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Abstract: In this paper, we present a new approach for the power point tracking problem in photovoltaic systems by 

integrating an adaptive genetic algorithm (GA) into neural networks to solve it. The classic MPPT strategies might 

often fail to adequately accommodate dynamic environmental conditions and system variations, resulting in poor 

power extraction. To combat this, we present a new framework combining deep learning approaches with the power 

of evolutionary optimization. The basic idea of our method was to utilize two different representations for continuous 

and categorical features through an embedding network, which would result in better prediction accuracy using the 

MPPT algorithm to augment tracking by combining operational and environmental settings within dense continuous 

embeddings that could then interact with the multidimensional features. We propose a deep neural network architecture 

to predict optimal power points and train end-to-end over these embedding networks. A novel technique that uses 

neural networks and a self-adaptive evolutionary algorithm to track the greatest power point in solar systems. A self-

adaptive mechanism in our approach dynamically modifies the GA's settings in response to real-time performance 

feedback. The complex connections between environmental and operational parameters have been captured using 

embedding networks to improve tracking accuracy. The test results indicate a 20% increase in system efficiency overall, 

a 25% improvement in voltage stability, a 30% reduction in total harmonic distortion (THD), and a 15% decrease in 

processing time, confirming the strategy's efficacy compared to traditional MPPT techniques. In addition, our 

suggested strategy improved the tracking accuracy and time to around 99.98 tracking Acc and 0.12s tracking Time. 

Keywords: Maximum power point tracking (MPPT), Embedding neural networks, Genetic algorithms, Self-adaptive 

optimization, Photovoltaic systems, Power extraction efficiency. 

 

 

1. Introduction  

Photovoltaic (PV) systems are an important 

renewable part of the answer to the global need for 

sustainable energy solutions. The ability of the PV 

systems to track its Maximum Power Point (MPP) 

depends on the system efficiency, which is subjected 

to temperature and irradiance variations [1]. Classical 

MPPT techniques, such as Incremental Conductance 

(IncCond) and Perturb & Observe (P&O), are most 

commonly used to detect MPP. While these methods 

work well in certain situations, they may not perform 

well if the environment is more complex or dynamic, 

eventually giving high power extraction and 

decreasing performance efficiency for such systems. 

Advances in optimization algorithms and AI have 

recently provided a new path for optimizing MPPT. 

Deep learning shows the neural network’s 

proficiency in capturing the intricate, often non-linear 

relationships latent in PV system data. Some other 

techniques, like Evolutionary methods such as 

Genetic Algorithms (GA), have tried to optimize for 

multidimensional non-linear problems. Nevertheless, 

additional work is required for these technologies to 

come together and produce an MPPT approach that 

responds appropriately under some conditions, 

including the dynamic behavior found on real PV 

systems, as long as practical methods are utilized [2]. 
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Machine learning and deep learning are advanced 

algorithms to solve realistic challenges in different 

fields [3, 4]. Optimization algorithms and artificial 

intelligence have recently provided a novel hybrid 

solution combining an embedding neural network 

incorporating a self-adaptive mechanism to improve 

the performance and adaptability of MPPT in PV 

systems. This study offers a unique hybrid technique 

that blends embedding neural networks with a self-

adaptive evolutionary algorithm to improve the 

performance and adaptability of MPPT in PV 

systems. An effective method to enhance the MPPT 

algorithm's capacity to anticipate and react to optimal 

power points is to include neural networks in dense 

vector representations of operational and 

environmental factors. A wider variety of 

connections and interactions within the system may 

be represented using a hybrid design that combines 

continuous and categorical elements. Moreover, the 

self-adaptive evolutionary algorithm efficiently 

searches and uses the solution space by optimizing its 

parameters in response to constant performance 

evaluations [5]. 

The effectiveness of power extraction in 

photovoltaic (PV) systems is highly dependent on 

temperature and irradiance, both of which change 

during the day as dynamic conditions. Conventional 

MPPT algorithms frequently fail to maintain 

appropriate power tracking under such conditions. 

Many algorithms are not flexible, leading to 

inefficiencies when conditions change quickly or 

sluggish convergence to the Maximum Power Point 

(MPP). The main goal of this work is to provide a 

more resilient system that can continually improve 

performance in real time and ensure consistent power 

extraction. The topic of Maximum Power Point 

Tracking (MPPT) for photovoltaic (PV) systems has 

advanced significantly in the last few years, and 

techniques like neural networks (NN) and genetic 

algorithms (GA) are now commonly used. However, 

traditional GA+NN algorithms frequently perform 

less than ideal due to reliance on set parameters, 

making it difficult to adjust to changing 

environmental circumstances like temperature and 

irradiance variations. To overcome these restrictions, 

we proposed a self-adaptive GA-based MPPT 

technique that optimizes control settings by 

dynamically adjusting parameters in response to real-

time feedback.  Our strategy uses embedding 

networks to improve tracking accuracy and system 

flexibility by successfully capturing complicated 

interactions between operational and environmental 

factors. Our method's main benefit is that it can adapt 

dynamically to changing circumstances, which can 

result in notable gains in performance. Twenty 

percent more system efficiency, twenty percent more 

voltage stability, and thirty percent less total 

harmonic distortion (THD) are shown in the 

experimental findings. In addition, a 15% reduction 

in processing time demonstrated the method's 

efficiency compared to traditional MPPT algorithms. 

These improvements make our proposed method 

more reliable and scalable for real-world PV 

applications. 

The main contribution of this work is offering a 

hybrid embedding network that can handle complex 

input data and is intended for MPPT applications. 

Also, we create a self-adaptive genetic algorithm to 

improve the optimization process and guarantee high 

tracking accuracy and robustness of the system. 

Moreover, we verify our methodology using 

extensive simulations, showing that it outperforms 

conventional approaches in static and dynamic 

circumstances.  

The rest of this paper is structured as follows: 

Section two reviews relevant research on MPPT and 

PV system optimization methods. The self-adaptive 

GA and the suggested hybrid embedding network 

architecture are described in depth in Section Three. 

The experimental setup and validation are explained 

in Section Four. The experimental findings are shown 

in Section Five. The comparative analysis is 

demonstrated in Section Six. The work is finally 

concluded in Section Seven, which offers suggestions 

for future research possibilities.  

2. Related work  

For most applications, a DC-DC converter 

operates in continuous conduction mode (CCM), but 

on rare occasions, it may switch to discontinuous 

conduction mode (DCM) [1, 2, 5]. Low loading 

circumstances are the main cause of the DC-DC 

converter operating in DCM; nevertheless, 

environmental factors in a PV system may drive the 

system to switch to DCM. Additionally, PV systems 

are run in the MPPT mode using a regulator, also 

known as a dc-dc converter. To make sure the PV 

array produces the most power possible, the regulator 

uses an algorithm to determine the required duty 

cycle (D) using inputs such as photovoltaic voltage 

(Vp) and current (Im). The DC-DC converter applies 

the maximum power transfer theorem to optimize 

power transfer, which is the fundamental idea behind 

MPPT. Scholars have long been interested in how a 

DC-DC converter's operating mode affects system 

performance [6]. According to our literature research, 

a study on the switch from CCM to DCM for a PV-

fed pumping station was conducted [7]. Likewise, [8] 

described the conversion of a buck-boost dc-dc 
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converter from CCM to DCM. According to the 

authors in [9], a fuzzy controller and a fixed 

switching frequency may make the system operate 

smoothly in a mixed conduction mode. Other 

researchers have incorporated the converter's 

functioning into the modeling stage [10]. 

Nevertheless, all of the papers that have been 

presented have only covered CCM and DCM about 

load.  

In this work, we propose that the theory of the 

effect of irradiance on the DC-DC converter is 

incomplete and that the converter can function in 

DCM mode even in the case of a constant load. 

Consequently, we suggest a method in which the 

maximum power point tracking technique is 

combined with an evaluation of the effect of 

irradiance on the DC-DC converter.  

The Perturb and Observe (P&O) algorithm is one 

of the simplest MPPT algorithms. The model-free 

method known as P&O iteratively shifts the output 

voltage in the direction of the MPP, with the voltage 

and current measurements used to determine the 

change's direction. The primary drawbacks of model-

free algorithms are their poor tracking speed and 

steady-state oscillations around the MPPT. These 

problems can be resolved using the photovoltaic 

model-based MPPT algorithms [11-13]. The model-

based methods are more sophisticated and dependent 

on irradiance sensors but are faster and more accurate. 

Irradiance sensors are expensive and challenging to 

calibrate. Irradiance estimators, however, have been 

demonstrated to be a viable alternative to irradiance 

sensors [14]. On the other hand, several model-based 

algorithms are based on neural networks, and MPPT 

algorithms are based on comparable circuit models. 

[15] provides a thorough analysis of the NN-based 

MPPT algorithms. The output of the NN-based 

algorithms is the Vmpp voltage, and their inputs 

include datasheet information measurements of 

temperature, irradiance [16-18], voltage, and current 

[19, 20]. Additionally, several publications 

concentrate on the design of the MPPT algorithm and 

the control unit. Mmodel-free algorithms and NN-

based algorithms hybrid methods have been put forth. 

The suggested algorithms that employ irradiance 

and temperature as input data are the most accurate 

[21]. A feedforward NN example using G and T 

measurements was used to predict Vmpp. It should 

be mentioned that other network types, including 

radial basis function NNs, may be applied similarly.  

This algorithm's disadvantage is that the irradiance 

information must be known. Two NNs were 

suggested to estimate Vmpp in the cascade NN-based 

MPPT (CNNMPPT) approach [22]. While the second 

NN derives the MPP voltage from the temperature 

and predicted irradiance, the first NN guesses the 

irradiance from the voltage and current data. The 

suggested method can deliver precise results, albeit at 

the expense of added processing complexity. The 

approach that uses multilayer feedforward NN to 

forecast the MPP voltage was presented in [23]. 

Although metaheuristic algorithms have certain 

advantages, they cannot provide reliable monitoring 

of the GMPP due to their stochastic character during 

start-up and repeated operations, which can cause 

large transient power fluctuations. 

Furthermore, because these algorithms depend on 

several search agents for tracking, they frequently 

demand high computational and memory resources. 

Moreover, parameter adjustment significantly 

impacts the optimal performance of metaheuristic 

algorithms, requiring laborious tweaking procedures. 

A further constraint pertains to the inclination to 

commit the prior GMPP to memory upon 

convergence, hence impeding the monitoring of 

shifting GMPP resulting from slow alterations in 

irradiance or fluctuations in load [24].  

Real-time circumstances frequently involve 

complicated PSCs with more than five peaks and 

incredibly small power changes between peaks [25] 

because the majority of research has focused on 

simple PSCs with a small number of peaks [26, 27] 

(i.e., generally two peaks to five peaks). In these 

situations, metaheuristic algorithms' stochastic 

tendency frequently causes them to overlook the little 

region that contains the GMPP and converge to an 

LMPP. More realistic, difficult, and complicated 

PSCs with more than five peaks and incredibly near-

peak values were shown in this work [1]. A novel 

deterministic peak hopping (PH) based MPPT 

algorithm with straightforward processes is 

suggested to handle these intricate PSCs. The 

tracking zone is narrowed down and moved closer to 

the GMPP using an agent to hop between the P-V 

curve's higher and lower duty cycle regions with the 

best step size.  

[28] presented 40 PV simulators that successfully 

integrated with the suggested Real-Time 

deterministic peak hopping MPPT algorithm for 

Complex PS conditions. 

 

 
Figure. 1 DC-DC Converter 
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The tracking accuracy achieved for this study is 

around 98.70%, and the tracking time is less than 0.83. 

[29] proposed a novel quantum particle swarm 

optimization PSO. The main objective of this work 

was to deal with the MPPT to improve the tracing 

accuracy and time. A hybrid MPPT algorithm has 

been proposed by [30], which uses voltage scanning, 

perturb, and observation techniques to minimize the 

limitations during partial shading. This technique was 

straightforward and independent of panel information. 

There are general drawbacks to the conventional 

techniques usually used in most previously 

mentioned studies, including Perturb and Observe 

(P&O), which is straightforward and simple. 

However, it experiences power loss due to 

oscillations around the MPP. It could also track 

incorrectly in situations with fast changes, decreasing 

efficiency. At the same time, Incremental 

Conductance (INC) has problems with sluggish 

reaction times. It is not always able to adapt perfectly 

to quick environmental changes while being able to 

directly compare incremental changes in voltage and 

current, which makes it superior to P&O. Sliding 

Mode Control (SMC) provides quick convergence 

but is less successful in systems with unexpected 

changes due to its susceptibility to parameter 

adjustment. Inadequate adjustment might cause 

instability, and the technique frequently isn't 

adaptable enough to deal with shifting circumstances 

in the best way. On the contrary, our embedding 

networks enhance tracking accuracy by capturing 

complex non-linear relationships between 

operational and environmental factors. The 

suggested approach that integrates neural networks 

with a self-adaptive genetic algorithm (GA) 

has a dynamic adjustment mechanism, which 

continuously modifies GA parameters based on real-

time feedback to guarantee more efficient 

convergence and enhanced system performance.  

3. Proposed methodology  

This work’s main objective is to enhance the 

tracking accuracy of the MPPT procedure and 

improve the tracking model performance under 

varying environmental conditions. The proposed 

technique's main components are the self-adaptive 

GA and embedding networks that employ deep 

learning neural networks for PV systems and MPPT. 

The Proposed PV array MATLAB Simulink design 

is explained in Fig. (2). 

The output current can be obtained using the 

following equations. 

 

𝐼 = 𝐼𝑃𝑉 − 𝐼𝐷 − 𝐼𝑅𝑃                                              (1) 

 

𝐼 = 𝐼𝑃𝑉 −  

𝐼0 [(exp
𝑉+𝑅𝑠

𝑎
) − 1 −

𝑉+𝑅𝑠𝐼

𝑅𝑃
]                               (2) 

 

𝑎 =
𝑁𝑠𝑛𝑘𝑇

𝑞
                                                           (3) 

 

The diode’s reverse saturation current is I0, also 

known as the leakage current. The total number of 

connected cells in sequences is Ns. The diode ideal 

constant is n, and the idealist factor is a, with a range 

of values between 1 and 2. Generally, this factor 

provides details about the diode's internal combining 

operations. Full knowledge and computation of these 

factors are necessary to ensure optimal energy output 

and dependability and to enhance the design and 

operation of PV systems.  

 

𝐼𝑃𝑉 = (𝐼𝑃𝑉, 𝑛 + 𝐾𝐼(𝑇 − 𝑇𝑛))
𝐺

𝐺𝑛
                          (4) 

 

The IPV represents the current produced under 25 °C 

temperature and 1000 W/m2 irradiance. G represents 

the radiation of the panel. Gn is used to present the 

nominal value of radiation. 

A significant component affecting the diode's 

current-voltage relationship is its saturation current 

(I0), described by Eq. (5). It is an important 

component that influences the PV cell's behavior, 

affecting its effectiveness and performance in various 

situations. Understanding these factors enables 

prediction and optimization of the energy output of 

photovoltaic systems, ensuring reliable operation in 

real-world circumstances. 

  

𝐼0 =
1

{𝐼𝑠𝑐,𝑛 +𝐾𝑖(𝑇−𝑇𝑛)}
  

exp (
𝑉𝑜𝑐,𝑛+𝐾𝑣(𝑇−𝑇𝑛)𝑎

𝑎
) − 1                                   (5) 

 

Where Ki,n is the current coefficient, VOC,n is the 

notional open-circuit voltage, and ISC,n is the nominal 

short-circuit current. The PV power system's voltage 

is increased when the panels are connected in series, 

and its power value is increased when they are 

connected in parallel. Computed under typical 

climatic conditions, which span from 25 °C to 1000 

W/m2, is the maximum power value of the PV power 

system. However, there's a chance that the irradiance 

value differs throughout the panels. The type of shade 

will affect how much electricity the device uses. 

Conventional MPPT methods cannot determine the 

maximum power value under partial shade conditions 

(PSCs). Consequently, many MPPT algorithms were 

developed.
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Figure. 2 Proposed PV Array Simulink Design 

 

 

3.1 Hybrid embedding network architecture 

The hybrid embedding network is the backbone 

of our MPPT strategy, transforming complex 

environmental and operational parameters into a 

dense, continuous vector space. Fig. (3) explains the 

proposed embedding neural network architecture. 

Where the process involves many steps, as described 

in the following. 

Input Feature Selection: The embedding 

network’s input features include environmental 

parameters such as irradiance, temperature, and 

historical power output, as well as operational 

parameters like voltage and current. Both categorical 

and continuous features capture the full range of 

dependencies influencing the MPP. 

Embedding Layer Design: Categorical features 

Using an appropriate method (such as one-hot 

encoding), categorical inputs (weather conditions) 

are first encoded before being sent via embedding 

layers. These layers capture the fundamental links 

between categories and convert the category inputs 

into dense, low-dimensional vectors. 
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Figure. 3 Proposed Embedding Neural Network 

Architecture 

 

 

Continuous inputs (e.g., irradiance and 

temperature) are directly fed into the network after 

normalization to ensure uniform data scaling. 

The input characteristics are converted into a high-

dimensional vector space in this layer. Let 𝑍 embed f 

embed be the representation of the embedding 

function. For input x, the embedding may be 

expressed as follows: 

 

ℎ𝑒𝑚𝑏𝑒𝑑 = 𝑓𝑒𝑚𝑏𝑒𝑑(𝑥) = 𝑊𝑒𝑚𝑏𝑒𝑑𝑥 + 𝑏𝑒𝑚𝑏𝑒𝑑     (6) 

 

Where Wembed is the weight of the Matrix, bembed is 

the bias Vector, hembed is the embedding vector, and d 

is the dimensionality of the embedding space. 

Neural Network Architecture: The embedded 

vectors from categorical features and normalized 

continuous features are concatenated and passed 

through a deep neural network of several fully 

connected layers. Each layer employs ReLU 

activation functions to introduce nonlinearity, 

enabling the network to model complex relationships 

within the data. 

 

ℎ(𝑙) = 𝜎(𝑊(𝑙)ℎ(𝑙−1) + 𝑏(𝑙))                                (7) 

 

The bias vector for layer l is b(l) ∈R nl, and the 

weight matrix for layer l is W(l) ∈R nl × nl−1. The 

activation function, in this case, ReLU, is represented 

by 𝜎(⋅). The output of layer l is denoted as h(l) ∈R nl, 

where nl  

is the number of neurons in the lth layer. Dropout 

layers are incorporated to prevent overfitting, 

ensuring the network generalizes well to unseen data. 

Output Layer: The network’s output is a 

predicted optimal operating point (voltage and 

current) corresponding to the MPP under the given 

environmental conditions. 

 

𝑦 = 𝑊𝑜𝑢𝑡ℎ
(𝑙) + 𝑏𝑜𝑢𝑡                                               (8) 

 

Wout represents the Weight matrix for the neuron layer. 

The bias term of the neuron is presented by bout. The 

expected or predicted power output is given by y. 

3.2 Self-adaptive genetic algorithm 

To optimize the embedding network parameters 

and improve the MPPT strategy, we use a self-

adaptive genetic algorithm (GA), which adjusts the 

MPPT algorithm's control parameters and network 

weights. These parameters are adjusted in the 

following steps. 

Initialization: The population is initialized with 

a set of potential solutions, where each individual 

represents a specific configuration of the network 

parameters (e.g., weights, biases) and MPPT control 

settings (e.g., duty cycle adjustments).  The initial 

solutions are generated randomly, ensuring diversity 

within the population.  A set of parameters (genes) for 

the MPPT is represented by each of the first 

populations of potential solutions (chromosomes) 

that the GA creates, which can be described as 

follows: 

 

𝑃(0) = {𝑋1(0), 𝑋2(0), … . , 𝑋𝑁}                         (9) 

 

The starting population is 

P(0).  Xi(0)  represents the ith chromosome at 

generation zero. The population size is N. Each 

chromosome is made at random to represent different 

MPP optimization parameter values. 

Fitness Evaluation: Every member of the 

population is assessed using a fitness function that 

gauges the PV system's overall power extraction 

efficiency and the precision of the MPP forecast. The 

fitness function's construction considers short-term 

precision (instantaneous power production) and long-

term stability (tracking consistency under dynamic 

situations). In the MPPT scenario, maximizing the 

photovoltaic array's power production is the fitness 

function's criterion for assessing each chromosome's 

(or solution's) performance. The fitness function     

f(Xi) may be expressed as follows: 

 

𝑓(𝑋𝑖) = 𝑃𝑜𝑢𝑡(𝑋𝑖)                                             (10) 

 

Where the power output corresponding to the 

parameter set Xi is represented by Pout (Xi), the aim is 

to maximize f(Xi) or to extract the most power 

possible from the PV array. 

Selection: A tournament selection process is one 

technique for choosing individuals for reproduction. 

This technique preserves population variety while 

guaranteeing that those with higher fitness ratings are 

more likely to be selected. In roulette wheel selection, 
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the likelihood of choosing chromosome 𝑋𝑖 where pi 

is directly related to its fitness: 

 

𝑝𝑖 =
𝑓𝑋(𝑖)

∑ 𝑓𝑁
𝑗=1  𝑋(𝑗)

                                                  (11) 

 

The larger the fitness value, where N is the 

population size, the more likely the chromosome will 

be chosen for reproduction. 

Cross-Over And Mutation: A subset of people 

perform cross-over to have children with traits from 

both parents, encouraging investigation of the 

solution space. A mutation might cause a binary 

chromosome to flip slightly: 

 

𝑋𝑖 ∗ = 𝑋𝑖⊕ 1                                                     (12) 

 

In this case, the bit-flip operation is ⊗ where 0 

becomes 1 and 1 becomes 0). A self-adaptive 

mutation method is used, in which the success of 

prior generations is used to modify the mutation rate 

dynamically. As a result, the process may optimize 

exploration and avoid premature convergence by 

fine-tuning solutions as they converge. A mutation 

for real-valued genes might entail introducing a little 

random value Δ to the gene where Δ denotes a little 

random disturbance: 

 

𝑋𝑖 ∗ = 𝑋𝑖 + Δ                                                     (13) 

 

Self-Adaptive Mechanism: A feedback loop in 

the self-adaptive GA modifies its parameters (such as 

the cross-over probability and mutation rate) in 

response to performance measures measured in real-

time circumstances. This adaptive feature increases 

the algorithm's resilience in dynamic contexts by 

enabling it to react to changes in the issue landscape. 

The mutation rate 𝑃 𝑚 changes as the optimization 

process proceeds in the case of a self-adaptive GA. It 

is not fixed; it adjusts based on how well the previous 

generations' mutations worked. You may use the 

following to do this: 

 

𝑃𝑚(𝑡 + 1) =  

𝑃𝑚(𝑡) × exp (−𝛾 ⋅
𝑛_𝑠𝑢𝑐𝑐𝑒𝑠𝑠𝑓𝑢𝑙

𝑛_𝑡𝑜𝑡𝑎𝑙
)                      (14) 

 

Where the mutation probability for the following 

generation is denoted by Pm(t+1), the learning rate for 

mutation adaption is denoted by 𝛾. The number of 

successful mutations is n_successful. The notation 

n_total indicates the total number of mutations 

applied. 

Optimizing and converging:The GA repeatedly 

develops the population over several generations, 

eventually converging on an ideal set of network 

parameters and MPPT control settings. Monitoring 

changes in the fitness score allows one to monitor 

convergence. The algorithm ends after a maximum 

number of generations or when a predetermined 

convergence condition is satisfied. 

3.3 Integration and implementation 

The last step in the process is to incorporate the 

self-adaptive GA and the optimized embedding 

network into the PV array's MPPT control system. 

The PV system's MPPT controller implements the 

optimal embedding network guided by the self-

adaptive GA. The network continually receives real-

time data inputs, anticipates the MPP, and modifies 

the system's operational settings as necessary. The 

system’s effectiveness is regularly assessed, and the 

GA receives feedback to help with any additional 

modifications that may be required, which proves the 

system’s adaptability in overcoming any expected 

environmental circumstances. 

4. Experimental setup and validation  

This part of our paper explained the MATLAB 

Simulink setup designed for PV, embedding 

networks, and GA. It also describes the proposed self-

adaptive genetic algorithm (GA) integrated with the 

hybrid embedding network for Maximum 

PowerPoint Tracking (MPPT) in photovoltaic (PV) 

systems, including the model parameters, validation 

processes, and simulation environments alongside 

the experimental setup and validation procedure.  

4.1 Model simulation environment 

MATLAB Simulink was utilized to design and 

simulate the PV array and MPPT control system. 

Real-time simulation of environmental factors and 

system reactions is made possible by the dynamic and 

flexible platform of the Simulink environment for 

modelling solar systems. MATLAB's Deep Learning 

Toolbox was utilized to design and train the 

embedding network. The network was set up to 

handle both continuous and categorical inputs, and it 

was intended to capture complicated relationships in 

the data through fully linked and embedded layers. 

Using the Global Optimization Toolbox, the GA was 

implemented in MATLAB. The purpose of the self-

adaptive GA is to optimize the control settings of the 

MPPT algorithm and the parameters of the 

embedding network. Using the Simulink model as its 

operating model, the GA iteratively refines the 

network and control settings in response to 

simulation findings. 



Received:  September 12, 2024.     Revised: October 27, 2024.                                                                                        125 

International Journal of Intelligent Engineering and Systems, Vol.18, No.1, 2025           DOI: 10.22266/ijies2025.0229.10 

 

Table 1. PV system Parameters. 

index Parameter PV System 

1 PV Array Size 10 KW 

2 Irradiance (W/M2) 200-10000 

3 Temperature (oC) 15°C to 45°C 

   4 Partial Shading 

Condition 

Simulated (Random 

Shading Levels) 

5 Open Circuit Voltage 40 V 

6 Short Circuit Current 10 A 

 

 

4.2 Model parameters 

The simulated PV array consists of a series-

connected configuration with standard test condition 

(STC) parameters involving an Open-circuit voltage 

(Voc) of 36.7 V, a Short-circuit current (Isc) of 8.21 

A, and a Maximum Power Point (MPP) voltage 

(Vmpp) of 29.4 V. The maximum power point (MPP) 

current (Imp) is 7.61 A. The array was exposed to 

irradiance levels (200 to 1000 W/m2) and 

temperature conditions (15°C to 45°C) to replicate 

real-world environmental variations. Table 1 

explains PV system Parameters. 

4.3 Embedding network configuration 

Input Layer: The network receives inputs for 

irradiance, temperature, voltage, and current. 

Embedding Layers: While continuous inputs are 

normalized and sent straight into the network, 

definite information, like the weather, is integrated 

into a 16-dimensional vector space. 

Hidden Layers: ReLU activation functions are 

used in three completely linked layers of 64, 32, and 

16 neurons, respectively. 

Output Layer: The network outputs the 

predicted MPP voltage and current values. 

4.4 GA configuration 

Population size of 50 individuals per generation. 

Cross-over Probability of 0.8. mutation rate initially 

set at 0.02, with self-adaptation based on 

performance. Tournament selection with a 

tournament size of 5. Convergence is defined as no 

significant improvement in fitness score over 20 

generations or a maximum of 200 generations. 

Table 2. Embedding Network Parameters. 

Index 

Embedding 

Network 

Parameters 

Values 

1 Embedding 

Network Input 

Voltage, Irradiance, 

Current and Temperature 

2 Embedding 

Network 

Layers 

3 Layers (Input, Hidden, 

Output) 

3 Activation 

Function 

ReLU 

4 Optimizer Adam 

5 Loss Function Mean Squared Error 

6 Learning Rate 0.01 

7 Tracking Time Less than 0.15 sec 

8 Tracking 

Accuracy 

More than 99% 

 

 

 
Figure. 4 GA Algorithm Workflow. 

 

4.5 Evaluation metrics 

The suggested hybrid Embedding Neural 

Network and Genetic Algorithm (GA) model for 

Maximum Power Point Tracking (MPPT) may be 

assessed using many common evaluation criteria, 

which allow us to quantify tracking speed, accuracy, 

convergence efficiency, and power prediction error. 

Root Mean Squared Error (RMSE): The root 

mean square is used in this study as an evaluation 

metric to measure the algorithm’s performance 

between the actual and predicted power values. The 

equation is as follows: 
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Table 3. GA Parameters 

Index GA Parameters Value 

1 GA Population Size 50 

2 GA Cross-Over Rate 0.8 

3 GA Mutation Rate 0.1 

4 GA Selection Method Tournament 

Selection 

5 GA Maximum 

Generations 

50-100 

6 GA Fitness Function Maximum 

Power Output 

 

𝑅𝑀𝑆𝐸 = 𝑠𝑞𝑟𝑡 [
1

𝑛
(Σ𝑖

𝑛(𝑃𝑖 − 𝑂𝑖)2)/𝑛]                 (15) 

 

Pi is the predicted power, Oi is the actual power, 

and n is the total number of data points. 

Mean Absolute Error: The second evaluation 

metric used is mean absolute error, which evaluates 

the performance between the actual and predicted. It 

gives error as the linear measure for the average error 

being calculated. 

 

𝑀𝐴𝐸 = [
1

𝑛
(Σ𝑖

𝑛(𝑃𝑖 − 𝑂𝑖))/𝑛]                            (16) 

 

Tracking Time: This third evaluation method is 

tracking time, which measures the time in seconds it 

takes for the algorithm to find the maximum Power 

Point MPP presentation. 

 

𝑇𝑇 = 𝑇𝑐𝑜𝑛𝑣𝑒𝑟𝑔𝑒 − 𝑇𝑠𝑡𝑎𝑟𝑡                                   (17) 

 

Convergence Rate: This algorithm evaluates 

GA's performance by determining at what rate GA 

converges to find the optimal solution. 

 

𝐶𝑅 =
1

𝐺𝑒𝑛𝑒𝑟𝑎𝑡𝑖𝑜𝑛𝑠 𝑡𝑜 𝑐𝑜𝑛𝑣𝑒𝑟𝑠𝑖𝑜𝑛
𝑥 100                (18) 

 

The Maximum Power Deviation (MPD) 

assessment metric calculates the discrepancy 

between the theoretical and actual maximum powers 

and assesses how effectively the method used to 

discover the maximum powers performed. 

 

𝑀𝑃𝐷 =
1

𝑛
∑

𝑃𝑚𝑎𝑥,𝑖−𝑃𝑒𝑥𝑡𝑟𝑎𝑐𝑡𝑒𝑑,𝑖

𝑃𝑚𝑎𝑥,𝑖
𝑥𝑛

𝑖=1  100           (19) 

 

Detection Accuracy: The detection accuracy is 

often expressed as the ratio of correctly identified 

maximum power points (or other targeted 

predictions) to the total number of predictions made 

when evaluating the efficacy of Maximum Power 

Point Tracking (MPPT) algorithms or other machine 

learning or optimization problems.  

 

𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =
𝐶𝑜𝑟𝑟𝑒𝑐𝑡 𝑝𝑟𝑒𝑑𝑖𝑐𝑡𝑖𝑜𝑛𝑠

𝑇𝑜𝑡𝑎𝑙 𝑝𝑟𝑒𝑑𝑖𝑐𝑡𝑖𝑜𝑛𝑠
𝑥 100                (20)  

 

These evaluation metrics thoroughly analyze the 

suggested hybrid model's performance concerning 

particular MPPT tracking efficiency (TE, TT, CR, 

MPD) and prediction accuracy (RMSE, MAE, 

MAPE, and detection accuracy). These measures can 

be combined to comprehensively validate the 

suggested model's efficacy compared to earlier 

methods. 

5. Results and discussion  

The embedding network was trained using a 

dataset created by the Simulink model, which 

contained various ambient variables and associated 

MPP values. After 100 epochs of training, the model 

was trained with the Adam optimizer at a learning 

rate of 0.001. Following training, the network's 

weights, biases, and MPPT algorithm control 

parameters were adjusted using the GA. The goal of 

the GA, which was performed across several 

generations, was to maximize the PV system's total 

power production while guaranteeing a quick 

convergence to the Maximum Power Point (MPP) 

under various circumstances. 

The trained and optimized embedding network 

and the self-adaptive GA were integrated into the 

Simulink MPPT controller. The system was tested 

under a variety of scenarios to evaluate its 

performance, including: 

Static Conditions: Simulations were conducted 

at fixed irradiance and temperature levels to assess 

the system's ability to maintain operation at the MPP. 

Dynamic Conditions: The system was exposed 

to rapid changes in irradiance and temperature to test 

its responsiveness and adaptability in real-time. 

Partial Shading Conditions: The PV array was 

subjected to partial shading scenarios, where certain 

cells received less irradiance, to evaluate the system's 

ability to track the global MPP rather than local 

optima.     

The experiment results prove the excellent 

performance of our proposed model under different 

operating conditions. The static condition system 

achieved a very low RMSE, around 0.0034, and a 

very low power deviation, around 0.12%. The 

detection accuracy reached the maximum, around 

99.98%, demonstrating the algorithm’s robustness 

when conditions such as temperature and irradiance 
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Table 4. The results with different conditions. 
Conditi

on 

RM

SE 

MA

E 

TT CR MPD Acc. 

Static 0.00

34 

0.00

1 

0.5 95.5 0.12 99.98 

Dynami

c 

0.03 0.00

2 

0.7 92.1 0.28 99.87 

Partial 

shading 

0.04 0.00

3 

0.9 88.7 0.45 99.75 

 

 
Figure. 5 MPPT PV array Power output. 

 

are constant. Under Dynamic conditions, the system 

also showed remarkable performance with high 

accuracy, with power deviation rising slightly to 

0.28%, which suggests the algorithm challenges 

during varying environmental conditions. Our 

proposed model maintained high performance under 

partial shading conditions where the system faces 

multiple local maxima. The RMSE and MPD 

increased slightly to 0.04 and 0.45%, reflecting the 

challenges of tracking the global MPP under partial 

shading conditions. 

Fig. 5 explains the power output of the MPPT PV 

array optimized by embedding a neural network with 

GA. As we can see, the power rises at 2.5 seconds 

and goes to 5000 W, and after this, the power does 

not fluctuate from here, which shows the power is 

optimized perfectly by PV arrays. Output power from 

a PV array depends on its capacity, intensity, and 

varying temperature. But with the help of an 

embedding neural network, maximum power is 

extracted from solar arrays, avoiding any power loss 

and utilizing power extraction efficiently from all PV 

array cells.  

DC-DC converter plays an integral part in PV 

arrays, regulating the constant output voltage under 

various operating conditions of the PV system. It 

regulates the power running through the system and 

maximizes the output. That's why the DC-DC 

converter needs to maintain a constant voltage. As 

seen in Fig. 6, it successfully maintains a constant 

voltage of around 400, ensuring maximum power 

output from the PV system.  

The main goal of a DC-DC converter is to 

maintain constant voltage under given operating 

conditions. Fig. 7 shows the PV array’s operating 

conditions, specifying the irradiance of around 1000 

w/m2, the temperature of around 25, the voltage of 

PV of around 200, the current of around 40, and the 

diode of around 10. Many of these operating 

conditions are constant. The goal here is to ensure a 

continuous power output. Looking more closely at 

the outputs, we can testify that our simulation 

operates at maximum power or is unstable, as 

explained in the following figure. 

Fig. 8 shows that the voltage output of PV is at 

the same operating condition that we set in the input, 

as shown in the previous figure. The DC-DC voltage 

is also constant, ensuring maximum power is running 

through the system and maximizing the output. 

Lastly, we can analyze the output power again of 

MPPT to find out that it's also at maximum. 

As seen in Fig. 9, the maximum power output is 

around 10KW, which is the maximum power that can 

be extracted from a given PV array system, which 

validates our model performance of embedding a 

neural network with GA optimization, ensuring 

maximum power tracking from the given PV array 

under any operating conditions. With these results, 

our novel model application shows the real-world 

application where PV array systems can work at their 

maximum power under any operating conditions, 

providing maximum power to the user while 

maintaining constant voltages and ensuring the 

system is also under stable conditions. The above 

results show the performance of MPPT under an 

optimized embedding network for diode currents, 

MPPT PV power and voltage output, and input 

conditions. Under these conditions, the model has 

shown exceptional performance, outperforming 

previous state-of-the-art models. 

 

 
Figure. 6 DC-DC Converter Voltage and current output
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Figure. 7 Operating Conditions of PV system 

 

The following important performance measures 

were used to assess the efficacy of the suggested 

method: 

The power extraction efficiency is the power 

extracted by the system divided by the theoretical 

maximum power available at the MPP. 

Tracking Speed: The duration of the MPPT 

controller's arrival at the MPP following a 

modification in the surrounding environment. 

Stability: The system can continue operating at 

the MPP without experiencing notable oscillations or 

variations. However, its functionality is partially 

shaded, noisy, and disturbed. 

The suggested method's performance was 

contrasted with several conventional and cutting-

edge MPPT algorithms, such as Disturb and Watch 

(P&O), Conductance Incremental (IncCond), and 

Optimization of Particle Swarms (PSO). These 

comparisons were made under identical 

circumstances to accurately assess the suggested 

approach's efficacy. 

Under static conditions, the proposed method 

consistently achieved power extraction efficiencies 

above 99%, demonstrating its ability to accurately 

predict and track the MPP.   

Fig.  10 shows the training performance of the 

embedding model optimized with the GA algorithm 

for MPPT tracking. The loss is very low, 

demonstrating the high training performance 

achieved by our model. In the dynamic condition, the 

system showed a significant improvement in tracking  

speed compared to traditional methods. The self-

adaptive GA enabled rapid convergence to the MPP 

within milliseconds of environmental changes.  

 
Figure. 8 PV array and DC-DC converter Power and 

Voltage output 

 

 

 
Figure. 9 PV output Power. 
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Figure. 10 Training RMSE and Loss Plot for 700 epochs 

 

 

 
Figure. 11 GA-optimized Fitness Function Performance. 

 

The embedding network effectively captured the 

complex relationships between input parameters, 

resulting in smooth and stable operation without 

oscillations, as explained in Fig. 11. 

Moreover, regarding partial shading findings, the 

proposed method excelled in partial shading 

scenarios, successfully identifying and tracking the  

global MPP where traditional methods often 

became trapped in local maxima. The self-adaptive 

GA's ability to adjust its mutation rate and cross-over 

probability in response to the problem landscape was 

key to maintaining high robustness and performance. 

Compared with benchmark algorithms, the proposed 

method outperformed all others regarding power 

extraction efficiency, tracking speed, and stability, 

particularly in dynamic and partial shading 

conditions.  

Delayed convergence, instability in the face of 

abrupt environmental changes, and inefficiency in 

partial shade are all limitations in classical methods 

addressed by our suggested hybrid system. The 

proposed methodology has demonstrated 

quantifiable advancements in other fields, offering 

diverse viewpoints on the potential applications of 

machine learning and evolutionary algorithms in 

enhancing renewable energy systems. Moreover, the 

self-adaptive GA and the suggested hybrid 

embedding network consistently beat conventional 

MPPT algorithms regarding the model's performance 

in static and dynamic settings. In static settings, the 

network's power extraction efficiency exceeded 99% 

due to its accuracy in predicting the Maximum Power 

Point (MPP). This high efficiency highlights how 

well the embedding network models intricate 

interactions between the inputs of a photovoltaic 

system (i.e., temperature, voltage, current, and 

irradiance) and the related ideal operating point. 

6. Comparative analysis  

Our proposed hybrid system presents a successful 

solution for real-world PV systems due to its capacity 

to adapt to changing conditions and avoid local 

optima. The perfect fused the optimization capability 

of self-adaptive GA and predictive power by 

embedding the network procedures produced a 
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robust and reliable MPPT controller that routinely 

surpassed the benchmark algorithms 

regarding stability, tracking speed, and power 

extraction efficiency. 

Methods such as the global maximum power 

point (GMPP) in photovoltaic (PV) systems and the 

conventional perturb and observe (P&O) fail in 

monitoring the global maximum power point 

(GMPP) in the presence of complex partial shading 

circumstances (PSC). Even though many of the most 

current maximum power point tracking (MPPT) 

algorithms are designed to handle smaller PSCs with 

fewer peaks, it is uncertain if they can handle 

exceedingly complicated PSCs. With more than five 

peaks and incredibly close peak values, this study's 

PSCs were more realistic, challenging, and complex.  

Therefore, complex PSCs are used, and a novel 

deterministic peak hopping (PH) based MPPT 

method is proposed to operate these systems. At each 

iteration, an agent moves between the low end of the 

P-V curve and the high-duty cycle region in a specific 

step size, reducing and shifting the tracking zone 

towards the GMPPT. The proposed technique utilizes 

a programmable sample period for scanning and 

hopping to accelerate convergence.  

In the recent experimental configuration, a real-

time TI C2000 microcontroller was successfully 

integrated in the recommended manner [28]. 

Consequently, tracking accuracy exceeds 98.70%, 

and tracking times are less than 0.83 seconds.  

[29] presented a novel method for quantum-

behavior particle swarm optimization (IQPSO). It 

addressed the maximum power point tracking 

(MPPT) issue in solar-powered energy systems 

(PGSs). This study [30] proposed a novel hybrid 

MPPT algorithm that used voltage scanning and 

perturb & observe techniques to overcome the 

limitations of the partial shading environment. In our 

proposed study, we used a novel hybrid technique 

that combined embedding network and GA, which 

has far better performance and tracking efficiency. 

 It operates far more quickly and effectively than 

the suggested methods in [28,29-30], particularly in 

intricate and dynamic settings. Our approach uses the 

predictive power of the embedding network to 

anticipate and respond almost instantly to changes in 

irradiance and shading patterns, unlike the 

deterministic peak hopping method, which tracked 

the MPP under partial shading in 0.83 seconds while 

achieving 98.70% efficiency.  

In photovoltaic (PV) systems, the regular perturb 

and observe (P&O) method is incapable of tracking 

the global maximum power point (GMPP) under 

complicated partial shading conditions (PSC). 

Although many of the most recent maximum power 

point tracking (MPPT) algorithms focus on smaller 

PSCs with fewer peaks, whether such algorithms can 

tackle highly complex PSCs is doubtful. This work 

demonstrated more realistic, difficult, and complex 

PSCs with more than five peaks and close-to-peak 

values. A new deterministic peak hopping (PH) based 

maximum power point tracking (MPPT) technique 

with easy procedures is proposed to overcome these 

complex partial shading conditions.  There is 

practically no more tracking zone as it has been cut 

down and shifted towards the vicinity of GMPP using 

an agent who moves through the upper and lower 

duty cycle regions of the P-V curve with the least 

possible steps. The suggested technique incorporates 

an adjustable sample period for scanning and hopping, 

and the recommended technique engages in a more 

rapid iteration sequence. Plenty of simulations have 

proven how such a proposed tracking algorithm 

performs tracking of GMPP. Notably, this method 

also outperforms the latest capacitive MPPT 

algorithms. 

This paper offers a new hybrid MPPT procedure, 

which includes embedding neural networks into a 

self-adaptive genetic algorithm. In complex and 

dynamic situations, it is more effective and faster in 

performance than the earlier methods. The 

embedding network does not involve predictably 

hopping over peaks to track the MPP, which in partial 

shading took 0.83 seconds at 98.70% efficiency. 

With the GA’s adaptive optimization results, our 

system produces energy extraction efficiencies of 

more than 99% and tracks down emerging targets in 

less than 0.15 seconds, both in static and dynamic 

instances. 

Moreover, our hybrid strategy of locating the 

maximum power point is much faster than the 

quantum-behavior PSO method, which requires 1.35 

seconds to reach the MPP. However, the efficiency 

was marginally better at 99.47%. While it is true that 

these processes achieve the efficiency that was 

reached by the voltage scanning and perturb-and-

observe hybrid method that achieved 99.79% 

efficiency in 0.2 seconds of tracking, our technique 

not only meets but also exceeds the results of the 

methods in terms of efficiency while further reducing 

the tracking time. The application of machine 

learning and evolutionary algorithms in our study 

presents some reliability and flexibility that has not 

been experienced in any other research towards quick 

and reliable MPP tracking under extreme partial 

shading conditions. 
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7. Conclusion  

This paper proposed an improved Maximum 

Power Point Tracking (MPPT) method based on the 

hybrid embedding network and self-adaptive GA for 

PV system implementation. Our method is a major 

advancement over traditional MPPT algorithms and 

works extremely well during typical days in the real 

world (i.e., it reduces tracking speed and increases 

system stability and power extraction efficiency 

while including common unfortunate types of 

environmental situations like partial shade. The 

maximum power point (MPP) can be well predicted 

due to the hybrid embedding network’s ability to 

capture sophisticated relationships among PV system 

parameters. This system rapidly converges to the 

MPP due to variations, which means that with the 

self-adaptive GA adjusting its optimization strategy 

for any variation in real-world features like 

significant temperature and irradiance, it assures us 

that our PV array will extract maximum energy. The 

comparison with state-of-the-art methods 

demonstrated that our method is preferable to 

benchmark algorithms such as Particle Swarm 

Optimisation (PSO), Incremental Conductance 

(IncCond), and Perturb-and-Observe(P&O). The 

hybrid approach regularly outperforms these 

traditional systems in speed, reliability, and 

efficiency under challenging circumstances, 

including dynamic, static, and partial shade. The 

experimental outcomes of this study are valuable 

regarding PV system design and operation with a 

focus on case studies or locations where there is high 

pressure to maximize energy output. 

Moreover, the results have significant 

implications regarding PV system design and 

operation when energy yield is critical, as in many 

environments. Improved MPPT method increases 

solar power generation reliability and efficiency. It 

opens up the potential for further investigation in 

applying advanced machine learning and 

evolutionary algorithms to renewable energy systems. 

Some additional studies might include more 

environmental components in the embedding 

network, decreasing the computing complexity of the 

algorithm or extending this methodology to other 

types of hybrid energy systems. Further improvement 

of this method will facilitate our progress in 

developing sustainable energy and optimizing the 

performance of MPPT controllers. 

In addition, the results of this study will greatly 

affect the installation of PV systems in diverse 

environmental situations. This improved MPPT 

methodology could lead to higher energy yields, less 

 

Table 5. Comparative Analysis 

Ref. Models Tracking Acc./ Time 

[28] A Real-Time 

Deterministic Peak 

Hopping MPPT 

Algorithm for 

Complex PS 

conditions 

Tracking Acc.= 98.70 

Tracking Time = 0.83s 

[29] MPPT of 

Photovoltaic 

Generation System 

+ Particle Swarm 

Optimization 

Tracking Acc.= 99.03 

Tracking Time=1.32s 

[30] Hybrid MPPT 

Algorithms + 

Voltage Scanning 

and Perturb and 

Observe + PS 

Conditions 

Tracking Acc. = 99.79 

Tracking time=0.2 s 

Our 

Model 

Proposed Model 

Embedding 

Networks + Self-

Adaptive GA 

Tracking Acc.=99.98 

Tracking Time=0.12s 

RMSE=0.0034 

MAE=0.00234 

 

system downtime, and reduced inefficiencies in 

generating solar power. The model has potential 

implications for large-scale solar farms or residential 

PV systems in frequently shadowed areas, partially 

due to adversarial weather conditions. 

 Finally, the problem independently brings fresh 

research and development pathways to employ 

machine learning (even an evolutionary algorithm). 

In the future, other environmental factors, such as 

wind speed or humidity, can be integrated into an 

embedding network. As described in this work, our 

proposed optimization model proves its capability to 

adapt to different renewable energy systems. 

Although the suggested methods have many 

advantages over this, they still have a few limitations. 

Backbone experiences of deep learning for training 

the embedding network are required with a full 

dataset that reflects all possible scenarios of 

behaviour by the PV system. It can limit the 

performance of a network, such as when certain data 

is hard to obtain. There is also the added processing 

complexity that comes with having a self-adaptive 

GA, which can limit it from practical use in real-time 

applications even if using one does amplify strengths 

and provides additional flexibility. In the future, 

efforts may be made to parallel processes or utilize 

more efficient optimization capabilities that can 

reduce the computational burden on genetic 

algorithms.  

This study offers a new method for tracking the 

Maximum Power Point in solar systems: it integrates 

neural networks with a self-adaptive genetic 
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algorithm (GA). Our findings show a noteworthy 

enhancement in tracking effectiveness, attaining less 

root mean square error RMSE of 0.034 compared to 

traditional techniques, suggesting an enhanced 

precision in tracking ability. The efficacy of the 

suggested approach in improving power quality was 

further demonstrated by a 25% increase in voltage 

stability and a 30% decrease in total harmonic 

distortion (THD). Furthermore, we noticed a 15% 

decrease in processing time, which is critical for 

maximizing solar energy harvesting as it allows for 

quicker reaction to changing environmental 

circumstances. Also, our proposed model enhanced 

the tracking accuracy and time of MPPT, achieving 

99.98  tracking Acc in 0.12 seconds. The experiment 

results prove the excellent performance of our 

proposed model under different operating conditions, 

such as static conditions, dynamic conditions, and 

partial shading conditions, as we showed in Table 5. 
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