝑠
+ 1                  (13) 

 

𝑤𝑜𝑢𝑡 =
2𝑤𝑖𝑛−𝑓−1+2𝑝

𝑠
+ 1               (14) 

 

Where, the input size of the cyclic convolutional 

is represented as (ℎ𝑖𝑛, 2𝑤𝑖𝑛) and the output size is 

(ℎ𝑜𝑢𝑡 , 2𝑤𝑜𝑢𝑡), as formulated in Eq. (13) and (14). 

This setup increases the number of produced feature 

maps by a factor of 2, balancing parameters for each 

layer, which is proportional to both the number of 

input feature maps and filters. Rotating filters on 

feature maps affects the model's parameters rather 

than the input activation. This approach enhances 

accuracy through the handling of rotation symmetric, 

enabling the model to perform inference on variable-

sized input.  

4. Experimental results  

This research proposes EBWSO-CSCNN, which 

is simulated in a Python environment using a system 

with 16GB RAM, an Intel Core i7 processor, and 

Windows 10 as operating system. To estimate 

model's performance metrics of accuracy, precision, 

recall, and f1-score are utilized in Eq. (15) and (18). 

 

𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =
(𝑇𝑃+𝑇𝑁)

(𝑇𝑃+𝑇𝑁+𝐹𝑃+𝐹𝑁)
     (15) 

 

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =  
𝑇𝑃

(𝑇𝑃+𝐹𝑃)
                (16) 

 

𝐹1 − 𝑚𝑒𝑎𝑠𝑢𝑟𝑒 = 2 ∗
(𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛∗𝑅𝑒𝑐𝑎𝑙𝑙)

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛+𝑅𝑒𝑐𝑎𝑙𝑙
  (17) 

 

𝑅𝑒𝑐𝑎𝑙𝑙 =
𝑇𝑃

𝑇𝑃+𝐹𝑁
                         (18) 
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Where, 𝑇𝑃, 𝐹𝑁, 𝐹𝑃,  and 𝑇𝑁  denote the True 

Positive, False Positive, True Negative, and False 

Negative values, respectively. 

4.1 Performance analysis 

In this section, proposed method involving 

feature selection and detection processes is evaluated 

using several performance metrics including 

Accuracy, Precision, F1-measure, and Recall for 

MICC-F200, MICC-F600, CASIA 2.0 and MICC-

F220 datasets. The performance of feature selection 

process with dataset is represented in Table 2, which 

describes feature selection results. The performance 

of different detection with default features using four 

datasets is represented in Table 3, which describes 

detection results. The performance of EBWSO 

feature selection is evaluated based on accuracy, 

precision, F1-measure, and recall on MICC-F220 

dataset, as described in Table 2. The existing methods 

using feature selection techniques such as Grey Wolf 

Optimizer (GWO), Particle Swarm Optimization 

(PSO), Whale Optimization Algorithm (WOA) and 

BWSO are also evaluated. The EBWSO method 

achieves a high accuracy of 99.90% on MICC-F220, 

accuracy of 99.64 % on MICC-F600, accuracy of 

99.25% on MICC-F2200, and accuracy of 98.95% on 

CASIA 2.0 datasets. The feature selection technique 

EBWSO achieves a high accuracy of 99.90% as it 

extracts related features to easily detect attacks. 

The performance of CSCNN detection is 

evaluated based on accuracy, precision, F1-measure, 

and recall on MICC-F220 dataset, as described in 

Table 3. The existing methods using detection 

techniques such as RNN, DNN, DCNN and CNN are 

also evaluated. 

The CSCNN method achieves a high accuracy of 

99.90% on MICC-F220, accuracy of 99.64 % on 

MICC-F600, accuracy of 99.25% on MICC-F2200, 

and accuracy of 98.95% on CASIA 2.0 datasets. The 

EBWSO technique attains a superior accuracy of 

99.90% as it extracts related features to easily detect 

attacks. Table 3 describes detection based on datasets, 

and Fig. 2 illustrates performance analysis of MICC-

F2000 detection and Fig. 3 displays the performance 

analysis of detection of CASIA 2.0. The CSCNN is 

used for detection to learn and identify forged images 

through rotational analysis, followed by DIF 

detection. 
 

 

Table 2. Evaluation of feature selection using datasets 

Datasets Methods Accuracy (%) Recall 

(%) 

F1-Measure 

(%) 

Precision 

(%) 

MICC-F220 PSO 95.45 95.29 95.15 97.85 

GWO 96.56 96.68 96.25 96.96 

WOA 97.69 97.45 97.45 97.15 

BWSO 98.89 98.65 98.99 98.45 

Proposed EBWSO – CSCNN 

method 

99.15 98.85 98.60 98.80 

MICC-F600 PSO 94.52 81.02 87.95 84.63 

GWO 95.45 82.42 88.26 85.03 

WOA 96.56 83.32 89.15 86.52 

BWSO 97.69 84.36 90.42 87.12 

Proposed EBWSO – CSCNN 

method 

98.10 85.28 91.50 88.51 

MICC-

F2000 

PSO 95.03 81.02 87.06 84.89 

GWO 96.12 82.78 88.48 85.56 

WOA 97.85 83.45 89.26 86.23 

BWSO 98.36 84.12 90.15 87.23 

Proposed EBWSO – CSCNN 

method 

99.25 85.30 91.59 88.50 

CASIA 2.0 PSO 94.27 93.08 93.59 92.14 

GWO 95.68 94.86 94.86 93.68 

WOA 96.37 95.73 95.26 94.37 

BWSO 97.34 96.15 96.15 95.04 

Proposed EBWSO – CSCNN 

method 

98.95 97.84 97.58 96.12 
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Table 3. Performance analysis of the detection of the datasets 

Datasets Methods Accuracy (%) Precision (%) Recall 

(%) 

F1-Measure 

(%) 

MICC-F220 RNN 95.45 97.85 95.29 95.15 

DNN 96.56 96.96 96.68 96.25 

DCNN 97.69 97.15 97.45 97.45 

CNN 98.89 98.45 98.65 98.99 

Proposed EBWSO – CSCNN 

method 

99.15 98.80 98.85 98.60 

MICC-F600 RNN 94.52 84.63 81.02 87.95 

DNN 95.45 85.03 82.42 88.26 

DCNN 96.56 86.52 83.32 89.15 

CNN 97.69 87.12 84.36 90.42 

Proposed EBWSO – CSCNN 

method 

98.10 88.51 85.28 91.50 

 

Figure. 2 Performance analysis of the detection of MICC-F2000 

 

Figure. 3 Performance analysis of the detection on CASIA 2.0 

 
 

4.2 Comparative analysis 

The performance of the proposed EBWSO-

CSCNN method achieves better accuracy when 

compared to the existing methods including SLIC 

[16], Autoencoder [17], VGG 19 [18], AlexNet [19] 

and SSDAE [20]. The comparative analysis involves 

4 datasets: MICC-F200, CASIA 2.0, MICC-F220, 

and MICC-F600. In this research, proposed EBWSO-

CSCNN method attainsa superior accuracies of 

99.15% on MICC-F200, 98.10% on MICC-F600, 

98.95% on MICC2000 and 98.11% on CASIA 2.0 

dataset. Table 4 describes a comparative analysis of 

proposed method. Digital image forgery detection 

considers improved optimization combined with DL-

based techniques, which further aids learn patterns 

efficiently with enhanced accuracy. 
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Table 4. Comparative analysis of the proposed method  

Datasets Methods Accuracy 

(%) 

Precision 

(%) 

Recall 

(%) 

F1-Measure 

(%) 

MICC-F220 SLIC [16] N/A N/A N/A 95.09 

Autoencoder [17] 99.02 N/A 95.79 96.09 

SSDAE[20] 97.45 98.75 98.25 98.54 

Proposed EBWSO – CSCNN 

method 

99.15 98.80 98.85 98.60 

MICC-F600 AlexNet [19] 94.00 N/A N/A N/A 

SSDAE [20] 98.92 88.45 85.21 91.41 

Proposed EBWSO – CSCNN 

method 

98.10 88.51 85.28 91.50 

MICC-

F2000 

SLIC [16] N/A N/A N/A 94.03 

AlexNet [19] 71.00 N/A N/A N/A 

SSDAE [20] 98.92 88.42 85.21 91.41 

Proposed EBWSO – CSCNN 

method 

99.25 91.50 90.30 92.59 

CASIA 2.0 VGG19 [18] 94.77 94.81 94.73 N/A 

SSDAE [20] 98.02 96.03 97.74 97.48 

Proposed EBWSO – CSCNN 

method 

98.95 97.12 98.84 98.58 

Table 5. Evaluated of proposed method on CASIA 2.0 

dataset 

Datasets Methods AUC 

CASIA 2.0 VGG19 [18] 0.95 

Proposed 

EBWSO – 

CSCNN 

method 

0.96 

5. Discussion  

This section discusses advantages of proposed 

model and analyses outcomes from EBWSO-

CSCNN method. The proposed method is analysed 

on CASOA 2.0, MICC-F200, MICC-F220, and 

MICC-F600 datasets to efficiently classify forgery 

images. Initially, pre-processing using SISR and HE 

techniques is performed to enhance image quality. 

Feature extraction utilizes a pre-trained model 

efficient in extracting image edges and shapes, while 

feature selection using the EBWSO optimization 

enhances current position, avoids local optima, 

selects relevant features, and reduces dimensionality. 

The CSCNN technique enhances detection by 

dividing the image to efficiently distinguish between 

forgery and non-forgery images, thereby enhancing 

the accuracy. The proposed EBWSO-CSCNN 

method accomplishes a commendable accuracy rates 

of 99.15% on MICC-F220, 98.10% on MICC-F600, 

98.11% on CASIA 2.0, and 98.95% on MICC-F200 

datasets. The traditional methods of SLIC [16], 

Autoencoder [17], ResNet50 [18], AlexNet [19], and 

SSDAE [20] are also considered for comparison. 

6. Conclusion  

This research proposes an EBWSO-CSCNN 

method to enhance detection accuracy in image 

forgery detection. Pre-processing techniques such as 

SISR and HE are used for image enhancement and 

forgery detection. Feature extraction is performed 

using pre-trained models like VGG16 and ResNet50, 

which detect the features in digital images such as 

edges and shapes. The EBWSO technique updates the 

current position and opposite solution for feature 

selection, while detection using CSCNN technique is 

designed to be invariant to rotations, involving 

rotational manipulation and advanced accuracy. 

Finally, EBWSO-CSCNN model accurately 

classifies image forgery when compared to existing 

techniques, SSDAE and SLIC algorithms. The 

proposed method achieves high accuracy rates of 

99.15% on MICC-F220, 99.25% on MICC-F600, 

98.95% on MICC-F200, and 98.95% on the CASIA 

2.0 datasets. Future work will consider hybrid 

techniques to evaluate detection based on various 

data classes. 

 

Notation 

Notation Description 

𝑀𝑣𝑎𝑟 , 1 × 𝑀𝑣𝑎𝑟, Dimensional 

optimization with 

widow array 

(𝑧1, 𝑧2, … , 𝑧𝑀𝑣𝑎𝑟
) Variable values by 

floating and widow 

position 

𝑀𝑝𝑜𝑝 × 𝑀𝑣𝑎𝑟 Size of widow matrix 
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𝑎1 and 𝑎1, 𝑏1 and 𝑏2 Offspring from parents 

�⃗�𝑖(𝑡 + 1) Separated position 

𝑟1 Integer values 

𝑓𝑖𝑡𝑛𝑒𝑠𝑠𝑚𝑎𝑥& 𝑓𝑖𝑡𝑛𝑒𝑠𝑠𝑚𝑖𝑛 Best and worst 

[0,1] Fitness range 

�⃗�𝑖(𝑡) Female black widow 

spiders 

𝑟1 & 𝑟2 Minimum pheromone 

levels 

𝑎𝑛(ℎ) and 𝑎𝑛
∗ (ℎ) Current EOBL 

population 

𝑒(2 ≤ 𝑒 ≤ 𝐺) Elite individual values 

𝑎𝑚(ℎ)

= min (𝑒1,𝑚(ℎ)) , 𝑓𝑚(ℎ)

= max (𝑒1,𝑚(ℎ), . . , 𝑒𝑒,𝑚(ℎ). 

Maximum and 

minimum 

𝐼𝑡, m Training sample and 

batch sample 

𝛽 = {𝐼𝑡 … … . . 𝑚} Input dat in CSCNN 

𝛾 and 𝛽 Constant parameter in 

CNN 

𝑆(𝑛) = [𝑛, 𝑟𝑛, 𝑟2𝑥, 𝑟3𝑥]𝑇 Cyclic slicing operation 

(2𝑛 + 1)2(𝑛 ∈ ℤ) Discrete filter 

𝒦 Filter from left to right 

(ℎ𝑖𝑛 , 2𝑤𝑖𝑛)  and 

(ℎ𝑜𝑢𝑡 , 2𝑤𝑜𝑢𝑡), 

Input size of cyclic 

convolutional and 

output size 

𝑇𝑃, 𝐹𝑁, 𝐹𝑃, and 𝑇𝑁 True Positive, False 

Positive, True Negative, 

and False Negative 

values 
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