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Abstract: Rice (Oryza sativa L.) is the fourth main food crop globally and is crucial for food security worldwide. 

Fertilization plays a significant part in rice yield and excellence and is a major portion of rice field management. 

Nutrient deficiency in the soil is considered as the main factor. Fundamentally, macronutrients are nutrients that 

contain more attention than micronutrients and are vital for tissue growth and plant cells. The most essential nutrients 

for plants are nitrogen (N), phosphorus (P), and potassium (K). A computer vision-based automated nutrition position 

of rice recognition model has occurred in agriculture. Deep convolutional neural network (DCNN) learning depends 

upon an artificial neural network (ANN) that can absorb and create intelligent forecasts using techniques. This 

objective focuses on the design of the Rhinopithecus Swarm Optimization Algorithm for Diagnosing Nutrient 

Deficiency Rice Crop (RSOA-NDRC) technique for the identification of nutrient deficiency in rice crops using a 

parameter-tuned Deep Learning (DL) model. Several stages of the RSOA-NDRC technique achieve this. In pre-

processing, RGB images are converted into HSV images to remove the background. Binary images are produced based 

on hue and saturation to separate the diseased from the non-diseased areas. In addition, Feature extraction is performed 

using the ShuffleNet method. The deep fuzzy neural network (DFNN) approach was applied to identify nutrient 

deficiencies. Finally, the rhinopithecus swarm optimization (RSO) model-based hyperparameter selection procedure 

is used to enhance the recognition outcomes of the DFNN approach. A comprehensive set of experimentations was 

performed to establish the improved performance of the RSOA-NDRC technique. The performance validation of the 

RSOA-NDRC technique portrayed a superior accuracy value of 98.85% over existing models. 

Keywords: Nutrient deficiency, Rhinopithecus swarm optimization, Rice crop, Classification, RGB images, 

ShuffleNet, Deep learning. 

 

 

1. Introduction 

Rice is the most significant crop worldwide, 

subsidizing 45% of the edible energy and 30% of the 

entire protein, and substantially contributes to 

feeding livestock [1]. Rice and its producing methods 

have advanced, with their photothermal needs for 

development and growth, with distinctive 

geographical allocations [2]. However, the highest 

rice harvests are attained from the moderate regions 

of Japan, Australia, the USA, and China; rice is the 

main crop of the subtropics and tropics. For 

employment, about 80% of the people depend on 

agriculture or its by-products as their primary income 

[3]. Since the rapid growth of the population, 

government officials need to support smart farming 

for profitable and sustainable agriculture, so it is 

essential to quicken the incorporation of advanced 

technologies to improve the agricultural sector, 

particularly in emerging countries like India. Health 

status and crop estimation have traditionally been 

supervised in India over crop cutting and physical 

observations [4]. Based on this, farmers apply 

fertilizer, pesticides, herbicides, and irrigating to their 

farms to improve the production of crops. However, 

this process can be either resource-intensive or time-

consuming, resulting in augmented input costs in 

agriculture [5]. To overcome this persistent problem, 

real-time crop growing monitoring across various 
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locations and under variable environmental 

conditions is imperative. Real-time crop monitoring 

not only improves management techniques and saves 

time but also allows managers to efficiently respond 

to intense climatic events and reduce their impacts on 

the global food system [6]. 

The production performance of important crops 

in many areas, together with the area’s circumstances 

for the production of crops, economic outcome, and 

environmental impact, were evaluated utilizing the 

methods of DL and machine learning (ML) [7]. DL 

allows computing methods with various processing 

layers to specify the data at different abstraction 

levels. The foremost applications of DL in the 

agriculture field are creating methods for deriving 

significant perceptions from agriculture data, image 

studies containing object detection and classification, 

like plant disease detection, detection of pests, weed 

identification, soil analysis, etc [8]. The rise of novel 

recognizing abilities and radical ML and DL methods 

are the best technologies, and they also affect soil 

fertility management to overcome the difficulties 

related to conventional fertility monitoring and 

mapping. The growing global population demands 

more effectual agricultural practices to ensure food 

security, specifically in staple crops like rice [9]. As 

conventional farming methods face limitations in 

productivity and sustainability, there is a pressing 

need for innovative technologies that can improve 

nutrient management and crop health. By 

incorporating advanced models, namely swarm 

optimization and DL, smarter solutions can be 

developed to diagnose nutrient deficiencies in rice. 

This approach aims to boost yields and promote 

sustainable farming practices, benefiting farmers and 

the environment. Embracing such improvements is 

significant for meeting the threats of modern 

agriculture, especially in developing regions [10]. 

This objective focuses on designing the 

Rhinopithecus Swarm Optimization Algorithm for 

Diagnosing Nutrient Deficiency in Rice Crop 

(RSOA-NDRC) technique. To achieve this, the 

RSOA-NDRC technique employs pre-processing to 

remove noise. In addition, the feature extraction 

procedure occurs by a ShuffleNet method. The deep 

fuzzy neural network (DFNN) approach was applied 

to identify the rice crop’s nutrient deficiency. At last, 

the rhinopithecus swarm optimization (RSO) 

method-based hyperparameter selection method is 

carried out to augment the recognition outcomes of 

the DFNN method. A comprehensive set of 

simulations was performed to establish the 

heightened performance of the RSOA-NDRC 

approach. The major contribution of the RSOA-

NDRC approach is listed below. 

• The RSOA-NDRC technique improves data 

quality by integrating a pre-processing step 

that effectively removes noise. This noise 

reduction is crucial for improving the 

accuracy of subsequent analyses. By ensuring 

cleaner input data, the approach lays a robust 

foundation for more reliable outcomes in 

detecting nutrient deficiencies. 

• The ShuffleNet methodology for feature 

extraction substantially optimizes the process, 

improving computational effectualness while 

conserving accuracy. This advanced method 

confirms that critical features are efficiently 

captured, facilitating enhanced performance 

in detecting nutrient deficiencies. By 

streamlining feature extraction, the technique 

enables quicker and more reliable analyses. 

• The DFNN model is specifically constructed 

for precisely detecting nutrient deficiencies in 

rice crops, enabling more complex evaluation. 

This methodology improves the capability of 

the technique to interpret complex data 

patterns related to crop health. By enhancing 

accuracy in deficiency detection, the method 

assists improved decision-making for 

agricultural management. 

• The RSO method is used for hyperparameter 

selection, crucially enhancing the 

performance of the DFNN model. This 

approach optimizes parameter tuning, 

enhancing recognition outcomes for nutrient 

deficiency detection. Refining the model’s 

settings confirms more accurate and reliable 

assessments in agricultural contexts. 

• Incorporating ShuffleNet for feature 

extraction with RSO for hyperparameter 

tuning in rice crop nutrient deficiency 

detection presents a novel approach that 

enhances both effectualness and detection 

accuracy. This integration allows for rapid 

processing of complex data while ensuring 

precise evaluations. By employing these 

advanced models, the methodology stands out 

as an innovative solution in agricultural 

technology. 

The article is structured as follows: Section 2 

presents the literature review, Section 3 outlines the 

proposed method, Section 4 details the results 

evaluation, and Section 5 concludes the study. 

2. Related works 

Zhe Xu et al. [11] proposed using DCNNs to 

classify nutrient deficiencies in rice plants. Leaf 

images from hydroponically grown rice plants were 
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acquired to induce N, P, K, and other elements’ 

deficiencies. Then, four models of DCNNs—

Inception-v3, ResNet-50, NasNet-Large, and 

DenseNet-121—are used to classify the leaves based 

on their specific visual signs of damage. The study 

demonstrated that DCNNs can easily overcome the 

challenge of automated nutrient deficiency diagnosis 

and, therefore, can be used in real-time precision 

agriculture applications. Shaik Salma Begum et al. 

[12] used block-wise crop nutrient deficiency 

detection, suggesting a custom CNN approach. In this 

method, leaf images are divided into many smaller 

blocks and further researched to classify some 

specific nutrient deficiencies. The overall leaf 

classification is then obtained using the winner-takes-

all strategy from the block-wise classifications with 

the MLP outcome. Considering this, the model 

efficiently detected deficiencies such as nitrogen and 

phosphorus. Plant health monitoring is thus more 

automatic than traditional methods. Shauryavir Singh 

Manhas et al. [13] developed a deep-learning-based 

system to detect nutrient deficiencies in plant leaves. 

Based on ResNet, VGGNet, and GoogleNet, this 

system classifies the leaves’ images to detect such 

deficiencies as nitrogen (N) and phosphorus (P). The 

study addresses some shortcomings of conventional 

soil-testing methods by proposing a more direct 

automated method for identifying plant nutrient 

shortages. The proposed research argued that 

methods such as neural networks could significantly 

impact how large-scale farming manages crop 

nutrition. Borja Espejo-Garcia et al. [14] used deep 

learning methods, specifically the implementation of 

EfficientNet with transfer learning, to diagnose 

nutrient deficiencies in sugar beet and orange tree 

crops. Two datasets were involved; one regarding 

sugar beet was related to N, P, and K deficiencies, 

and the other was for orange trees, but it considered 

Fe, Mg, and Mn deficiencies, among others. In other 

words, this paper proved how deep learning models 

could potentially predict nutrient deficiencies using 

RGB images, an application for early diagnosis and 

efficient nutrient management in agriculture. 

Anu Jose et al. [15] have developed an ANN to 

classify nutrient deficiency in tomatoes by nutrients: 

N, P, K, Mg, Ca, and S. The model uses hue-based 

segmentation, thresholding, and feature extraction 

using the Color Co-occurrence Method. Many 

approaches toward image pre-processing in 

improving detection accuracy have been adopted in 

this study, including resizing, noise elimination, and 

contrast stretching. The ANN-based approach 

resolved the issue by optimizing crop health and yield 

management abilities so farmers could monitor 

nutrient deficiency in real-time. Md. Simul Hasan 

Talukder et al. [16] proposed the DECNN to detect 

nutrient deficiencies in rice crops. In addition, the 

weighted ensemble learning strategy was developed 

to fuse those pre-trained architectures—

DenseNet169, DenseNet201, and InceptionV3. 

Furthermore, data augmentation and its amount were 

also improved to increase the robustness of the model 

and improve the diagnosis of N, P, and K deficiencies 

in rice crops. This is to say that ensemble learning 

could be an effective strategy for enhancing the 

correctness and reliability of deficiency diagnosis. To 

get around the problems of underfitting, Sherline 

Jesie R et al. [17] created a hybrid convolutional 

neural network (HCNN) to help classify nutrient 

deficiencies in rice crops toward NPK classification. 

CLAHE, also known as Contrast Limited Adaptive 

Histogram Equalization, serves as the enhancement 

technique, while GLCM, also known as Gray Level 

Co-occurrence Matrix, is used for feature extraction. 

All these hybrid architectures with data augmentation 

techniques will overcome the problems of 

underfitting. The experiment proved the HCNN’s 

potential use of nutrient deficiency in paddy crops for 

automated detection, and as a result, it was a scalable 

solution for precision agriculture. 

Despite the promising results of these studies, a 

few constraints were identified. As noted by Zhe Xu 

et al. and Borja Espejo-Garcia et al., the biggest 

constraint is the lack of readily available, relatively 

large, and diverse datasets. If comprehensive datasets 

are lacking, then the models will fail to generalize 

appropriately to new conditions or unseen data. With 

these problems come the overfitting and underfitting 

difficulties, which are also exposed by the studies of 

Sherline Jesie R et al. and Shaik Salma Begum et al. 

with the scarcity of data and advanced image 

segmentation techniques. Another problem arises 

when deploying these models in agriculture in real-

time, as lighting conditions and noise will affect the 

accuracy of predictions, according to the author Anu 

Jose et al. Furthermore, while Md. Simul Hasan 

Talukder et al. used ensemble models to improve 

prediction accuracy; they face significant challenges 

in selecting weights that do not amplify the errors 

within individual models. The challenges in using 

these models in large-scale farming stem from the 

early stage of model integration into farm 

management systems. 

3. Materials and methods 

This paper presents the RSOA-NDRC technique. 

The technique’s purpose is to precisely and 

proficiently identify rice crop nutrient deficiency 

using a parameter-tuned DL model.  
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Figure. 1 Workflow of RSOA-NDRC technique 

 

 

To accomplish this, the technique uses image pre-

processing, feature extractor, classification, and 

parameter optimizer systems. Fig. 1 depicts the 

workflow of the RSOA-NDRC technique. 

3.1 Image pre-processing 

The RSOA-NDRC technique primarily utilizes 

the image pre-processing method for noise removal. 

During pre-processing, images of the dataset are 

resized and cropped to 300 x 450 pixels to reduce 

memory requirements and computational power. In 

this stage, the primary task is to remove the 

background from images based on hue value 

integration. In the initial stage, RGB images are 

converted into HSV format [18]. Taking the value for 

the process from the HSV model first, since it 

conceals whiteness, the S value is considered a binary 

image based on a threshold value of 90. This binary 

image is merged with the original RGB image to form 

a mask. The threshold value requires numerous tries. 

During fusing, the background gets removed by 

assigning pixel values as 0’s. In the RGB model, the 

value 0 from any pixel represents a black colour. 

After removing the background, only a part of the leaf 

containing the diseased portion is visible in the image. 

3.2 ShuffleNet model 

Next, the feature method is extracted using a 

ShuffleNet method. ShuffleNet employs group 

convolution as an alternative to point convolution for 

raising accuracy [19]. In group convolution, every 

group’s output relies only on its input, separating 

details between clusters. ShuffleNet uses shuffling, 

depth-wise convolution, and pointwise group 

convolution devices to enhance efficacy. This 

simplifies superior learning rates and allows more 

minor dropouts to be used. To achieve normalization, 

every size of d-dimensional data 𝑌 =
𝑌(1), 𝑌(2), … , 𝑌(𝑃)  is regularized by employing Eq. 

(1). This calculation combines per-extent variance, 

and the mean of data is denoted as 𝑔 and 𝑣𝑎𝑟. The 

BN function, Eq. (2), declares the 𝑅𝑒𝐿𝑈 activation 

function. 

 

�̃�(𝑘) =
𝑌(𝐾)−𝑔[𝑌(𝐾)]

√𝑣𝑎𝑟[𝑌(𝐾)]

                                                  (1) 

 

Re𝐿𝑈(𝑌) = {
0, 𝑖𝑓 𝑌 ≤ 0
𝑌 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

                                   (2) 
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In Eq. (2), 𝑌 represents input, and its output is 𝑌 

for positive value and 0 for negative rate. Assume 𝑋1 

is an output produced by AlexNet, specified as 

𝑠𝑜𝑓𝑡𝑚𝑎𝑥(𝑥)𝐼  and 𝑋2  output got from ShuffleNet, 

which is expressed as 

 

𝑋2 = ∑ ∑ 𝑌(𝐾)∗ 𝑄𝑖
∗𝑋𝑖                                              (3) 

 

Computed output layer achieved from uniting 

layer, 

 

𝑋3 = ∑ ∑ 𝑍𝑡+1
∗

𝑧𝑑 𝑋2
∗𝜗                                             (4) 

 

Whereas 𝜃  definite weight ranges from (0‐1), 

𝑍𝑡+1 signifies the amplified images, measured as the 

feature. 

3.3 Classification using DFNN model 

The DFNN approach was applied to the rice crop 

classification process. The DFNN model mainly 

depends upon the FNN technique that unites a fuzzy 

inference system (FIS) with ANNs [20]. The Takagi‐

Sugeno kind of FIS has been employed to recover 

computational efficacy by neglecting the 

defuzzification method at an output phase. For the 

Takagi‐Sugeno kind of FIS, the fuzzy rules are stated 

in Eq. (5) and indicate the outcome of 𝑒𝑎𝑐ℎ fuzzy 

rule for the 𝑠𝑡ℎ data instance. 

 

When 𝑥1(𝑠) is 𝑀𝑖1(𝑠), ⋯ , 𝑥𝑚(𝑠) is 𝑀𝑖𝑚(𝑠), 

𝑡ℎ𝑒𝑛 �̂�i(𝑠)𝑖𝑠 𝑓𝑖(𝑥1(𝑠), ⋯ , 𝑥𝑚(𝑠))                (5) 

 

whereas 𝜒1, 𝜒𝑚  denotes an input variable in the 

FNN model, 𝑚  refers to an input variable counts, 

𝑀𝑖1 ⋯ , 𝑀𝑖𝑚  indicates a fuzzy set of 𝑖𝑡ℎ fuzzy rule, 

and �̂� signifies an output variable. The FNN model’s 

six layers are mentioned below: 

 

Layer 1: Input: 𝑥1(𝑠), ⋯ , 𝑥𝑚(𝑠) 

Layer 2: Membership function: 𝑀𝑖1, … , 𝑀𝑖𝑚 

Layer 3: Weight: 𝑤1, … , 𝑤𝑛 

Layer 4: Normalization: �̅�1, … , �̅�𝑛 

Layer 5: Multiplication: 𝑤1𝑓1(𝑥1(𝑠), 𝑥𝑚(𝑠)), … 

, 𝑤𝑛𝑓𝑛(𝑥1(𝑠), … , 𝑥𝑚(𝑠)) 

Layer 6: Output layer: 𝑦 

 

At first, the input layer is liable for grabbing 

𝑥1(𝑠), … , 𝑥𝑚(𝑠) and taking place in the subsequent 

layer. Then, the layer of membership function obtains 

the values from a layer of input and computes 

utilizing Eq. (6). Depending upon Eq. (6), the layer 

of membership function computes the value and 

conveys it to the subsequent layer. 

 
Figure. 2 Structure of DFNN 

 

 

𝑀𝑖𝑗 (𝑥𝑗(𝑠)) = 𝑒−(𝑥𝑗(𝑠)−𝑐𝑖𝑗)2/2𝑑𝑖𝑗
2

,                        (6) 

 

Meanwhile, 𝑐𝑖𝑗 denotes a midpoint point, and 𝑑𝑖𝑗 

refers to the breadth value of the symmetric Gaussian 

function. 

Next, the layer of weight multiplies every value 

of membership from the preceding layer intended for 

all fuzzy rules and exposed in Eq. (7). 

 

𝑤𝑖(𝑠) = ∏ 𝑀𝑖𝑗
𝑚
𝑗=1 (𝑥𝑗(𝑠))                                    (7) 

 

In the 4th layer, the normalization layer captures 

the value from the preceding layer and regularizes 

them, as revealed in Eq. (8). 

 

𝑤i(𝑠) =
𝑤𝑖(𝑠)

∑ 𝑤𝑖
𝑛
𝑖=1 (𝑠)

                                                    (8) 

 

Fifth, the multiplication layer is used to multiply 

every weight regularized by the output of fuzzy rules, 

which leads to the following layer. Lastly, the output 

layer sums up every outcome from the preceding 

layer to deliver a value of output, as revealed in Eq. 

(9). 

 

�̂�(𝑠) = ∑ 𝑤𝑛
𝑖=1 i

(𝑠)𝑦𝑖(𝑠) =

∑ 𝑤𝑛
𝑖=1 i

(𝑠)𝑓𝑖(𝑥1))𝑥𝑚)                                           (9) 
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The DFNN model reflects the stacked 

architecture of the FNN module, which is parallel to 

DL models. On the other hand, the DFNN technique 

places the FNN components repeatedly. Eqs give the 

FIS at an initial and 𝑔‐ 𝑡ℎ FNN module. (5) and (10), 

respectively 

 

If 𝑥1(𝑠) is 𝑀𝑖1
(𝑔)

(𝑠), … , 𝑥𝑚(𝑠) is 𝑀𝑖𝑚
(𝑔)

(𝑠) , 

𝑎𝑛𝑑 �̂�(𝑔−1)(𝑠)𝑖𝑠 𝑀𝑖(𝑚+1)
(𝑔)

(𝑠),                              

then �̂�(𝑠) is 𝑓𝑔 (𝑥1(𝑠), ⋯ , 𝑥𝑚(𝑠), 𝑦(𝑔−1)(𝑠))      (10) 

 

where 𝑔  denotes the number of FNN modules. 

The structural features of the DFNN technique permit 

superior valuation performance, but the risk of 

overfitting happens due to the structural difficulty. 

The DFNN technique employs a rule-dropout model 

and a genetic algorithm to avert overfitting. Fig. 2 

depicts the structure of DFNN. 

3.4 Parameter tuning process 

Additionally, the RSO model-based 

hyperparameter selection method is performed to 

enhance the recognition outcomes of the DFNN 

method [21]. The RSO technique is an efficient 

choice for hyperparameter tuning due to its unique 

approach that duplicates the social behaviour and 

interactions of rhinopithecus monkeys. This model 

outperforms in exploring the search space effectually, 

balancing exploration and exploitation to avert local 

optima. Unlike conventional methodologies, RSO 

can dynamically adapt its search strategies based on 

population behaviours, resulting in more robust 

solutions. Its capability to handle complex 

optimization issues makes it superior to conventional 

models, namely grid search or random search, which 

may be less effective. Moreover, the flexibility of the 

RSO model allows it to be applied across diverse ML 

frameworks, improving its applicability in various 

scenarios. Overall, RSO presents a novel, 

biologically inspired alternative that enhances tuning 

accuracy and convergence speed. Fig. 3 illustrates the 

steps involved in the RSO method. The migration 

behaviour of rhinopithecus groups stimulated a new 

RSO approach. The groups of rhinopithecus hunt for 

migration positions deliver a novel hunt tactic for the 

optimization technique that will well balance 

exploitation and exploration ability. The highest 40% 

of individuals are named as mature rhinopithecus, 

those placed among 40 to 70 percent are termed 

adolescent rhinopithecus, and the leftover individuals 

are called infancy rhinopithecus depending upon 

their fluctuating grades of existence dominance. The 

distinct   with   the   poorest   locale   position   is  king 

 
Figure. 3 Steps involved in the RSO model 

 

 

rhinopithecus, which generally arises from mature 

individuals. The mature and king rhinopithecuses 

together main the migration of the cluster.  

3.4.1. Vertical migration 

Vertical migration action of rhinopithecus plays a 

vital part in the existence of clusters. Generally, 

rhinopithecus groups sometimes travel among higher 

and lower altitudes dependent on climatic conditions 

and food distribution. At lower temperatures, 

rhinopithecus choose to be dynamic, whereas the 

lower altitude position decreases the physical 

pressure of low temperature, and the nutrition was 

moderately more ample. In other temperatures, the 

rhinopithecus groups show the reverse migrant 

tendency and prefer to use greater altitude regions 

where food is comparatively higher quality. King and 

mature rhinopithecus generally have spatial cognition 

and richer knowledge of the migration procedure. 

They used to remember the perception of the 

optimum position for dual temperature conditions. 

The search tactics depend upon spatial cognition and 

aid rhinopithecus swarms in picking appropriate 
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migration positions more effectively for dissimilar 

food resources and climatic conditions. 

 

𝐾𝑖𝑛𝑔𝑅 = [𝐾𝑖𝑛𝑔𝑅, 𝐾𝑖𝑛𝑔𝑅𝑐1, 𝐾𝑖𝑛𝑔𝑅𝑐2] 
𝑀𝑅 = [𝑀𝑅, 𝑀𝑅𝑐1, 𝑀𝑅𝑐2]                                   (11) 

 

Here, 𝐾𝑖𝑛𝑔𝑅 and 𝑀𝑅 stand for king and mature 

rhinopithecuses, respectively. Eq. (13) demonstrates 

their candidate solution. 

 

𝛼 =
𝐾𝑖𝑛𝑔𝑅𝑎+𝑀𝑅𝑏

2

𝛽 = |𝐾𝑖𝑛𝑔𝑅𝑎 − 𝑀𝑅𝑏|
𝑎, 𝑏𝜖[0.2]                       (12) 

 

𝐶𝑎𝑛𝑑𝑖𝑀𝑅 = 𝐺𝑎𝑢𝑠𝑖(𝛼, 𝛽)                                  (13) 

 

Meanwhile, 𝐾𝑖𝑛𝑔𝑅𝑎  and 𝑀𝑅𝑏  stand for the 

positions of king and mature rhinopithecuses. 𝐺𝑎𝑢𝑠𝑖 
(𝛼, 𝛽) denotes a function value produced randomly 

from a Gaussian distribution with a variance of 𝛽 and 

an expectation of 𝛼. 

3.4.2. Concerted search 

In a group of rhinopithecus, adolescent 

rhinopithecus are in the development phase. Even 

though they have a definite grade of searchability 

while examining migration positions, they must be 

more knowledgeable when equated to king and 

mature rhinopithecuses. So, adolescent rhinopithecus 

generally show comparative uncertainty in selecting 

hunt routes and migration positions. In this situation, 

adolescent rhinopithecus would energetically search 

for help from mature and king rhinopithecuses, 

trusting their perception of the atmosphere and 

employing search knowledge to aid in making 

decisions. Naturally, adolescent rhinopithecus share 

information regarding their past position to mature 

and king rhinopithecuses. Then, they utilize their 

knowledge to show the adolescents how to make 

decisions. In RSO, the adolescent rhinopithecus is 

used to converse dual past locations to the mature and 

king rhinopithecuses, respectively. 

 

𝐴𝑅 = [𝐴𝑅ℎ1, 𝐴𝑅ℎ2] 
 

where 𝐴𝑅 refers to an adolescent rhinopithecus, 

who will consider both proposals equally and create 

their thoughts to generate a candidate solution that is 

computed by Eq. (15). The decision‐making tactic 

depends upon data distribution and group 

collaboration, which can efficiently increase the 

efficacy and precision of rhinopithecus groups in 

migration.  

 

𝛾 =
𝐾𝑖𝑛𝑔𝑅𝑎 + 𝐴𝑅𝑐

2
 

 

𝜖 =
𝑀𝑅𝑏+𝐴𝑅𝑐

2
 𝑎, 𝑏 ∈ [0,2]                                    (14) 

 

𝑐 ∈ [0,1] 
 

𝛿 = |𝐾𝑖𝑛𝑔𝑅𝑎 − 𝐴𝑅| 
 

𝜁 = |𝑀𝑅𝑏 − 𝐴𝑅| 
 

𝐶𝑎𝑛𝑑𝑖𝐴𝑅 =
𝐺𝑎𝑢𝑠𝑖(𝛾,𝛿)+𝐺𝑎𝑢𝑠𝑖 (𝜀,𝜁)

2
                     (15) 

 

𝐾𝑖𝑛𝑔𝑅𝑎 , 𝑀𝑅𝑏 , and 𝐴𝑅𝑐  standard king, mature, 

and adolescent rhinopithecuses locations. 

𝐺𝑎𝑢𝑠𝑖(𝛾, 𝛿)  denotes a value of the function that 

makes at random from a distribution of Gaussian with 

a variance of 𝛿 and an expectation of 𝛾. 𝐺𝑎𝑢𝑠𝑖(𝜀, 𝜁) 

was a value of a function that produces randomly 

with an expectation of 𝜀 and a variance of 𝜁. 

3.4.3. Mimicry 

Infancy rhinopithecus is generally in the initial 

steps of growth and learning. So, discovering an 

appropriate position for migration is highly 

challenging for infancy rhinopithecus. In this 

growing phase, infancy rhinopithecus rely on other 

followers of the swarm, exceptionally mature and 

adolescent rhinopithecuses, to help them in their 

voyage. In the migration procedure, infant 

individuals share information regarding their position 

with the grownup rhinopithecuses in many ways. 

Mature and adolescent rhinopithecuses will get the 

behaviours of the infancy rhinopithecus, like 

consumption habits and way of life, depending upon 

the position data. Therefore, they will mix their 

knowledge well to direct young individuals to travel. 

After receiving direction, the infant individuals will 

implement the proposals from both of them distinctly. 

Their candidate solutions were formulated by Eq. 

(17). The group‐assistance‐based tactic aids infancy 

rhinopithecus to pass over the development stage 

effortlessly. They can efficiently study existence 

abilities by copying the exploration tactics of older 

rhinopithecus. 

 

𝜂 =
𝑀𝑅𝑏 + 𝐼𝑅

2
 

 

𝜄 =
𝐴𝑅𝑐+𝐼𝑅

2
 𝑏 ∈ [0,2]                                            (16) 

 

𝑐 ∈ [0,1] 
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𝜃 = |𝑀𝑅𝑏 − 𝐼𝑅| 
 

𝜅 = |𝐴𝑅𝑐 − 𝐼𝑅| 
 

𝐶𝑎𝑛𝑑𝑖𝐴𝑅 =
𝐺𝑎𝑢𝑠𝑖(𝜂,𝜃)+𝐺𝑎𝑢𝑠𝑖 (𝜄,𝜅)

2
                      (17) 

 

𝑀𝑅𝑏 , 𝐴𝑅𝑐  and 𝐼𝑅  refer to the locations of 

matured, infancy, and adolescent rhinopithecuses. 

𝐺𝑎𝑢𝑠𝑖(𝜂, 𝜃)  refers to the value of a function that 

produces randomly with an expectation of 𝜂  and a 

variance of 𝜃. 𝐺𝑎𝑢𝑠𝑖(𝜄, 𝜅) denotes a function value 

that generates at random with an expectation of 𝜄 and 

a variance of 𝜅. Fitness selection is a substantial 

factor in manipulating the efficiency of the RSO 

model. The hyperparameter selection procedure 

includes the solution-encoded system to assess the 

effectiveness of the candidate solutions. In this paper, 

the RSO technique reflects precision as the foremost 

standard for projecting the fitness function, expressed 

below.  

 

𝐹𝑖𝑡𝑛𝑒𝑠𝑠 =  max (𝑃)                                           (18) 

 

𝑃 =
𝑇𝑃

𝑇𝑃+𝐹𝑃
                                                              (19) 

 

Here, 𝑇𝑃  and 𝐹𝑃  correspondingly signify the 

true positive and false positive values. 

4. Experimental results and analysis 

In this section, the investigational validation of 

the RSOA-NDRC approach is performed using the 

Kaggle dataset [22], which contains 1156 samples 

under three classes. Table 1 demonstrates this. Fig. 4 

illustrates the sample images of three classes.  

Fig. 5 establishes the confusion matrices formed 

by the RSOA-NDRC model under 80:20 of 

TRAP/TESP. The results state that the RSOA-NDRC 

technique efficiently recognizes and identifies all 

classes.  

Table 2 and Fig. 6 represent the classifier results 

of the RSOA-NDRC technique under 80% TRAP and 

20% TESP. The results specify that the RSOA-

NDRC approach correctly identified the samples. 

With 80% TRAS, the RSOA-NDRC method 

provides average 𝑎𝑐𝑐𝑢𝑦 , 𝑝𝑟𝑒𝑐𝑛 , 𝑟𝑒𝑐𝑎𝑙 , and 𝐹𝑠𝑐𝑜𝑟𝑒 , 

of 98.48%, 97.78%, 97.80%, and 97.78%, 

correspondingly. Simultaneously, with 20% TESP, 

the RSOA-NDRC model provides an average 𝑎𝑐𝑐𝑢𝑦, 

𝑝𝑟𝑒𝑐𝑛 , 𝑟𝑒𝑐𝑎𝑙 , and  𝐹𝑠𝑐𝑜𝑟𝑒  of 98.85%, 98.31%, 

98.47%, and 98.37%, respectively. 

Fig. 7 establishes the training (TRA) and 

validation (VLA) accuracy results of the RSOA-

NDRC technique under 80% TRAP and 20% TESP.  

   
(a) (b) (c) 

Figure. 4 Sample images: (a)Nitrogen, (b)Phosphorus, 

and (c)Potassium 

 

 
Table 1. Details on dataset 

Nutrients No. of Samples 

Nitrogen (N) 440 

Phosphorus (P) 333 

Potassium (K) 383 

Total Samples 1156 

 

 
Table 2. Classifier outcome of RSOA-NDRC method 

under 80% TRAP and 20% TESP 

Class  𝑨𝒄𝒄𝒖𝒚 𝑷𝒓𝒆𝒄𝒏 𝑹𝒆𝒄𝒂𝒍 𝑭𝒔𝒄𝒐𝒓𝒆 

TRAP (80%) 

Nitrogen (N) 97.94 97.71 96.88 97.30 

Phosphorus (P) 99.35 99.27 98.55 98.91 

Potassium (K) 98.16 96.35 97.97 97.15 

Average 98.48 97.78 97.80 97.78 

TESP (20%) 

Nitrogen (N) 98.28 96.63 98.85 97.73 

Phosphorus (P) 99.57 98.31 100.00 99.15 

Potassium (K) 98.71 100.00 96.55 98.25 

Average 98.85 98.31 98.47 98.37 
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(a) (b) 

Figure. 5 Confusion matrices: (a)80% TRAP and (b)20% TESP 

 

 

 
Figure. 6 Average of RSOA-NDRC method under 80% TRAP and 20% TESP 

 

 

 
Figure. 7 𝐴𝑐𝑐𝑢𝑦 curve of RSOA-NDRC technique under 80% TRAP and 20% TESP 
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Table 3. Comparative analysis of RSOA-NDRC method with recent models [23-26] 

Classifiers 𝒂𝒄𝒄𝒖𝒚 𝒑𝒓𝒆𝒄𝒏 𝒓𝒆𝒄𝒂𝒍 𝑭𝒔𝒄𝒐𝒓𝒆 

InceptionResNetV2 90.00 90.00 90.00 89.67 

InceptionResNetV2 + DenseNet 92.00 92.67 92.00 92.33 

Inception-V3 93.00 93.00 93.00 93.00 

Finetuned MobileNet 93.10 93.11 93.10 93.09 

Xception Model 95.14 95.26 94.40 94.93 

RSOA-NDRC 98.85 98.31 98.47 98.37 

 

 

 
Figure. 8 Loss curve of RSOA-NDRC method under 80% TRAP and 20% TESP 

 

 

 
Figure. 9 Comparative analysis of RSOA-NDRC method with recent models 
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The accuracy values are calculated over a range of 0-

50 epochs.  

The outcome emphasized that the TRA and VLA 

accuracy values exhibit a rising trend, which 

indicates the ability of the RSOA-NDRC model to 

perform heightenedly over numerous iterations. Also, 

the TRA and VLA accuracy remains quicker over the 

epochs that label the lowest insignificant overfitting 

and display the heightened efficiency of the RSOA-

NDRC model, assuring a steady forecast on hidden 

samples. 

Fig. 8 shows the TRA and VLA loss graph of the 

RSOA-NDRC model under 80% TRAP and 20% 

TESP. The loss values are calculated throughout 0-50 

epochs. It is signified that the TRA and VLA 

accuracy values validate a decreasing tendency, 

alerting the ability of the RSOA-NDRC model to 

harmonize a trade-off between generalize and data 

fitting. The continual reduction in loss values 

similarly ensures the heightened performance of the 

RSOA-NDRC technique and tunes the prediction 

results over time. 

Table 3 and Fig. 9 inspect the comparison results 

of the RSOA-NDRC model with the existing 

techniques InceptionResNetV2 [23], 

InceptionResNetV2 + DenseNet [23], Inception-V3 

[24], Finetuned MobileNet [25], and Xception model 

[26]. The performance of various classifiers reveals 

notable differences in their efficiency. The 

inceptionResNetV2 model attained an accuracy of 

90.00% while integrating InceptionResNetV2 and 

DenseNet methods, which improved this to 92.00%. 

Inception-V3 and Finetuned MobileNet 

demonstrated similar performance, with an accuracy 

of 93.00% and 93.10%, respectively. The Xception 

Model showed significant improvement, reaching an 

accuracy of 95.14%. On the contrary, the RSOA-

NDRC approach outperformed all others with an 

impressive accuracy of 98.85%, along with precision, 

recall, and F-score values of 98.31%, 98.47%, and 

98.37%, respectively. 

5. Conclusion 

In this paper, the RSOA-NDRC technique is 

presented. The purpose of the RSOA-NDRC 

technique rests in the precise and expert identification 

of rice crops using a parameter-tuned DL model. To 

achieve this, the RSOA-NDRC technique employs 

pre-processing to remove noise. In addition, the 

feature extraction procedure occurs by a ShuffleNet 

method. For the rice crop nutrient deficiency 

identification process, the DFNN technique was 

deployed. At last, the RSO technique-based 

hyperparameter selection method is carried out to 

enhance the recognition outcomes of the DFNN 

method. A comprehensive set of simulations was 

carried out to establish the heightened performance 

of the RSOA-NDRC technique. The extensive results 

show the improved performance of the RSOA-

NDRC technique over other models. The 

performance validation of the RSOA-NDRC 

technique portrayed a superior accuracy value of 

98.85% over existing models. The limitations of the 

RSOA-NDRC technique encompass its dependency 

on the quality and completeness of input data, which 

can affect the accuracy of nutrient deficiency 

predictions. Furthermore, the model may need help 

with intrinsic interactions between diverse nutrients 

and environmental factors, resulting in 

oversimplified recommendations. 
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