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Abstract: Security, reliability, economics and environments are the four pillars of power system operation and 

control. Combined economic emission dispatch (CEED) is one such problem which can able to accommodate all 

these aspects. Though CEED is mainly to minimize operating cost and emission costs, it has been redefined in recent 

times due to the emerging trends, namely, renewable energy sources (RES) and electric vehicles (EVs). In this paper, 

the problem of CEED is augmented in this context by considering spinning reserve (SR) due to the fluctuation in 

network loading conditions, and the penetration of EV load. Furthermore, the differences in power of photovoltaic 

(PV) and wind turbine (WT) systems are covered. These modifications transform the CEED into a non-convex, 

multi-objective, multi-variable optimization problem with several constraints. The proposed solution is a novel meta-

heuristic intensified sparrow search algorithm (ISSA) designed to enhance search features. ISSA incorporates a 

neighbour search technique and saltation learning mechanism for the fundamental SSA. Simulations are performed 

for various scenarios on a standard 3-bus power system. At first, the solution for conventional CEED is determined 

using ISSA and compare it with other recent meta-heuristics. Augmented CEED is performed in the second stage, 

taking into account hourly variability in loading conditions on the system, RES, and EVs, along with SR 

requirements for stability and generation loss. With RES and EVs, the SR is estimated equal to 875.371 MWh, up 

from 787.182 MWh without them, indicating improvement in system. Furthermore, the penetration of RES reduces 

net power consumption by 1975.6 MW, leading to a reduction in fuel costs of $17,649.112 per hour. Also, it resulted 

in an effective solution for global warming by reducing emission costs by $537.161 every hour. 

Keywords: Combined economic emission dispatch, Renewable energy sources, Electric vehicles, Spinning reserve, 

Multi-objective optimization, Sparrow search algorithm. 

 

 

1. Introduction 

Combined economic emission dispatch (CEED) 

problem is important in today's electric power 

system operation due to the need of operational 

enhancement aiming at joint optimization objective 

associated with minimization on both cost 

effectiveness and environment impact [1]. Its 

primary target is the reduction of operational costs 

and, along with that, pollutant emissions. Solutions 

are confronted with addressing the non-linear, multi-

objective nature of the problem as well as pathways 

for integrating up-and-coming renewable energy 

sources characterized by variable outputs [2]. 

Further, the introduction of renewable energy 

sources (RESs) and electric vehicles (EVs), entering 

the CEED problem, faces challenges with REs 

intermittency and unpredictable EV charging 

demands that require advanced grid management 

techniques. They exhibit limitations concerning 

computational complexity and the reliability of 

convergence. That adds complexity to optimization 

due to which CEED problem need more 

sophisticated algorithms to make them stable and 

efficient. Metaheuristics are types of optimization 
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algorithms developed to provide near-optimal 

solutions in complex, large-scale systems and they 

can be implemented while taking advantages like 

being robustness, flexibility enhancing overall grid 

performance sustainability [3]. In recent times, 

various metaheuristics have been adapted for 

solving the CEED problem considering REs and 

EVs. 

In [4], multi-objective equilibrium optimizer 

(MOEO) is proposed for grid power (GP)/ thermal 

power (TP) cost and emission cost from TPs. 

Transmission system security margin evaluated 

using generalized generation distribution factors 

(GGDF) and considered as one of the major 

constraints in solving CEED. In [5], chaotic 

artificial ecosystem-based optimization (CAEO) is 

developed for solving CEED considering TP cost 

and cost of emissions (includes CO2, SO2 and NOx). 

In [6], multi-objective combined heat and power 

economic emission dispatch (MO-CHPEED) 

problem using dynamically controlled whale 

optimization algorithm (DCWOA) is presented. 

However the works [4-6] have not handled directly 

RESs in solving CEED problem, instead they are 

optimized TP emissions only.  

In [7], economic dispatch (ECD) and emission 

dispatch (EMD) are hybridized using price-penalty 

factors (PPF) and fractional programming (FP) 

method. A three bus TP test system integrated with 

photovoltaic (PV), wind turbine (WT) and load 

uncertainties is utilized and the multi-objective 

function is solved by hybridizing modified grey 

wolf optimizer (MGWO), sine cosine algorithm 

(SCA) and crow search algorithm (CSA). In [8], 

CSA and JAYA algorithms are hybridised for 

solving combined ECD and EMD problem with PVs 

and WTs in similar to [7]. In [9], EDP is reframed 

considering smart building architecture i.e., home 

energy management system (HEMS) for exchanging 

energy from one building to other using improved 

butterfly optimization algorithm (IBOA). Energy 

storage system (ESS) is mainly utilized for 

uncertainties with loading conditions and PV 

variations and consequently, GP cost is reduced. In 

[10], distributed gradient algorithm (DGA) is 

proposed for economic dispatch problem (EDP) for 

minimizing the total cost operation includes cost of, 

PV, WT, ESS, TP and conventional power sources 

(CPS) sources like micro-turbines (MT) and diesel 

generators (DG) under uncertainties. While handling 

uncertainties, the possibility from TP with ramp-

up/down limits is not taken in to consideration as 

seen in conventional EDP, instead CPS and BES are 

experimented.  

Further, CEED problem is redefined in recent 

times considering emerging EV trends globally. In 

[11], chaos moth flame optimization algorithm 

(CMFO) is proposed for handling fluctuations in the 

grid using plug-in EVs (PEVs) to the grid(V2G). In 

[12], teaching learning based optimization (TLBO) 

is proposed for PEVs embedded CEED. In [13], 

converged barnacles mating optimizer (CBMO) 

based CEED is presented. Utilization of different 

EV charging scenarios is proposed for handling 

uncertainty of WT, PV and loads and peak shaving. 

In [14], chaotic zebra optimization algorithm 

(CZOA) is employed for scheduling different 

conventional and RES considering EV fleets 

utilization for energy balance. However, [11-14] are 

not handled explicitly emission control from the TP 

units. 

In [15], Time of Shift (ToS) based DR with EVs 

and other low-carbon P2G (power-to-gas) devices 

are considered in solving the CEED with mixed-

integer linear programming (MILP). In [16], model 

predictive control (MPC) learning approach is 

proposed for modelling the charging behaviour of 

EVs and later, CEED is solved considering RE and 

load uncertainties. In [17], the stochastic behaviour 

of EVs under different time frames is modelled for 

handing CEED. Further, non-convex multi-objective 

optimization CEED is solved using an efficient 

black widow optimization (EBWO). In [18], 

dynamic combined economic emission dispatch 

(DCEED) is presented using multi-objective mayfly 

optimization algorithm (MMOA). The EV fleet is 

mainly used for balancing the energy under demand 

crest shaving and valley filling V2G and grid-to-

vehicle (G2V) modes. In [19], gradual reduction of 

swarm size with the grey wolf optimization (GRSS-

GWO) is presented for handling CEED considering 

the capabilities of EVS for V2G and G2V 

operational modes. One of the major contributions 

of [20] is EV modelling considering temperature, 

power level, and the state of charge (SoC). In 

addition, a comprehensive literature survey on 

CEED can be found in [21, 22]. 

From the above reviewed works, the 

conventional CEED problem neglects the thorough 

incorporation of RES and EVs, and many do not 

adequately consider the security limitations of 

transmission systems. Furthermore, the aspects of 

uncertainty management in RES and EVs, 

convergence dependability, and computational 

complexity have not been well investigated, 

emphasizing the necessity for sophisticated 

mathematical modelling for CEED and optimization 

methods.  
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In this paper, the modifications have made the 

conventional CEED problem a more non-convex, 

multi-objective, multi-variable optimization problem 

with several constraints. Empirical metaheuristics 

have been widely employed to address this 

particular form of optimization. The literature 

reveals that the majority of metaheuristics have 

certain limitations, such as their vulnerability to 

early convergence resulting in poor solutions, 

significant computing complexity in large-scale 

problems, and the requirement for substantial 

parameter tweaking. Moreover, they frequently lack 

assured optimality and may have difficulties in 

controlling the trade-off between exploration and 

exploitation in intricate, ever-changing settings. 

Therefore, based on the absence of a no-free-lunch 

theorem [23], it is demonstrated that there is no 

universal algorithm capable of addressing all types 

of optimization issues. In this connection, 

researchers are still inspiring to introduce new and 

efficient algorithms. Swarm bipolar algorithm 

(SBO) [28], swarm space hopping algorithm 

(SSHA) [29], Migration-crossover algorithm (MCA) 

[30], Addax optimization algorithm (AOA) [31], 

and dollmaker optimization algorithm [32] are such 

recently introduced metaheuristics to address 

various real-time optimization problems.  

In this work, the authors are motivated to use an 

enhanced version of the sparrow search algorithm 

(SSA) called intensified sparrow search algorithm 

(ISSA) [31]. This method incorporates a neighbor 

search strategy and saltation learning (SL), which is 

inspired by the hopping forward behavior of 

sparrows [32]. The SL avoids premature 

convergence and enhances the producer's search 

ability, enhancing the overall algorithm's 

effectiveness. Further, CEED problem is reframed 

with SR in addition to variability in PV, WT and CS 

loading conditions. Simulations are performed on 

standard 3-thermal units and on its modified version 

considering load, RES, EV and SR variability. 

Different scenarios are analysed for highlighting the 

computational efficacy of ISSA. 

After this introduction Section 1, this paper is 

structured as follows: Section 2 imparts 

mathematical modelling of REs and EVS, load 

profile. The multi-objective CEED problem 

formulation and its constraints are described in 

Section 3. Section 4 provides the mathematical 

overview of the proposed ISSA and its application 

for solving CEED problem in Section 5 by 

computational perspective. Finally, Chapter 6 

recaptures the principal contribution of this paper as 

a whole. 

2. Modelling of concepts 

In this section, the mathematical modelling of 

PV, WT, EVs and their impact on power system 

loading is explained.  

2.1. Solar power generation 

The generation from solar power plant i and 

correspondingly, total PV power penetration in the 

system can be determined by,  

 

𝑃𝑝𝑣,𝑖 =
𝑃𝑠,𝑖

1000
[1 + 𝛽(𝑇𝑟 − 𝑇𝑎,𝑖)] × 𝑆𝑖               (1) 

 

𝑃𝑃𝑉 = ∑ 𝑃𝑝𝑣,𝑖
𝑛𝑆
𝑖=1      (2) 

 

2.2. Wind power plant 

The wind power plant generation at location and 

correspondingly, total wind power share in the 

system can be determined by: 

 

𝑃𝑤𝑡,𝑖 =

{
 
 

 
 0     𝑉𝑡,𝑖 < 𝑉𝑐𝑖,𝑖     

𝑘𝑉𝑡,𝑖
3 𝑉𝑐𝑖,𝑖 ≤ 𝑉𝑡,𝑖 < 𝑉𝑟,𝑖

𝑃𝑟,𝑖     
0     

𝑉𝑟,𝑖 ≤ 𝑉𝑡,𝑖 < 𝑉𝑐𝑜,𝑖 
𝑉𝑡,𝑖 > 𝑉𝑐𝑜,𝑖                 

   (3) 

 

𝑃𝑊𝑇 = ∑ 𝑃𝑤,𝑖
𝑛𝑊
𝑘=1      (4) 

 

2.3. Public charging stations 

Electric vehicles (EVs) charging stations (CSs) 

can be modelled as lumped load due to different 

levels of charging ports at a bus in the system and is 

given by, 

 

𝑃𝑒𝑣,𝑖 = 𝑛𝐿1,𝑖𝑃𝑒𝑣
𝐿1 + 𝑛𝐿2,𝑖𝑃𝑒𝑣

𝐿2 + 𝑛𝐿3,𝑖𝑃𝑒𝑣
𝐿3           (5) 

 

𝑃𝐸𝑉 = ∑ 𝑃𝑒𝑣,𝑖
𝑛𝐶𝑆
𝑖=1      (6)  

2.4. Realization of PV/ WT/ CS impact 

By integrating PV/ WT/ CS, the net-effective 

loading of at a location can be realised by the 

following relations. 

For solar PV system: 

 

𝑃𝑑,𝑖 = 𝑃𝑑(0),𝑖 − 𝑃𝑝𝑣,𝑖    (7) 

 

𝑄𝑑,𝑖 = 𝑄𝑑(0),𝑖     (8) 
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For wind turbine system: 

 

𝑃𝑑,𝑖 = 𝑃𝑑(0),𝑖 − 𝑃𝑤𝑡,𝑖    (9) 

 

𝑄𝑑,𝑖 = 𝑄𝑑(0),𝑖 − 𝑃𝑤𝑡,𝑖 × 𝑡𝑎𝑛 (𝑎𝑐𝑜𝑠(∅𝑤𝑡,𝑖)) (10) 

 

For EV charging station: 

 

𝑃𝑑,𝑖 = 𝑃𝑑(0),𝑖 + 𝑃𝑒𝑣,𝑖              (11) 

 

𝑄𝑑,𝑖 = 𝑄𝑑(0),𝑖 + 𝑃𝑒𝑣,𝑖 × 𝑡𝑎𝑛 (𝑎𝑐𝑜𝑠(∅𝑒𝑣,𝑖))  (12) 

 

2.5. Spinning reserve 

A power system's spinning reserve (SR) is 

supplementary producing capacity that is 

immediately accessible and synchronised with the 

grid to respond to sudden load increments or 

generation losses. 

 

𝑃𝑆𝑅 = {

0.05(𝑃𝐷 + 𝑃𝐸𝑉) 𝑆𝑡𝑎𝑏𝑖𝑙𝑖𝑡𝑦
0.1𝑃𝑅𝐸𝑆 𝑅𝐸𝑆         

𝑚𝑎𝑥(𝑃𝑖) 𝐺𝑒𝑛. 𝑙𝑜𝑠𝑠
            (13) 

 

Depending on power system features and 

reliability, the proportion may vary. As defined in 

Eq. (13), SR is usually minimum 5% of demand for 

ensuring stability under typical working conditions.  

Systems with strong wind or solar power penetration 

may need 10% or more for handling their variability. 

Additionally, it should be at least the maximum 

generator level before generator loss. 

3. Problem formulation 

3.1. Objective function 

The multi-objective function (𝑂𝐹) for CEED is 

formulated by combining the fuel cost of thermal 

power plants ( 𝐶𝑓𝑙 ) and correspondingly, their 

emission costs (𝐶𝑒𝑚). Mathematically, 

 

𝐶𝑓𝑙(𝑃𝑖) = (𝑎𝑖𝑃𝑖
2 + 𝑏𝑖𝑃𝑖 + 𝑐𝑖) +

 𝑑𝑖{𝑠𝑖𝑛[𝑒𝑖(𝑃𝑖,𝑚𝑖𝑛 − 𝑃𝑖)]}                   (14) 

 

𝐶𝑒𝑚(𝑃𝑖) = ∑ {𝑚𝑖𝑃𝑖
2 + 𝑛𝑖𝑃𝑖 + 𝑜𝑖 +

𝑛𝑇
𝑘=1

𝑟𝑖[𝑒𝑥𝑝(𝑠𝑖 × 𝑃𝑖)]}                   (15) 

 

𝑂𝐹 = ∑ [𝐶𝑓𝑙(𝑃𝑖) + 𝐶𝑒𝑚(𝑃𝑖)]
𝑛𝑇
𝑖=1                       (16) 

 

 

3.2. Operational constraints 

3.3.1. Power balance constraint 

At any hour, the total network demand including 

losses should be equal to the total power generation 

from thermal plants and RESs. Mathematically, it is 

given by: 

 

𝑃𝑇 + 𝑃𝑃𝑉 + 𝑃𝑊𝑇 = 𝑃𝐷 + 𝑃𝐸𝑉 + 𝑃𝑙                (17) 

 

𝑃𝑙 = ∑ ∑ 𝑃𝑖𝐵𝑖𝑗𝑃𝑗
𝑛𝑇
𝑗=1

𝑛𝑇
𝑖=1                                   (18) 

 

3.3.2. Spinning reserve constraint 

Th SR to be maintained in power system can be 

treated as extra demand on the system while solving 

the SR-CEED problem. Thus, Eq. (17) can be 

modified for SR as follows: 

 

𝑃𝑇 + 𝑃𝑃𝑉 + 𝑃𝑊𝑇 = (𝑃𝐷 + 𝑃𝐸𝑉 + 𝑃𝑙) + 𝑃𝑆𝑅   (19) 

 

Further, Eq. (14) - Eq. (16) are constrained by 

lower and upper limits of the plant and their down 

and up-ramp rate limits, given by, 

 

𝑃𝑖,𝑚𝑖𝑛 ≤ 𝑃𝑖 ≤ 𝑃𝑖,𝑚𝑎𝑥                           (20) 

 

𝑃𝑖,𝑚𝑖𝑛 = 𝑚𝑎𝑥[𝑃𝑖,𝑚𝑖𝑛, (𝑃𝑖(𝑡−1) − 𝐷𝑟,𝑖)]          (21) 

 

𝑃𝑖,𝑚𝑎𝑥 = 𝑚𝑖𝑛[𝑃𝑖,𝑚𝑎𝑥, (𝑈𝑟,𝑖 + 𝑃𝑖(𝑡−1))]          (22) 

 

4. Solution methodology 

The proposed multi-objective optimization 

problem is proposed to solve using intensified 

sparrow search algorithm (ISSA). In this section, the 

basic SSA [31], modifications in ISSA and their 

application to solve the proposed objective functions 

are explained briefly. 

4.1. Sparrow search algorithm 

The SSA Algorithm is inspired by sparrows' 

swarming intelligence, dividing them into producers 

and explorers based on their fitness. The algorithm 

allows sparrows to constantly update their positions 

to avoid predators and find low-risk cuisine, 

allowing the sparrow colony to navigate the wild. 

SSA involves initializing the solution, 

determining population size, maximum replicates, 

producer ratio, and sparrow population position, and 

randomly producing them. The initial population is 

randomly generated by: 
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𝑆 = [

𝑆1
𝑆2
⋮
𝑆𝑛

] = [

𝑠11 𝑠12 ⋯ 𝑠1𝑑
𝑠21 𝑠22 ⋯ 𝑠2𝑑
⋮
𝑠𝑛1

⋮
𝑠𝑛2

𝑠𝑖𝑗
⋯

⋮
𝑠𝑛𝑑

]             (23) 

 

𝐹𝑆 = [

𝐹(𝑆1)

𝐹(𝑆2)
⋮

𝐹(𝑆𝑛)

]                                       (24) 

 

where n is the number of sparrows and d is the 

search dimension, respectively;𝑠𝑖𝑗 is the position of 

ith sparrow in jth dimension, 𝑆𝑖  is the ith solution 

variables, and 𝐹𝑆fitness of all solutions.  

Producers with higher fitness values in the SSA 

are given preference over those producing cuisine, 

as they can search for a broader range and update 

their status each iteration. 

 

𝑠𝑖𝑗
𝑘+1 = {

𝑠𝑖𝑗
𝑘 × 𝑒𝑥𝑝 (

−𝑖

𝑟1𝑘𝑚𝑎𝑥
) 𝑖𝑓𝑟3 < 𝛿

𝑠𝑖𝑗
𝑘 + 𝑟2 ∝ 𝑖𝑓𝑟3 ≥ 𝛿

         (25) 

where  𝑘 and 𝑘𝑚𝑎𝑥  are the current and maximum 

iteration numbers, 𝑟1 , 𝑟2  and 𝑟3  are the random 

numbers between 0 and 1, respectively; 𝛿  is a 

random number between 0.5 and 1, and∝ is a matrix 

of (1 × 𝑑)  and it is set to 1 when all elements 

become 1. 

Eq. (25) describes a system where sparrows 

discover a hunter when 𝑟3  is high (𝑟3 ≥ 𝛿 ), and 

when 𝑟3 is low (𝑟3 < 𝛿), the hunter enters extensive 

search mode. Energy loss in entry groups reduces 

foraging opportunities, potentially causing 

immigrants to flee. Sparrows locate locators, 

intensify predation, and engage in competition. 

 

𝑠𝑖𝑗
𝑘+1 = {

𝑟2𝑒𝑥𝑝 (
𝑠𝑤𝑜𝑟𝑠𝑡
𝑘 −𝑠𝑖𝑗

𝑘

𝑘2
)             𝑖 <

𝑛  

2  

𝑠𝑖𝑗
𝑘+1 + |𝑠𝑖𝑗

𝑘+1 − 𝑠𝑖𝑗
𝑘 |𝑟4

+ ∝ 𝑖 >
𝑛  

2  

   (26) 

 

where 𝑠𝑤𝑜𝑟𝑠𝑡
𝑘  is worst position of sparrow in 

iteration k, 𝑟4
+ is random number between -1 and 1 

of dimension d.  𝑟4
+ = 𝑟4

𝑇(𝑟4𝑟4
𝑇)−1for𝑖 <

𝑛

2
, it means, 

ith challenger is unfit and will going to die.  

On the other hand, 10%-20% of sparrows are 

randomly positioned based on threat alertness, with 

those in the middle wandering to get close, and 

those on the edge flying to safe areas. 

 

𝑠𝑖𝑗
𝑘+1 = {

𝑠𝑏𝑒𝑠𝑡
𝑘 + 𝛽. |𝑠𝑃

𝑘 − 𝑠𝑏𝑒𝑠𝑡
𝑘 | 𝐹𝑖 > 𝐹𝑔

𝑠𝑖𝑗
𝑘 + 𝑟5 |

𝑠𝑖𝑗
𝑘−𝑠𝑤𝑜𝑟𝑠𝑡

𝑘

(𝐹𝑖−𝐹𝑤)+ε
| 𝐹𝑖 = 𝐹𝑔

     (27) 

In Eq. (27), 𝑠𝑏𝑒𝑠𝑡
𝑘 represents the global optimal 

position, ε and β control step size, and 𝐹𝑔  and 𝐹𝑤 

represent best and worst suitability values. 𝑟5 

represents the direction of movement and step size's 

control factor. Each person's current position is 

compared to the last repetition, updating if better 

than the previous one. Survival may improve after 

the last two steps. If repetitions are less than 

maximum, the algorithm stops. 

By these basic surveillance features, SSA has 

been a competitive algorithm in recent times for 

solving complex optimization problem. However, it 

has advanced in many ways for better accuracy.  

4.2. Intensified sparrow search algorithm 

In order to improve and achieve proper balance 

between exploration and exploitation phases in the 

basic SSA, the ISSA is proposed by introducing a 

neighbour search strategy and saltation learning (SL), 

inspired by sparrows' jumping forward [32]. The SL 

avoids premature convergence and enhances the 

producer's search ability, enhancing the overall 

algorithm's effectiveness. 

Neighbor search strategy: In an Evolutionary 

System (SSA), the producer motivates sparrows to 

reach the optimal position in the evolution search 

process. However, this model has disadvantages, 

such as not exploring new search areas early and 

weakened exploration ability. To improve SSA 

performance, a more efficient producer selection 

strategy is needed. A novel producer selection 

strategy, the neighbour search strategy, is proposed 

for its boundary/range as defined in Eq. (28), where 

the producer is chosen from the sparrow individual's 

neighbours, based on their individual range R. 

 

𝐸𝑖
𝑘 = (𝑚𝑎𝑥(𝑠𝑖𝑗

𝑘 . (1 − 𝑅), 𝑙𝑏),𝑚𝑖𝑛(𝑠𝑖𝑗
𝑘 . (1 +

𝑅), 𝑢𝑏))                                                (28) 

 

where 𝑖 ∈ {1,2, . . , 𝑀} and M is the producer number, 

𝑠𝑖𝑗
𝑘  is the random individual sparrow at kth iteration, 

𝑙𝑏  and 𝑢𝑏  are the lower and upper bounds of the 

search variables, respectively.  

As explain in [32], a sparrow individual 𝑆𝑖  is 

represented by a large black circle and other 

sparrows in the neighbourhood. The size of each 𝑆𝑖 
boundary is controlled by R, with the boundary 

range dynamic. The neighbour search strategy 

explores the entire feasible solution space, 

preventing weakening exploration ability and 

balancing global and local search. 
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Table 3. Optimal solution for CEED for different cases 

Hr 

Case (a) Case (b) 

PSR 

(MW) 

PD(net) 

(MW) 

Cfuel 

($/hr) 

Cemission 

($/hr) 

PSR 

(MW) 

PD(net) 

(MW) 

Cfuel 

($/hr) 

Cemission 

($/hr) 

1 23.983 509.450 5186.732 39.641 24.463 499.330 5102.107 37.559 

2 25.625 564.120 5658.919 49.891 28.025 516.520 5254.748 39.877 

3 26.722 590.350 5888.934 54.860 29.340 537.610 5429.799 44.704 

4 27.875 636.410 6289.396 65.618 32.579 543.030 5480.007 45.144 

5 28.461 623.070 6174.188 62.100 30.500 579.330 5794.435 52.301 

6 29.511 639.640 6321.361 65.510 30.902 607.210 6036.167 58.457 

7 30.750 702.910 6878.643 81.397 35.766 600.610 5979.278 56.844 

8 30.788 752.160 7319.133 94.257 40.549 558.710 5612.806 48.668 

9 36.025 857.240 8268.486 126.338 45.196 673.990 6624.316 73.529 

10 39.574 946.450 9089.282 156.388 50.114 736.180 7178.465 89.055 

11 41.164 921.950 8863.631 147.124 45.814 822.610 7953.011 115.589 

12 42.763 967.780 9287.071 164.268 48.539 846.030 8167.138 122.250 

13 41.010 959.350 9209.017 160.985 49.524 784.580 7611.348 103.129 

14 37.725 850.290 8205.635 123.792 42.131 752.580 7323.442 94.192 

15 34.474 812.050 7858.873 111.566 41.784 658.160 6482.617 70.248 

16 30.964 706.690 6911.662 82.595 35.008 613.860 6092.090 60.461 

17 29.163 657.740 6476.842 70.766 31.995 586.930 5856.818 54.644 

18 31.660 699.680 6852.832 79.663 33.342 649.720 6408.024 68.294 

19 34.235 740.060 7211.898 90.569 34.447 717.040 7003.279 85.512 

20 41.223 886.170 8534.205 135.184 41.271 865.250 8342.572 128.381 

21 38.433 828.520 8008.000 116.714 38.476 806.720 7811.000 109.779 

22 32.425 703.790 6887.469 81.326 32.512 680.130 6678.129 75.210 

23 27.653 606.740 6032.061 58.323 27.956 578.000 5780.723 52.444 

24 24.975 550.120 5541.759 46.417 25.139 523.000 5304.597 41.860 

Total 787.182 17712.73 172956.027 2265.292 875.371 15737.13 155306.915 1728.131 

Minimum 23.983 509.45 5186.732 39.641 24.463 499.33 5102.107 37.559 

Maximum 42.763 967.78 9287.071 164.268 50.114 865.25 8342.572 128.381 

Average 32.80 738.03 7206.50 94.39 36.47 655.71 6471.12 72.01 

Median 31.31 705.24 6899.57 82.00 34.73 631.79 6250.06 64.38 

S.D. 5.744 138.790 1244.194 38.674 7.720 112.138 992.476 27.781 

 

Saltation learning: This paper proposes a new 

foraging method called saltation learning (SL) 

inspired by sparrows' adaptability to complex 

environments. The algorithm's search ability is 

improved, but it can fall into premature convergence. 

The SL is adapted from the cuckoo search algorithm, 

but the implementation form is different. The new 

SL is introduced in Eq. (29) for enhancing the 

convergence rate and avoids falling into local 

optimums by modifying Eq. (25). 

 

𝑠𝑖𝑗,𝑚
𝑘+1 = 𝑠𝑖𝑗,𝑢

𝑘 + 𝛿. (𝑠𝑏𝑒𝑠𝑡,𝑣
𝑘 − 𝑠𝑤𝑜𝑟𝑠𝑡,𝑣

𝑘 ), 𝑖 >
𝑛

2
  (29) 

 

where m, v, and u stand for three distinct positive 

constants that are randomly selected from [1, d]. 

With these modifications, ISSA has 

demonstrated better convergence features than basic 

SSA and has become one of the most competitive 

algorithms in recent times for solving complex real-

time optimization problems. Furthermore, the 

overall computational aspects of ISSA are described 

in [32].  

5. Simulation results and discussion 

Simulations are done on a 3-bus power system 

for different scenarios using a PC of 2.4 GHz, 8 GB 

RAM, Intel Core i5-4210U CPU in MATLAB 

(2023b) environment. The computational efficacy of 

ISSA is compared with artificial rabbits 

optimization (ARO) [33], butterfly optimization 

algorithm [34], coyote optimization algorithm 

(COA) [35], and basic sparrow search algorithm 

(SSA) [31]. The population size and number of 
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maximum iterations are considered for all 

algorithms as 30 and 1000, respectively.  

5.1. Scenario 1: Standard test system 

In this scenario, the standard loading condition 

of 850 MW is considered. Simulations are 

performed for three cases as described in [33], i.e., 

Case (a) only fuel cost minimization, Case (b) only 

NOx cost minimization, and Case (c) only SO2 

minimization. The results of each case are given in 

Table 1.These three cases are performed with only 

ISSA. 

From the results, Case (b) produces the most 

power at P1 = 456.081 MW, followed by Case (c) at 

P2 with 314.561 MW and Case (a) at P3 with 

129.157 MW, according to the comparison of the 

three cases. At 15.419 MW and $0.096/h for NOx 

emissions, Case (b) also has the lowest power loss 

and lowest cost of emissions. But when it comes to 

fuel costs, Case (a) is the most economical at 

$8344.777/h, while Case (c) has the lowest cost of 

SO2 emissions at $8.939/h. In Case (c), the CPU 

time is 0.242 seconds, which is marginally faster 

than in Case (b) and Case (a), which are 0.244 and 

0.246 seconds, respectively. 

In addition, ISSA is compared with ARO, BOA, 

COA, and SSA. The convergence characteristics 

Case (a) using different algorithms are given in Fig. 

1, respectively. By observing these characteristics, 

ISSA had well experienced the better exploration 

and exploitation features than SSA and resulted for 

global optima. 

In Table 2, the fuel cost of thermal units and 

NOx emission cost are determined combinedly. In 

Table 3, the fuel cost of thermal units and SO2 

emission cost are determined combinedly. The total 

cost in Table 2 is less than Table 3 due to high cost 

of SO2 emission than NOx emissions. Further, in 

comparison to all other algorithms, ISSA in 

resulting global optima in both the cases. 

Because of its strong convergence speed, 

flexibility, and effectiveness in handling intricate 

restrictions, the Intensified Sparrow Search 

Algorithm (ISSA) performs better than other 

algorithms while solving the Combined Economic 

Emission Dispatch (CEED) problem. In order to 

facilitate faster convergence and concentrate 

computing resources on areas that show promise, 

ISSA incorporates an intensified search method. 

Additionally, it promotes deeper search within high-

potential zones and prevents premature convergence, 

improving the balance between exploration and 

exploitation. ISSA ensures workable solutions that 

satisfy both emission and economic goals by 

dynamically adapting to complicated restrictions. It 

produces high-quality, financially feasible, and 

ecologically friendly solutions, making it more 

appropriate for CEED applications due to its 

statistical resilience and solution quality. All things 

considered, ISSA is a better option for CEED issues 

because to its improvements in convergence 

efficiency, constraint adaptation, and solution 

resilience. 

 

 
Figure. 1 Convergence of different algorithm 

 
Table 1. Results for base case 

Item 
Objective Functions 

Case (a) Case (b) Case (c) 

P1 (MW) 442.031 456.081 443.214 

P2 (MW) 294.480 285.592 314.561 

P3 (MW) 129.157 123.745 108.434 

Ploss (MW) 15.668 15.419 16.209 

Fuel cost ($/h) 8344.777 8346.262 8348.253 

NOx ($/h) 0.110 0.096 0.112 

SO2 ($/h) 9.016 9.004 8.939 

CPU Time (Sec) 0.246 0.244 0.242 

 

Table 2. Comparison of ISSA results with other 

algorithms for CEED (Fuel + NOx) 

Applied 

Method 

Parameters 

P1 

(MW) 

P2 

(MW) 

P3  

(MW) 

Cost 

($/h) 

ARO [33] 380.97 323.66 145.36 8325.211 

BOA [34] 381.65 323.49 144.86 8325.205 

COA [35] 381.74 323.46 144.79 8325.205 

SSA [31] 382.17 320.65 147.17 8325.197 

ISSA 383.36 320.04 146.60 8325.188 

 
Table 3. Comparison of ISSA results with other 

algorithms for CEED (Fuel + SO2) 

Applied 

Method 

Parameters 

P1 

(MW) 

P2 

(MW) 

P3  

(MW) 

Cost 

($/h) 

ARO [33] 271.62 378.38 200.00 9215.734 

BOA [34] 272.02 377.98 200.00 9215.708 

COA [35] 276.43 373.57 200.00 9215.702 

SSA [31] 272.48 377.52 200.00 9215.684 

ISSA 273.26 376.74 200.00 9215.656 
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Table 4. Comparison of ISSA results for fuel cost 

Item 
Objective Functions 

IPBO [33] ABWO [34] Proposed  

P1 (MW) 394.532 435.39 394.531 

P2 (MW) 333.493 256.94 333.501 

P3 (MW) 121.975 148.70 121.971 

𝐶𝑓𝑙 ($/h) 8194.362 8255.10 8194.314 

NOx ($/h) 0.09956 0.0953 0.09957 

SO2 ($/h) 8.8906 - 8.8907 

 

 
Figure. 2 Hourly variability of the sources/loads 

 

5.2. Comparative study with literature 

In Table 4, the performance of ISSA is 

compared with improved polar bear optimization 

(IPBO) [33] and astute black widow optimization 

(ABWO) [34] without considering losses. The 

results of ISSA are observed very competitive with 

IPBO, whereas superior to ABWO [34] in terms of 

fuel cost.   

5.3. Scenario 2: Modified test system 

In this section, CEED is simulated for dynamic 

loading conditions due to hourly variability in load, 

PV, WT, EV and SR, are given in Fig. 2. Also, as 

defined in Eq. (19), PSR is calculated for each hour 

considering only stability and RES variability and 

generator loss is ignored. By these modifications, 

the net-loading condition for thermal power plants is 

estimated using Eq. (18). 

The following case studies are performed 

considering different uncertainties in the network.  

a) Variation in system demand including load and 

EVs, and correspondingly SR requirement as 

5% of total RES penetration. 

b) Variation in system demand including load, 

EVs and RES (i.e., PV+WT) and SR 

requirement as 10% of total RES penetration. 

In Case (a), fuel and emission costs are impacted 

by significant fluctuations in power supply and 

demand, according to the 24-hour combined 

economic emission dispatch study as given in Table 

3. The power supply has a moderate standard 

deviation of 5.744 MW and an average of 32.80 

MW, with a range of 23.983 MW to 42.763 MW. 

With a high degree of fluctuation (STD of 138.790 

MW), net power demand varies greatly, average 

738.03 MW and ranging from 509.45 MW to 967.78 

MW. With a moderate fluctuation (STD of 

$1244.194/hr) and an average of $7206.50/hr, fuel 

prices range from $5186.732/hr to $9287.071/hr. 

With a moderate standard deviation of $38.674/hr, 

emission costs average $94.39/hr and range from 

$39.641/hr to $164.268/hr. These findings highlight 

the necessity of carefully weighing pollution 

reduction and economic efficiency when making 

dispatch decisions. 

The 24-hour CEED data in Case (b) 

demonstrates notable fluctuations in fuel, emission 

prices, electricity supply, and demand. With a high 

standard deviation of 7.720 MW, an average of 

36.47 MW, a median of 34.73 MW, and a range of 

24.463 MW to 50.114 MW, the power supply 

exhibits significant swings. With a median of 631.79 

MW, a standard deviation of 112.138 MW, and an 

average of 655.71 MW, net power demand ranges 

from 499.33 MW to 865.25 MW, indicating 

significant variations in demand over time. Fuel 

prices vary moderately, ranging from $5102.107/hr 

to $8342.572/hr, with an average of $6471.12/hr, a 

median of $6250.06/hr, and a standard deviation of 

$992.476/hr. With an average of $72.01/hr, a 

median of $64.38/hr, and a standard deviation of 

$27.781/hr, emission costs exhibit substantial 

variability, ranging from $37.559/hr to $128.381/hr. 

These results emphasize the necessity of cautious 

management in order to strike the best possible 

balance between environmental and economic 

objectives. 

The SR in Case (a) is higher at 875.371 MWh 

than Case (a) of 787.182 MWh, indicating increased 

system reliability. Net power demand decreases by 

1975.6 MW, due to RES penetration. Fuel cost is 

lower by $17,649.112 per hour, because of RES or a 

better energy mix. Emission costs decrease by 

$537.161 per hour, indicating effective solution for 

global warming. More substantial variations in 

spinning reserves are suggested by the second case's 

larger PSR average (36.47 MW vs. 32.80 MW) and 

higher variability (STD of 7.720 MW vs. 5.744 

MW). In the second scenario, the higher range and 

unpredictability would suggest that reserve stability 

is more difficult to maintain, necessitating more 
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adaptable control techniques. Overall, Case (b) 

offers a sustainable and economically viable 

approach to power system operation.  

6. Conclusion 

In this paper, a new intensified sparrow search 

algorithm (ISSA) by introducing a neighbour search 

strategy and saltation learning, inspired by sparrows' 

jumping forward is proposed. At first, conventional 

CEED is performed on standard 3-unit power 

system without RES and EVs. In second stage, 

CEED is performed considering hourly variability in 

loading conditions on the system, RES and EVs 

with SR requirements for stability, RES variation 

and generation loss. The effectiveness of ISSA is 

compared in each scenario for different cases. The 

SR with RES and EVs is higher at 875.371 MWh 

than SR without RES and EVs of 787.182 MWh, 

indicating increased system reliability. Net power 

demand decreases by 1975.6 MW, due to RES 

penetration. Fuel cost is lower by $17,649.112 per 

hour, because of RES or a better energy mix. 

Emission costs decrease by $537.161 per hour, 

indicating effective solution for global warming. 

Overall, SR with RES and EVs offers a sustainable 

and economically viable approach to power system 

operation. However, SR management is treated as 

the extra burden on system. This scenario projects 

the need of ESS for handling loss of generator, On 

the other hand, EVs has been treated as extra 

loading on system, i.e., G2V mode and ignored V2G 

scenario. Thus, consideration of ESS and V2G 

scenarios are treated as major extension of this work. 

Notations 

𝑃𝑃𝑉  Total solar power share/ 

penetration 

𝑃𝑠,𝑖 Rated power capacity of solar 

power plant i 

𝑛𝑆 No. of SPVs in the system 

𝑇𝑟  & 𝑇𝑎,𝑖 Reference and ambient 

temperature at the SPV i, 

𝑆𝑖 Incident solar radiation on arrays 

at the SPV i. 
𝑃𝑊𝑇  Total power generation from WT 

units in the system. 

𝑉𝑡,𝑖 Wind speed at a time-t of unit i, 

𝑉𝑐𝑖,𝑖 Cut-in speed 

𝑉𝑐𝑜,𝑖  Cut-out speed 

𝑉𝑟,𝑖 Rated speed 

𝑃𝑤𝑡,𝑖 Power generation of unit i 

k A constant that includes factors 

like turbine efficiency, air density, 

and rotor area, 

𝑛𝑊 No. of WT units in system 

𝑃𝐸𝑉 Total EV load penetration in 

system 

𝑛𝐶𝑆 Number of CSs 

𝑃𝑒𝑣,𝑖 Power demand of CSi 

𝑛𝐿1,𝑖, 𝑛𝐿2,𝑖 & 𝑛𝐿3,𝑖 No. of level-1, 2 and 3 charging 

ports in ith CS, respectively 

𝑃𝑒𝑣
𝐿1, 𝑃𝑒𝑣

𝐿2 & 𝑃𝑒𝑣
𝐿3 Power ratings of level-1, 2 and 3 

EVs, respectively 

𝑃𝑑,𝑖 & 𝑄𝑑,𝑖 Real and reactive power loads at 

bus i after integrating either PV/ 

WT/ CS, respectively; 

𝑃𝑑(0),𝑖 & 𝑄𝑑(0),𝑖 Real and reactive power loads at 

bus-i before integrating either PV/ 

WT/ CS, respectively 

∅𝑤𝑡,𝑖 & ∅𝑒𝑣,𝑖 Operating power factors WT and 

CS, respectively 

𝑎𝑖, 𝑏𝑖𝑐𝑖, 𝑑𝑖 & 𝑒𝑖 Cost coefficients of the thermal 

power plant –i, respectively;, 

𝑚𝑖, 𝑛𝑖, 𝑜𝑖 , 𝑟𝑖 & 𝑠𝑖 Emission cost coefficients of 

power plant-i, 

𝑃𝑖  Output power from plant-i, 

𝑛𝑇 No. of thermal power plants 

𝑃𝑙  Total transmission losses 

𝐵𝑖𝑗  B-coefficients, which are the loss 

coefficients associated with buses 

𝑖 and 𝑗 
𝑃𝑇  Total power generation by 

thermal power plants, 

𝑃𝑖,𝑚𝑖𝑛 & 𝑃𝑖,𝑚𝑎𝑥  Minimum and maximum power 

generation limits of thermal 

power plant-i, respectively; 

𝐷𝑟,𝑖 & 𝑈𝑟,𝑖 Down-ramp and up-ramp limits of 

thermal power plant-i, 

respectively 

𝑃𝑖(𝑡−1) Power generation of thermal 

power plant-i, at time (t-1). 
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