
Received:  September 23, 2024.     Revised: October 25, 2024.                                                                                        106 

International Journal of Intelligent Engineering and Systems, Vol.18, No.1, 2025           DOI: 10.22266/ijies2025.0229.09 

 

 
Multiple Object Detection and Tracking Using Deep Learning Framework with 

Non-Maximum Suppression 

  

Vinod Biradar1*          Karuna Chandrashekhar Gull1 

 
1Department of Computer Science and Engineering, S. G. Balekundri Institute of Technology, Belagavi, 

Visvesvaraya Technological University, Belagavi-590018, Karnataka, India 
* Corresponding author’s Email: vinnu151986@gmail.com 

 

 
Abstract: Multiple object detection and tracking involves identifying and locating numerous objects within a sequence 

of images or video frames and maintaining their identities across frames. This process is significant for applications 

like surveillance and autonomous vehicles. However accurately detecting and tracking multiple objects in dynamic 

environments is challenging because of occlusions, overlapping trajectories, and varying object sizes which results in 

tracking failure and misidentification. In this research, the Convolutional Neural Network with Non-Maximum 

Suppression (CNN-NMS) is proposed to detect and track multiple objects accurately using the VGG16 model. Using 

a CNN-NMS enhances object detection by leveraging the CNN’s ability to extract detailed features whereas NMS 

refined the outcomes by removing redundant overlapping bounding boxes. In CNN-NMS, the VGG16 is applied to 

extract features with incorporating linear layer and sigmoid activation which predicts class labels and bounding box 

offsets. The proposed CNN-NMS achieves a high MOTA of 80.05%, 85.72%, 79.12%, 81.27%, and 82.47% using 

MOT17, open image bus truck, MOT15, 16, and 20 datasets compared to existing methods like You Only Look Once 

Tracker and RetinaMOT. 

Keywords: Bounding boxes, Convolutional neural network, Multiple object detection and tracking, Non-maximum 
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1. Introduction 

Multi-Object Tracking (MOT) is a significant 

research direction in computer vision as it involves 

identifying, classifying, and tracking various objects 

in a video and relating their trajectories to establish 

an entire sequence. This process not only involves 

detecting objects in every frame but also defining 

which objects are to be tracked [1]. To achieve 

effective tracking, it is essential to accomplish the 

data association in subsequent frames and relate the 

motion trajectories of the detected objects to evaluate 

their category [2]. Typically, MOT combines 

approaches like trajectory prediction, data 

association, and object detection to effectively track 

and handle multiple objects in a video sequence. Due 

to the developments in object detection, most 

tracking approaches follow a two-phase tracking-by-

detection method [3]. This method decouples the 

tracking and detection tasks by presenting a tailored 

approach for each which results in a more robust 

MOT system [4, 5]. The primary goal of MOT is to 

determine the moving object state and allocate a 

unique identifier to each moving object [6, 7]. MOT 

is executed by offline or online processing to 

determine the trajectories. Online MOT detects 

objects in the present frame and directly produces 

trajectories while the near-online model looks ahead 

for a few frames before associating the objects with 

trajectories. For offline trajectories, a mini-batch 

detection is created and managed recursively to 

finalize trajectories [8].  

In the MOT model, rich representations are 

significant to recognize the visual data as they are 

derived from layered networks [9]. This tracking 

ability is vital to provide early warning of abnormal 

behaviour or aid in efficient vehicle control. 

Moreover, pedestrian targets are influenced by 
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various factors like changes in object occlusion, 

posture variations, and external environment [10]. 

Initially most of the model detect objects by acquiring 

their bounding boxes in the present frame [11]. Then, 

the Reidentification (ReID) features are extracted 

from every bounding box to match the candidate box 

with the existing trajectory [12, 13]. In complex 

scenes, objects are covered by other entities which 

impedes accurate tracking. Also, changes in 

illumination affect object attributes which leads to a 

decline in tracker performance [14]. Examining 

object tracking and detection increases the capability 

to manage and understand dynamic scenes. This 

enhances the accuracy of object identification and 

tracking across frames which is significant for 

applications in autonomous vehicles and surveillance. 

Consequently, it makes more efficient resource 

allocation and decision-making by generating 

detailed insights into object behaviour and 

interactions [15]. However accurately detecting and 

tracking multiple objects in dynamic environments is 

difficult due to occlusions, overlapping trajectories, 

and varying object sizes which leads to tracking 

failure and misidentification. To solve this issue, the 

CNN-NMS is proposed for multiple object detection 

and tracking using the VGG16 model. The CNN 

effectively detect multiple objects whereas NMS 

refines this detection by removing the redundant 

overlapping boxes which enhances tracking accuracy 

and minimizes misidentification. 

The main contribution of this research is 

represented below: 

• In VGG16, the linear layer with a sigmoid 

activation function is included to extract the 

features that predict the class labels and 

bounding box offsets.  

• CNN-NMS enhances object detection 

accuracy by efficiently removing redundant 

bounding boxes which preserves the most 

appropriate features. 

• Selection search efficiently generates region 

proposals that focus on potential object 

position which assists in minimizing the 

search space for detection. It enhances the 

accuracy and speed of the detection approach 

by generating more appropriate candidate 

regions.  

This research paper is organized as follows: 

Section 2 provides a literature survey of the existing 

methods and Section 3 illustrates the proposed 

methodology. Section 4 generates an experimental 

set-up, and Section 5 explains the overall conclusion. 

 

2. Literature survey 

The related work about object detection and 

tracking using the MOT17 dataset was explained in 

detail with their findings, advantages, and limitations. 

Chan [16] implemented a You Only Look Once 

Tracker (YOLOTracker) to perform object detection 

and tracking. Initially, an effective joint detection and 

tracking approach was determined to obtain instance-

level embedding training which achieves high 

efficiency. Then, the path aggregation network was 

applied to integrate low-and-high resolution features 

in semantic and textual data which reduced the ReID 

feature’s miss-alignment. Nevertheless, the 

YOLOTracker struggles with its lower performance 

in managing small or fast-moving objects because of 

its dependence on single-frame object detection 

which leads to suboptimal performance. 

Cao [17] presented a Rethinking anchor-free 

YOLO5 MOT (RetinaMOT) to track multiple objects. 

The retinal convolution was used for extracting the 

features which enhances the model performance. 

Then, the adaptive cascade pyramid was applied to 

align features when compensating for the pyramid set 

issues. The interaction significance of cross-latitude 

data and location data in attention was verified 

effectively using the presented approach. However, 

because of its difficulty in managing occlusions and 

overlapping objects, the RetinaMOT lead to 

inaccurate tracking of multiple objects particularly in 

crowded scenes. 

Alagarsamy and Muneeswaran [18] introduced a 

Reptile Search Optimization Approach with Deep 

Learning-based Multi-Object Detection and Tracking 

(RSOADL-MODT) to detect and track the objects. 

Initially, the introduced approach employed a Path-

Augmented RetinaNet (PA-RetinaNet) model to 

extract the features and a quasi-Recurrent Neural 

Network (QRNN) was applied for the detection 

process. The RSOA was used as a hyperparameter 

optimizer which enhance the PA-RetinaNet’s 

network potential effectively. Nevertheless, the 

RSOADL-MODT struggled with long-term object 

tracking when there were significant appearance 

changes or sudden movements. 

Gao [19] suggested a DetTrack to enhance 

occlusion object detection for MOT. While the object 

was fully occluded, the object motion track box 

prediction was applied as a hypothesis box to 

continue the tracking process. The spatial-temporal 

features were integrated with track prediction to solve 

object detection in tracking performance which 

assists in reestablishing low-scoring object detections 

and improved data associations. However, track 

management struggles with frequent occlusions due 



Received:  September 23, 2024.     Revised: October 25, 2024.                                                                                        108 

International Journal of Intelligent Engineering and Systems, Vol.18, No.1, 2025           DOI: 10.22266/ijies2025.0229.09 

 

to it depends on visual continuity to manage object 

identities which get disrupted while objects are 

obscured. 

Wang and Mariano [20] developed a YOLOv8s 

Symmetric Definite Convolution (YOLOv8s SPD) to 

detect and track the object. The detector was 

integrated with the ByteTrack tracking approach, 

Intersection of Unit (IoU), and Binary Cross-Entropy 

loss function (BCELoss) to obtain a high 

performance. The fixed retention frame number was 

adopted in the track deletion process in ByteTrack 

approach. Nevertheless, the YOLOv8s SPD 

struggled with managing complex object shapes and 

fine-grained information because it depends on a 

symmetric convolutional process which minimized 

its ability to capture objects effectively. 

In the overall analysis, the existing method had 

limitations like struggle with its lower performance 

in managing small or fast-moving objects, inaccurate 

tracking of multiple objects particularly in crowded 

scenes, struggle with occlusions, overlapping 

trajectories, and varying object sizes. To solve this 

issue, the CNN-NMS is used to detect and track the 

objects effectively which enhances the detection of 

small and fast-moving objects. NMS refines the 

outcomes by eliminating redundant overlapping 

detection. This process increases accuracy in 

crowded scenes, handling occlusions, and varying 

object sizes.  

3. Proposed methodology 

In this research, the CNN-NMS is proposed to 

detect and track the objects effectively. Initially, open 

image bus truck, MOT15, 16, 17, and 20 datasets are 

used to determine mode performance. The selective 

search is applied to determine potential objects which 

reduces the search space and VGG16 is performed to 

extract the features accurately. At last, CNN-NMS is 

used for object detection and tracking. Fig. 1 depicts 

the block diagram for the proposed method. 

3.1 Datasets 

The MOT17 [21], open image bus truck [22], 

MOT15 [23], MOT16 [24], and MOT20 [25] datasets 

are used to determine the model performance. 

MOT17 is a widely utilized dataset that contains 7 

sequences for training and the remaining 7 for testing 

sets. Also, it involves a crowded street scene with the 

motion of a linear object. The dataset highlights 

tracking multiple objects by different challenges like 

varying lighting conditions, occlusions, and various 

camera angles. The open-image bus truck dataset has 

627 images of various vehicle classes for detecting 

objects. Each frame in the sequences is annotated 

with object IDs and bounding boxes for pedestrians.  

MOT15 is a standard benchmark that presents a 

fair test for MOT evaluation and involves 11 videos 

for the performance of tracker analysis. MOT16 

contains a 7 training and 7 testing video sequence 

with numerous challenging tasks like target occlusion 

and interactions. MOT20 involves an overall of 8 

videos and has 13,410 frames. The number of video 

frames for testing and training are 4479 and 8931 

frames. Then, the selective search process is applied 

in the pre-processing stage. 

 

 
Figure. 1 Block diagram for the proposed method 
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Figure. 2 Sample images for datasets 

3.2 Pre-processing 

After obtaining the images, the pre-processing is 

performed using a selective search [26] method 

which generates region proposals by grouping pixels 

depending on similarities such as size, scale, texture, 

and color. These region proposals are then utilized to 

determine potential objects, minimizing the search 

space and enhancing the detection approach's 

efficiency. In this method, four similarities are 

defined and explained below 

a) Color similarity 𝒔𝒄𝒐𝒍(𝒓𝒊, 𝒓𝒋) : In this 

similarity, 𝐿1  is used to normalize the color 

histograms. Every region 𝑟𝑖  with 

dimensionality contained a color histogram 

𝐶𝑖 = {𝑐𝑖
1, … , 𝑐𝑖

𝑛}  which is represented using 

Eq. (1). 

 

𝑠𝑐𝑜𝑙(𝑟𝑖, 𝑟𝑗) = ∑ 𝑚𝑖𝑛⁡(𝑐𝑖
𝑘, 𝑐𝑗

𝑘}𝑛
𝑘=1                           (1) 

 

b) Texture similarity 𝒔𝒕𝒆𝒙(𝒓𝒊, 𝒓𝒋): The texture 

histograms 𝑇𝑖 = {𝑡𝑖
1, … , 𝑡𝑖

𝑛}  are normalized 

by utilizing the L1 norm which is expressed in 

Eq. (2). 

 

 𝑠𝑡𝑒𝑥(𝑟𝑖, 𝑟𝑗) = ∑ 𝑚𝑖𝑛⁡(𝑡𝑖
𝑘 , 𝑡𝑗

𝑘}𝑛
𝑘=1                          (2) 

 

c) Size similarity 𝒔𝒔𝒊𝒛𝒆(𝒓𝒊, 𝒓𝒋) : It primarily 

focuses on small regions to combine and 

𝑠𝑖𝑧𝑒(𝑖𝑚) and represents image size in pixels 

which is formulated in Eq. (3). 

 

𝑠𝑠𝑖𝑧𝑒(𝑟𝑖, 𝑟𝑗) = 1 −
𝑠𝑖𝑧𝑒(𝑟𝑖)+𝑠𝑖𝑧𝑒(𝑟𝑗)⁡

𝑠𝑖𝑧𝑒(𝑖𝑚)
               (3) 

 

d) Fill similarity 𝒔𝒇𝒊𝒍𝒍(𝒓𝒊, 𝒓𝒋) : It determines 

how effectively fits the region 𝑟𝑖  and 𝑟𝑗  into 

each other. The 𝐵𝐵𝑖𝑗  represents a tight 

bounding box over 𝑟𝑖 and 𝑟𝑗 is indicated using 

Eq. (4). 

 

𝑠𝑓𝑖𝑙𝑙(𝑟𝑖, 𝑟𝑗) = 1 −
𝑠𝑖𝑧𝑒(𝐵𝐵𝑖𝑗)−𝑠𝑖𝑧𝑒(𝑟𝑖)−𝑠𝑖𝑧𝑒(𝑟𝑗)⁡

𝑠𝑖𝑧𝑒(𝑖𝑚)
  (4) 

 

Where 𝑐𝑖
𝑘  and⁡𝑐𝑗

𝑘  represents color histogram for 

regions 𝑟𝑖  and 𝑟𝑗  for 𝑘𝑡ℎ  color channel, and 𝑛 

determines the total number of colour channels, and 

𝑡𝑖
𝑘 , 𝑡𝑗

𝑘  indicates texture histogram. At last, the final 

similarity measure is an integration of colour, texture, 

size, and fill similarities are formulated using Eq. (5). 

 

𝑠(𝑟𝑖, 𝑟𝑗) = 𝜀1𝑠𝑐𝑜𝑙(𝑟𝑖, 𝑟𝑗) + 𝜀2𝑠𝑡𝑒𝑥(𝑟𝑖, 𝑟𝑗) +

𝜀3𝑠𝑠𝑖𝑧𝑒(𝑟𝑖, 𝑟𝑗) + 𝜀4𝑠𝑓𝑖𝑙𝑙(𝑟𝑖, 𝑟𝑗)    (5) 

 

Where 𝜀⁡𝜖⁡(0,1) determines a constant number. 

The selective search produces a possible object 

position set in an object detection model. Also, it 

effectively minimizes the number of candidate 

regions by combining similar pixels which enhances 

computational speed. Then, the pre-processing input 

is fed into the extraction process. 

3.3 Feature extraction 

After pre-processing, the VGG16 [27] is 

performed to extract the features which is a 

significant stage for object detection and tracking. 

VGG16 can extract a large number of data and 

provides a better performance in MODT. Different 

layers are used in the entire model which is 

convolutional, Batch Normalization (BN), and 

pooling along with Rectified Linear Unit (ReLU) and 

SoftMax function to establish the entire framework. 

The network’s input image size is fixed to 224 * 224 

pixels with a 3 *3 filter size. Then, the images are fed 

into the number of convolutional layers and then 

passed via an initial stack of 2 convolutions. The 

stride and padding values are fixed into 2. The entire 

spatial resolution is reserved, and the resulting 

dimension activation is matched with source images. 

Hence, the activations are managed to a pooling layer 

with a 2 x 2 window size, and then those size becomes 
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half. At the end of the initial stack, the outcomes are 

112 *112 *64 in size. Moreover, the outcome is again 

fed into convolutional layers in the second phase 

which is then fed into the pooling layer and results in 

56 * 56* 128 pixels. This procedure continues until 

the final stage of pooling and convolutional layer. A 

flattening layer is located among the 3 Fully 

Connected (FC) layers which are utilized after a 

convolution stack. The features are fetched after 

passing the normalized image via a pre-trained 

approach. A linear layer with sigmoid activation is 

attached to the VGG16 model to predict the class 

corresponding to the region proposal. An additional 

linear layer is applied to determine the four bounding 

box offsets. Its pre-trained model on MODT provides 

a robust generalization for different objects. Also, 

VGG16’s simplicity and effective feature 

representation enable smoother integration into 

detection and tracking systems. Then, the extracted 

features are fed into the detection and tracking 

process for further processing. 

3.4 Detection and tracking 

The extracted features are fed into the CNN-NMS 

method to detect and track the objects. Using CNN-

NMS for object detection and tracking enhances 

performance by removing redundant and overlapping 

bounding boxes and ensures that only the most 

appropriate detection is retained. This combination 

improves the accuracy of detecting distinct objects, 

minimizes false positives, and enhances tracking of 

moving objects by focusing on the detections. NMS 

ensures computational efficiency by filtering out the 

unnecessary detections which makes the overall 

system more effective. CNN [28] is a kind of feed-

forwarding neural network used for visual images 

and has various layers like input, BN, pooling, 

activation, FC, and output layers which are explained 

below in detail. 

Input and Convolutional layer: The input layer 

is used to insert images into a network and then the 

convolutional layer convolutes the input data or from 

the prior layer by shifting a filter to generate a feature 

map. This progress produces various feature maps for 

a better understanding of the image. The 

mathematical formula for the convolution process is 

expressed in Eq. (6). 

 

 �̃� = 𝑓(𝑊�̂� + 𝑏)                 (6) 

 

Where �̃� represents convolution process output, 

𝑊 denotes weights, 𝑓(. )indicates activation function, 

and 𝑏 and determines bias. The convolutional layer 

weight is experienced on update progress to enhance 

the outcome of image classification in a training 

phase. The update progress in training is completed 

on all weights in every convolutional layer. A set of 

weights used for a region in the image is known as a 

filter which is formulated in Eq. (7). 

 

𝑎⁡𝑊𝑖𝑗 = 𝑈 [−
1

√𝑛
,
1

√𝑛
]                                             (7) 

 

Where  𝑈  determines uniform distribution, 

𝑛  denotes the previous layer size. The number of 

layers contained in the initial layer is 30, 2nd is 60, 

and 3rd is 120 whereas the filter size is 5 X 5 for each 

layer. The padding and stride are determined in the 

convolution process.  

BN: It is used to normalize each input channel in 

a mini-batch and increase the training on CNN to 

minimize the initialization of the network. BN is 

applied among convolution and ReLU which helps to 

attain the desired outcomes. The initial layer of a 

process is to normalize every channel's activation by 

subtracting every channel from the average mini-

batch and dividing them by the mini-batch standard 

deviation.  

ReLU and pooling: An activation layer utilizes 

an unsaturated activation function to increase the 

nonlinear decision-function nature. Here, ReLU is 

employed using Eq. (8). 

 

𝑍�̃� = {
�̂�, �̂� ≥ 0

0, �̂� < 0
                                                     (8) 

 

Where �̂� indicates convolutional process output. 

Then, the pooling layer is used to minimize the spatial 

representation size. Also, it reduces the number of 

calculations and manages overfitting. The max-

pooling function is used which divides the input layer 

into rectangular sets with an output of maximum 

region.  

FC and Output: In this layer, the feedback 

progress is executed by refining the prior layer’s bias 

and weight. It minimizes the feature information loss 

and the outcome of this layer is fed into the output 

layer for detection. The output layer represents 

detection outcome and the most used activation 

functions are sigmoid and SoftMax. In this research, 

the SoftMax function is applied as an output layer 

which is formulated in Eq. (9). 

 

𝑦𝑘(𝑍
∗) =

𝑒𝑥𝑝⁡(𝑍𝑘
∗)

∑ 𝑒𝑥𝑝⁡(𝑍𝑗
∗)𝐶

𝑗=1

, 𝑘 = 1,… , 𝐶                       (9) 

 

Where 𝑦𝑘  represents SoftMax output in class 𝑘, 

𝑍∗ indicates FC layer output, and 𝐶  determines the 

number of classes (labels).  
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This research eliminates NMS in detection and 

hence each detection boxes acquired by tracking are 

utilized as a detection outcome for tracking. In the 

tracking phase, the detection boxes compute IOU 

based on the position predicted by the Kalman filter. 

A detection box with an IOU greater than the 

threshold is selected as a candidate box. ReID is then 

utilized to determine if it matches an existing target. 

Whether it is not a match, NMS is employed to filter 

out a box with error detection. Then, a detection box 

that is either an existing target or an unfiltered one is 

observed as a new target and allocated a new ID. The 

input frame is fed as input to the detection model and 

acquire a detection series boxes 𝐵𝑡 =
{𝐵𝑡

1, 𝐵𝑡
2, 𝐵𝑡

3, , … , 𝐵𝑡
𝑛 . Between them 

𝐵𝑡
𝑛(𝑥1, 𝑦1, 𝑥2, 𝑦2)  indicates 𝑖𝑡ℎ  the detection frame 

and forecast, the target place is represented as 

𝑃(𝑥1
′ , 𝑦1

′ , 𝑥2
′ , 𝑦2

′) . Based on the coordinates of 

predicted position and detection box, the IOU value 

𝑐𝑖 is computed which is formulated in Eq. (10-11). 

 

𝑐𝑖 =
𝐼𝑛𝑡𝑒𝑟𝑠𝑒𝑐𝑡𝑖𝑜𝑛(𝐵𝑡

𝑖,𝑃)

𝑈𝑛𝑖𝑜𝑛(𝐵𝑡
𝑖,𝑃)

                                            (10) 

 

𝐵�̂� = {𝐵𝑡
𝑖 ⁡𝜖𝐵𝑡|𝑐𝑖 > 𝜃}                                          (11) 

 

Based on the computed detection box 𝑐𝑖  and 

predicted location, boxes with an IOU value smaller 

than the IOU threshold  𝜃 are filtered out, and those 

𝐵�̂� closer to the predicted location are selected. Then, 

the NMS is performed on 𝐵�̂� box uses Eq. (12) which 

filters out inappropriate detection boxes and acquires 

last candidate box 𝐵�̂� a candidate choice to match the 

trajectory. 

 

𝐵𝑡
′ = 𝑁𝑀𝑆(𝐵�̂�)                                                         (12) 

 

Fig. 3 represents the sample image for detected 

objects. Using CNN with NMS increases object 

detection and tracking by minimizing overlapping 

bounding boxes which ensures more accurate 

localization. NMS reduces the occurrence of multiple 

detections for similar objects which improves the 

reliability and efficiency of tracking systems. CNN 

effectively detects objects from images whereas 

NMS refines the output to reduce false positives 

which leads to more accurate detection. This 

combination increases the system performance like 

video surveillance in detection and tracking. 

4. Experimental results 

The proposed CNN-NMS is simulated using a 

Python 3.7 environment with 16 GB RAM, an Intel  

 

 

 
Figure. 3 Sample images for detected objects 

Bottom of Form 

 

 

core i7 processor, and a Windows 10 (64 bit) 

operating system. The performance metrics like 

Multiple Object Tracking Accuracy (MOTA), 

Identification F1-score (IDF1), Mostly Tracked 

Targets (MT), Most Lost Target (ML), ID Switches 

(IDS), and Hz are used to determine the model 

performance. The mathematical formula for MOTA 

and IDF1 are represented using Eqs. (13) and (14). 

 

• MOTA – It is a measure of total performance of 

a tracker for MOT using equation (13) 

 

𝑀𝑂𝑇𝐴 = 1 −
∑ (𝐹𝑃𝑡+𝐹𝑁𝑡+𝐼𝐷𝑆𝑡)𝑡

∑ 𝐺𝑇𝑡𝑡
                            (13) 

 

• IDF1 – It is a ratio of accurately identified 

detection over average number of ground truth 

and calculated detections using equation (14) 

 

𝐼𝐷𝐹1 =
2×𝐼𝐷𝑃×𝐼𝐷𝑅

𝐼𝐷𝑃+𝐼𝐷𝑅
                                               (14) 

 

• MT – It is a high integrity tracking that defines 

the proportion of tracks with a tracking length of 

over 80% 
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• ML – It is a high missing tracking degree that 

represents the trajectories proportion with 

tracking length less than 20% 

• IDS – It calculates the total number of transition 

ID during the tracking process 

• Hz – Processing speed in Frames Per Second 

(FPS). 

 

Where 𝐹𝑃𝑡 and 𝐹𝑁𝑡 indicates False Positive and 

False Negative at time step 𝑡, 𝐺𝑇𝑡 represents Ground 

Truth at time 𝑡 , as well as 𝐼𝐷𝑃  and 𝐼𝐷𝑅  defines 

accurate rate and recall rate of identity. 

4.1 Performance analysis 

Table 1 represents a performance analysis of 

different detection methods. The existing techniques 

like YOLO, Faster Region-based CNN (R-CNN), 

and EfficientNet are compared with the proposed 

CNN-NMS. When compared to these methods, the 

CNN-NMS achieves a better MOTA of 80.05%, 

85.72%, 79.12%, 81.27%, and 82.47% using MOT17, 

open image bus truck, MOT15, 16, and 20 datasets 

due to CNN-NMS having the ability to more 

effectively suppress redundant bounding boxes 

which results in reduced FP. Also, it maintains 

accurate localization and minimizes overlap errors 

effectively. 

Table 2 depicts a different detection method 

without NMS. CNN without NMS achieves less 

performance due to it producing multiple overlapping 

bounding boxes for the same object. NMS is 

significant for eliminating these redundant detections 

by choosing the most appropriate bounding box. 

Without NMS, the approach output contains various 

overlapping boxes which results in duplicated 

detection and minimized overall performance in 

object detection and tracking. Therefore, NMS is 

essential to use with CNN to achieve better 

performance. 

Table 3 determines a performance analysis of 

different feature extraction methods. The existing 

techniques like ResNet, MobileNet, and DenseNet 

are compared with VGG16 which achieves a better 

performance. Due to VGG16’s deep architecture and 

consistency, it effectively captures complex features 

and patterns in images which obtains robustness and 

reliability. Also, it captures detailed hierarchical 

features and spatial patterns effectively which 

distinguish objects and maintain tracking accuracy 

effectively which leads to better MOTA of 80.05%, 

85.72%, 79.12%, 81.27%, and 82.47% using MOT17, 

open image bus truck, MOT15, 16, and 20 datasets 

compared to existing methods. 

Table 4 determines a performance analysis of 

different detection methods without selective search. 

Without using selective search, CNN-NMS performs 

less performance because selective search generates 

 

 

 

Table 1. Performance analysis of different detection methods 

Methods Datasets MOTA (%) 

↑ 

IDF1 (%) 

↑ 

MT (%) 

↑ 

ML (%) 

↓ 

IDS ↓ Hz ↑ 

(FPS) 

YOLO MOT17 75.32 74.21 56.12 17.56 2354 32.25 

Open Image Bus Truck 72.56 71.32 54.78 15.67 2332 30.43 

MOT15 73.45 72 42.1 14.5 1200 29.5 

MOT16 76.78 75.3 57.2 16.25 1800 31.1 

MOT20 74.89 73.98 52.9 15.3 1500 31 

Faster RCNN MOT17 68.45 66.8 53.67 15.84 2201 29.4 

Open Image Bus Truck 76.24 75.12 58.15 14.12 2228 29.78 

MOT15 70.55 69.45 45.75 13.9 1100 27.5 

MOT16 79.12 78.04 56.45 15.7 1250 32 

MOT20 72.35 71.68 51.8 11.2 1412 25.5 

EfficientNet MOT17 70.9 69.15 54.2 14.45 2123 30 

Open Image Bus Truck 82.11 81.54 63.49 10.98 1902 40.76 

MOT15 76.65 75.9 47.15 13.6 850 29 

MOT16 78.9 77.1 57.45 14.3 1150 33.2 

MOT20 81.2 80.4 62 12.1 1500 36.8 

 CNN-NMS MOT17 80.05 79.65 58.32 11.21 1983 40.02 

Open Image Bus Truck 85.72 84.01 63.33 9.51 1848 43.89 

MOT15 79.12 78.54 50.75 7.36 910.5 39.7 

MOT16 81.27 80.29 61.48 13.09 1100.5 36.8 

MOT20 82.47 82.13 65.03 7.59 1403.2 28.6 
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Table 2. Different detection methods without NMS 

Methods Datasets MOTA (%) 

↑ 

IDF1 (%) 

↑ 

MT (%) 

↑ 

ML (%) 

↓ 

IDS ↓ Hz ↑ 

(FPS) 

YOLO MOT17 63.3 62.15 47.12 18.56 2421 25.2 

Open Image Bus Truck 70.42 69.56 52.41 17.34 2387 27.85 

MOT15 61.5 60.45 46.12 17.5 1200 24.3 

MOT16 62.8 61.15 49.02 16.8 1250 25 

MOT20 63.8 62 50.7 17.2 1500 26 

Faster RCNN MOT17 65.5 64.4 50.67 17.2 2302 28.1 

Open Image Bus Truck 77.92 76.48 59.23 14.67 2167 31.89 

MOT15 61 60.05 47.5 16.2 1100 27.4 

MOT16 62 61.1 50.67 15.6 1150 28 

MOT20 63 62.15 52 14.8 1600 27.7 

EfficientNet MOT17 67.85 66.7 52.3 15.8 2153 30.5 

Open Image Bus Truck 79.43 78.32 60.87 13.23 2135 33.12 

MOT15 64.45 63.15 49.8 14.1 1100 28.9 

MOT16 65 64.15 51 15.9 1150 29.5 

MOT20 67.5 66.2 53.3 12.7 1700 28 

 CNN MOT17 78.54 76.22 54.36 12.56 2001 39.75 

Open Image Bus Truck 80.32 79.87 60.33 12.51 2148 39.89 

MOT15 79.12 78.54 50.75 7.36 910.5 39.7 

MOT16 81.27 80.29 61.48 13.09 1100.5 36.8 

MOT20 82.47 82.13 65.03 7.59 1403.2 28.6 

 

 
Table 3. Different feature extraction methods 

Methods Datasets MOTA (%) ↑ IDF1 (%) ↑ MT (%) ↑ ML (%) ↓ IDS ↓ Hz ↑ 

(FPS) 

ResNet MOT17 68.3 67.5 52.12 15.56 2234 29.5 

Open Image Bus Truck 74.83 73.67 56.34 15.72 2245 29.12 

MOT15 69.45 68.12 43.89 14.91 1000 25.8 

MOT16 72.36 71.04 54.65 14.75 1250 28.6 

MOT20 75.78 74.34 55.19 16.04 1800 27.4 

MobileNet MOT17 76.45 75 50.67 16.3 2311 28.4 

Open Image Bus Truck 81.76 80.23 62.18 11.43 1923 39.94 

MOT15 77.32 76.15 46.22 12.67 1100 30.15 

MOT16 78.95 77.85 60.15 13.89 1350 31.8 

MOT20 80.1 79.54 63.01 11.67 1450 26.5 

DenseNet MOT17 70.9 69.8 54.2 14.8 2107 32 

Open Image Bus Truck 78.67 77.42 60.01 12.56 2109 33.67 

MOT15 73.88 72.45 49.56 13.22 1150 30.4 

MOT16 79.34 78.12 61.34 13.71 1250 34.2 

MOT20 82.01 81.23 64.67 10.12 1420 24.5 

 VGG16 MOT17 80.05 79.65 58.32 11.21 1983 40.02 

Open Image Bus Truck 85.72 84.01 63.33 9.51 1848 43.89 

MOT15 79.12 78.54 50.75 7.36 910.5 39.7 

MOT16 81.27 80.29 61.48 13.09 1100.5 36.8 

MOT20 82.47 82.13 65.03 7.59 1403.2 28.6 

 

 

high-quality object proposals by focusing on 

meaningful regions of the image. This process 

significantly minimizes the number of candidate 

regions on CNN. Without selective search, CNN-

NMS relies on less refined proposals which leads to 

a high number of FP and missed detections which 

impacts the overall performance. Hence, the selective 

search is used as the pre-processing step to determine 

potential objects which minimizes the search space 

and enhances the detection approach's efficiency. 

 



Received:  September 23, 2024.     Revised: October 25, 2024.                                                                                        114 

International Journal of Intelligent Engineering and Systems, Vol.18, No.1, 2025           DOI: 10.22266/ijies2025.0229.09 

 

Table 4. Different detection methods without selective search 

Methods Datasets MOTA (%) 

↑ 

IDF1 (%) 

↑ 

MT (%) 

↑ 

ML (%) 

↓ 

IDS ↓ Hz ↑ 

(FPS) 

YOLO MOT17 74.2 73.1 55.12 16.9 2458 26 

Open Image Bus Truck 75.95 75.18 57.12 13.89 2190 31.03 

MOT15 72.88 71.44 48.01 15.67 1300 29.9 

MOT16 73.55 72.05 52.78 15.2 1400 28.75 

MOT20 74.33 73.6 55.56 16 1450 25.2 

Faster RCNN MOT17 66.8 65.75 50.9 15.5 2258 28.6 

Open Image Bus Truck 82.03 81.37 63.21 10.75 1897 40.82 

MOT15 64.8 63.05 48.5 14.2 1200 27.4 

MOT16 65.35 64.1 51.15 14.75 1250 29.15 

MOT20 66.1 65.2 52.6 13.6 1600 26.5 

EfficientNet MOT17 69.45 68.5 53.1 14.2 2185 31.5 

Open Image Bus Truck 71.84 70.91 53.78 16.12 2365 27.43 

MOT15 66.55 65.3 43.8 14 1150 29 

MOT16 67.25 66.1 52.3 13.75 1180 30.1 

MOT20 69 68.25 54.5 12.9 1520 24.7 

 CNN-NMS MOT17 76.05 76.65 43.32 15.21 2783 38.02 

Open Image Bus Truck 81.72 76.01 36.33 14.51 2548 37.89 

MOT15 79.12 78.54 50.75 7.36 910.5 39.7 

MOT16 81.27 80.29 61.48 13.09 1100.5 36.8 

 MOT20 82.47 82.13 65.03 7.59 1403.2 28.6 

 

 

Fig. 4 represents the analysis of training loss and 

validation loss for open open-image bus truck. The 

graph depicts that the object detection and tracking 

model is learning efficiently from the training data. 

The training loss decreases constantly over epochs 

which demonstrates that the model is enhancing its 

capability to track and detect objects across time. The 

validation loss remains stable comparatively and 

maintains a better performance on unseen data. From 

the overall analysis, it obtains better performance and 

robustness in object detection and tracking tasks. 

Fig. 5 determines the analysis of training and 

validation accuracy using an open image bus truck 

over five epochs. The training accuracy is increased 

which means that the model is better at generating 

correct predictions on training data. The validation 

accuracy evaluates the model performance on unseen 

data effectively. It represents that the model is better 

at predicting the training data and remains stable. 

4.2 Comparative analysis 

Table 5 denotes the comparative analysis of existing 

methods using MOT17 dataset. Table 6 presents the 

comparative analysis of existing ethods using 

MOT15, 16, and 20 datasets. The existing techniques 

like YOLOTracker [16], RetinaMOT [17], 

RSOADL-MODT [18], DetTrack [19], and 

YOLOv8s SPD [20] are compared with the proposed 

CNN-NMS method. The proposed CNN-NMS 

 

 
Figure. 4 Training and validation loss for open image bus 

trucks 

 

 
Figure. 5 Training and validation accuracy for open-

image bus trucks 
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Table 5. Comparative analysis with existing methods using the MOT17 dataset 

Methods MOTA (%) ↑ IDF1 (%) ↑ MT (%) ↑ ML (%) ↓ IDS ↓ Hz ↑ 

(FPS) 

YOLOTracker [16] 67.1 65.1 41.50 19.20 4983 24.9 

RetinaMOT [17] 74.1 70.9 41.1 19.4 3786 22.0 

RSOADL-MODT [18] 74.6 72.3 N/A N/A N/A N/A 

DetTrack [19] 78.0 77.6 54.2 14.6 4878 35.5 

YOLOv8s SPD [20] 74.0 75.1 42.3 23.1 2214 10.2 

Proposed CNN-NMS 80.05 79.65 58.32 11.21 1983 40.02 

 

 
Table 6. Comparative analysis with existing methods using the MOT15, 16, 20 datasets 

Methods Datasets MOTA (%) ↑ IDF1 (%) ↑ MT (%) 

↑ 

ML (%) 

↓ 

IDS ↓ Hz ↑ 

(FPS) 

YOLOTracker [16] MOT15 56.3 57 46.60 11 1018 32.2 

MOT16 68.4 65.3 44.70 15.50 1632 24.9 

RetinaMOT [17] MOT16 74.8 73.2 41.5 18.3 1104 22.2 

MOT20 66.8 67.5 58.6 15.1 1739 18.6 

DetTrack [19] MOT16 78.0 78.3 54.7 14.1 1538 22.3 

MOT20 75.6 75.3 70.40 9.3 1640 16.9 

YOLOv8s SPD [20] MOT20 66.8 75.5 57.1 12.0 2337 21.3 

Proposed CNN-NMS MOT15 79.12 78.54 50.75 7.36 910.5 39.7 

MOT16 81.27 80.29 61.48 13.09 1100.5 36.8 

MOT20 82.47 82.13 65.03 7.59 1403.2 28.6 

 

 

achieves a better MOTA of 80.05%, 79.12%, 81.27%, 

and 82.47% using MOT17, MOT15, 16, and 20 

datasets because it minimizes FP by effectively 

suppressing redundant detections. This enhances the 

overall tracking performance by managing more 

reliable and consistent object tracking which results 

in higher MOTA scenes. Also, CN-NMS optimizes 

the balance between detection and tracking which 

provides a more robust tracking result. 

4.3 Discussion 

The advantages of the proposed CNN-NMS and 

the limitations of existing methods are explained in 

this section. The limitation of existing methods like 

YOLOTracker [16] struggle with their lower 

performance in managing small or fast-moving 

objects because of their dependence on single-frame 

object detection which leads to suboptimal 

performance. RetinaMOT [17] leads to inaccurate 

tracking of multiple objects particularly in crowded 

scenes. RSOADL-MODT [18] struggles with long-

term object tracking under significant appearance 

changes or sudden movements due to its search 

optimization based on historical data. YOLOv8s SPD 

[20] struggled with managing complex object shapes 

and fine-grained information due to its dependence 

on the symmetric convolutional process which 

limited its ability to capture objects effectively. The 

proposed CNN-NMS addresses the limitations of 

existing methods by improving performance in object 

detection. CNN-NMS enhances object detection 

accuracy by efficiently managing small, fast-moving 

objects, and ensures better tracking performance in 

crowded scenes. Also, CNN-NMS enhance long-

term tracking by adjusting to vital appearance 

changes and sudden movements. Furthermore, it 

captures intricate object shapes and fine-grained 

information which enables it more robust for 

handling diverse tracking scenarios.  

5. Conclusion 

This research proposed CNN-NMS for accurate 

object detection and tracking. Using CNN for initial 

object detections provides an advanced feature 

learning capability which leads to more accurate 

performance. NMS removed redundant overlapping 

bounding boxes and refined the object detection 

output model by minimizing FP which ensures that 

each object is demonstrated by a single bounding box. 

VGG backbone for extraction leverages the pre-

trained weights to improve the model performance on 

region proposals. In VGG16, a linear layer with 

sigmoid activation is added which enables it for 

simultaneous prediction of class labels and bounding 

box offsets. This outcome ensures accurate detection 

and tracking of objects within images and enhances 

overall performance and reliability. By performing 

all these processes, the proposed CNN-NMS 
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achieves a better MOTA of MOTA of 80.05%, 

85.72%, 79.12%, 81.27%, and 82.47% using MOT17, 

open image bus truck, MOT15, 16, and 20 datasets 

than existing methods like YOLOTracker and 

RetinaMOT. In the future, an improved DL method 

will be considered to enhance the model performance. 

Notation Description 

Symbol Description 

𝑠𝑐𝑜𝑙(𝑟𝑖 , 𝑟𝑗) Color similarity 

𝑠𝑡𝑒𝑥(𝑟𝑖 , 𝑟𝑗) Texture similarity 

𝑇𝑖 = {𝑡𝑖
1, … , 𝑡𝑖

𝑛} texture histograms 

𝑠𝑓𝑖𝑙𝑙(𝑟𝑖 , 𝑟𝑗) Fill similarity 

𝐵𝐵𝑖𝑗  Tight bounding box over 𝑟𝑖 and 𝑟𝑗 

𝑟𝑖 and 𝑟𝑗 Region 𝑖, 𝑗 

𝑐𝑖
𝑘 and⁡𝑐𝑗

𝑘 Color histogram for regions 𝑟𝑖 
and 𝑟𝑗 for 𝑘𝑡ℎ color channel 

𝑛 Total number of colour channels 

𝑡𝑖
𝑘, 𝑡𝑗

𝑘 Texture histogram 

𝜀⁡𝜖⁡(0,1) Constant number 

𝑍 Convolution process output 

𝑊 Weights 

𝑓(. ) Activation function 

𝑎 and 𝑏 Bias 

𝑈 Uniform distribution 

𝑛 Previous layer size 

�̂� Convolutional process output 

𝑦𝑘  SoftMax output in class 𝑘 

𝑍∗ FC layer output 

𝐶 Number of classes (labels) 

𝑐𝑖 Detection box 

𝐵�̂�  Predicted location 
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