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Abstract: Cataract remains the leading cause of blindness globally, accounting for nearly half of all cases. This study 

presents the Deep Attention U-Net for Cataract Diagnosis (DAUCD) model, leveraging advanced deep learning 

techniques to improve both the segmentation and classification of cataract in retinal images. The proposed DAUCD 

method integrates Attention U-Net architectures with pre-trained backbones (ResNet50, Inception-v3, and VGG19) 

for precise blood vessel segmentation, followed by the classification of segmented outputs using VGG16. The model 

achieved a classification accuracy of 98.24%, with a sensitivity of 99.77%, a specificity of 97.83%, and an AUC of 

99.24%, particularly excelling with the ResNet50-based backbone. The dataset, curated from multiple sources 

including the cataract dataset, ODIR5K, eye-diseases-classification, and cataract eyes datasets, comprises a total of 

10,444 fundus images. It was designed to support both segmentation and classification tasks, with images evenly 

distributed across cataract and non-cataract classes. This comprehensive dataset provided a strong foundation for 

validating the effectiveness and generalizability of the proposed DAUCD model. The findings of this research 

underscore the robustness and efficiency of the DAUCD model in medical image analysis, offering promising 

advancements in early detection and treatment outcomes for cataract patients. 
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1. Introduction 

Cataract ranks among the primary causes of 

vision loss in developed countries, accounting for 

nearly half of the cases [1]. By 2024, the global 

population of visually impaired individuals is 

estimated to reach around 150 million [2]. Cataracts 

are often divided into three main types: Nuclear 

Cataract, Cortical Cataract, and Posterior 

Subcapsular. Several causes may lead to the 

deterioration of the lens protein. Due to these causes, 

the metabolism of the lens was disrupted, resulting in 

the development of cataracts. Cataract occurs when 

the presence of a cloudy lens obstructs the passage of 

light onto the retina, leading to a loss of visual clarity. 

Cataracts are more prevalent in those above 40 years 

of age, and the probability of developing cataracts 

increases as one ages. Treatment for cataracts has 

become a concern due to the steadily rising frequency 

of the condition and its growing impact [3]. It is 

recommended to be promptly recognized and 

promptly treated. 

There is continuing research on cataract risk 

factors [4-6].  Age-related nuclear and cortical 

cataracts are often encountered in older individuals 

[7]. UV-B radiation is a risk factor. Contact and 

smoking may contribute to visual function changes, 

although the likelihood of them causing significant 

alterations is low. To address cataracts, it is important 

to recognize and treat them early. If discovered early, 

some actions may be performed to mitigate the 

progression by taking preventive measures, such as 

using sunglasses that reduce glare [8]. Surgical 

procedures frequently provide effective solutions for 

severe cataracts that considerably affect a patient's 

daily life. Currently, four main procedures are used 

for the identification and grading of cataracts. The 

initial approach involves the light-focus technique. 

The second approach uses iris image projection. The 

third method involves the slit lamp assessment, while 
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the fourth employs ophthalmoscopic 

transillumination Nevertheless, physical evaluation 

may be prone to subjectivity, requires a significant 

amount of time, and incur high costs [9].  

Hence, considering the social and economic 

aspects, it is very logical to get automated cataract 

diagnosis by the use of artificial intelligence. The 

proposed DAUCD model introduces a novel 

integration of Attention U-Net with pre-trained 

backbones, such as ResNet50, Inception-v3, and 

VGG19. This integration allows the model to 

enhance blood vessel segmentation by focusing on 

essential features and filtering out irrelevant ones 

through attention mechanisms. Furthermore, the 

segmented images are classified using VGG16, 

ensuring precise identification of cataract presence. 

The emphasis on eye care is crucial since it offers an 

opportunity to positively impact the lives of 

individuals globally [10]. 

The DAUCD model demonstrates several 

advantages over existing methods. It enhances 

robustness and efficiency in distinguishing fine 

retinal structures through its multi-stage approach. 

Additionally, the integration of multiple pre-trained 

backbones improves the model’s ability to generalize 

across diverse retinal images, addressing the 

limitations of traditional single-architecture methods. 

By employing attention gates, the model effectively 

captures detailed retinal features, thereby achieving 

higher diagnostic precision. Cataracts are classified 

into two categories: Non-cataract and Cataract. Fig. 1 

presents two distinct retinal fundus images. In Fig. 1 

(a), a normal retinal fundus is displayed, with 

capillaries and vascular cells clearly visible. 

Conversely, Fig. 1 (b) shows a cataract-affected 

image, where blurriness conceals the capillaries and 

vascular structures. At this point, most individuals 

have substantial vision loss. 

The paper is organized as follows: Section 2 

reviews related work on cataract detection techniques. 

Section 3 elaborates on the model architecture and 

implementation. Section 4 discusses the experimental 

results and discussion. Section 5 concludes the paper 

by summarizing the key findings and offering 

directions for future research. 

 

  
(a) (b) 

Figure. 1 Retinal Fundus images: (a) Non-Cataract and 

(b) Cataract 

2. Related work 

In recent years, the field of medical image 

analysis has seen remarkable progress in developing 

automated diagnostic methods for eye diseases. The 

rise of deep learning techniques has enabled 

significant advancements in the detection and 

grading of cataracts. This literature review aims to 

provide a comprehensive overview of existing 

research on automated approaches for cataract 

diagnosis, highlighting key innovations, challenges, 

and advancements in leveraging deep learning 

methods for detection and classification tasks. 

Several studies have explored various automated 

frameworks to enhance cataract detection and 

grading using retinal fundus images, demonstrating 

notable improvements in diagnostic accuracy, 

robustness, and efficiency. 

Existing Methods and their Limitations 

A Deep CNN (DCNN) was presented for cataract 

identification and grading, which made use of feature 

maps from the architecture's pooling layers. This 

approach was time-efficient, with cataract 

identification and grading accuracies of 93.52% and 

86.69%, respectively. However, relying on pooling 

layers may result in the loss of crucial spatial details, 

affecting the model's accuracy in distinguishing 

similar retinal features, especially in complex cases 

[11]. 

DCNN and Random Forests were used to grade 

cataracts at six levels. The suggested DCNN 

extracted fundus image characteristics at various 

levels using three modules. DCNN provided a feature 

dataset that RF utilized to construct the more complex 

six-level cataract grading. On average, this approach 

was 90.69% accurate. The six-level grading system 

may help doctors better comprehend patients. 

However, the reliance on manual tuning of RF 

parameters and separate feature extraction may limit 

automation and scalability [12]. 

A computer-assisted procedure for assessing the 

cataract severity, ranging from mild to severe, using 

the fundus pictures was provided. This technique 

employed previously trained CNNs through transfer 

learning to automate the classification of cataracts. 

The final classification was performed using the 

feature extraction process and the SVM classifier, 

which had a four-stage CCR of 92.91%. The use of 

separate CNNs for feature extraction and SVM for 

classification can lead to information loss and 

reduced adaptability due to the lack of direct 

integration between these stages [13]. 

A cataract grading system using a Tournament-

Based Ranking CNN was introduced, which employs 

a tournament framework to improve accuracy in 
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identifying underrepresented classes, achieving an 

exact match accuracy of 68.36%. The manual setup 

of the tournament structure may limit adaptability to 

different datasets, requiring frequent reconfiguration 

[14]. 

An automated cataract detection method 

employing DCNNs and a trained Res-Net classifier 

model with a 95.77% accuracy was suggested. The 

approach lacks pre-processing to address image 

quality variations, making it less robust and accurate 

with noisy or low-quality images [15]. 

A hybrid CRNN model was introduced for 

cataract classification, combining CNNs (AlexNet, 

GoogLeNet, ResNet, and VGGNet) with RNNs to 

capture spatial correlations in image patches, 

achieving 96.39% accuracy. The model’s reliance on 

patch-based analysis may overlook global image 

context, and its validation on a limited dataset raises 

concerns about generalizability [16]. 

Transfer learning with Inception-V4 was used to 

tackle CNN issues like overfitting, high computation 

costs, and fading gradients, achieving 96% accuracy 

in cataract classification. However, the method relies 

on standard CNN architectures and lacks multi-scale 

feature extraction, potentially limiting its ability to 

capture both fine details and broader patterns in 

complex images [17]. 

A stacking approach graded cataracts into six 

stages using ResNet-18 for high-level feature 

extraction and GLCM for texture features. Two SVM 

classifiers processed these features, with a fully 

connected neural network achieving 94.75% 

accuracy. However, the reliance on manually 

engineered GLCM features may limit flexibility and 

generalizability to diverse datasets [18]. 

A deep learning model was proposed for cataract 

detection and grading, utilizing a flexible ResNet-

based architecture with 18 and 50 layers for different 

tasks. The model processes fundus images through 

the G channel and outputs predictions with heatmaps 

to localize key areas. It achieved state-of-the-art 

accuracy of 97.2% for detection and 87.7% for 

grading, with interpretability validated by 

ophthalmologists. The model's reliance on the G 

channel may overlook valuable features in the R and 

B channels, potentially affecting classification 

accuracy [19]. 

VGG-19 was applied to automate eye disease 

detection using fundus images, achieving 95% 

accuracy in classifying normal versus cataract cases 

within the ODIR-5K dataset. However, the absence 

of segmentation might limit precision in complex 

cases, where detailed region-specific analysis is 

essential [20]. 

An EfficientNet and ML-Decoder (Multi-Label 

Decoder) based deep learning model achieved 95.7% 

accuracy in detecting multi-label retinal diseases 

from fundus images. The model uses SAM optimizer, 

image transformations, and pixel-level fusion of eye 

images, outperforming state-of-the-art methods on 

the ODIR dataset with fewer parameters. However, 

class imbalance remains unresolved as GAN-based 

solutions were proposed but not implemented [21]. 

EfficientNetB3 achieved 96.94% accuracy in 

multi-label classification of fundus images using the 

ODIR-5K dataset. The model showed strong 

potential for early diagnosis on edge devices, 

reducing computational costs. The study primarily 

focused on accuracy and F1-score, but did not fully 

explore other important metrics like precision, recall 

[22]. 

CataractNetDetect, a multi-label deep learning 

classification system, integrates features from paired 

fundus images (left and right eyes) using models like 

ResNet-50, DenseNet-121, and Inception-V3. 

Trained on the ODIR-5K dataset, it achieved 94% 

accuracy, along with an F1-score of 98.0% and AUC 

of 97.9%, outperforming conventional models in 

diagnosing cataracts and other ocular diseases. 

CataractNetDetect’s reliance on paired images may 

limit its effectiveness when only single-eye data is 

available or when there are significant differences 

between eyes [23]. 

A deep learning-based system using ResNet50 

achieved 92% accuracy on the ODIR-5K dataset for 

diagnosing eye diseases like diabetic retinopathy, 

glaucoma, and cataracts. The approach employs 

transfer learning, image preprocessing, and 

oversampling but lacks attention mechanisms, 

potentially affecting accuracy in detecting subtle or 

overlapping features [24]. 

CataractEyeNet, a deep learning-based system 

using an enhanced VGG-19 model, achieved 96.78% 

accuracy in detecting cataract disorders. However, 

relying solely on VGG-19 may limit its adaptability 

to diverse datasets and variations in lens images, 

potentially affecting performance in different 

imaging conditions [25]. 

An ensemble deep learning approach was 

developed to detect and classify eight eye diseases 

from fundus images, achieving 90.24% accuracy for 

cataract detection using CLAHE, Gaussian filtering, 

and augmentation. However, the model lacks a 

dedicated segmentation step, potentially limiting its 

accuracy in detecting subtle abnormalities or 

distinguishing overlapping features in complex cases 

[26]. 
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Figure. 2 Work Flow Diagram 

3. Model architecture and implementation 

The overview of the proposed methodology, 

depicted in Fig. 2, encompasses several key 

components: Data Preprocessing, Data 

Augmentation, Deep Learning Attention U-Net 

frameworks for segmentation, and the identification 

of Cataract Severity Levels by using VGG-16 as a 

classifier. 

3.1. Dataset 

A comprehensive collection of fundus cataract 

images is curated from multiple databases and open-

source datasets available on Kaggle, addressing the 

lack of standardized benchmark datasets. This 

research employs a selection of images sourced from 

the cataract dataset [27], odir5k [28], eye-diseases-

classification [29], cataract eyes Kaggle [30], and 

cataract dataset [31], as illustrated in the Table 1. 

The dataset comprises 10,444 fundus images, 

evenly distributed across two classes, with the 

cataract class containing 5,244 images and the non-

cataract class containing 5,200 images after 

preprocessing, as detailed in the upcoming section. 

The dataset is categorized into training, testing, 

and validation subsets in a 70:20:10 ratio. This results 

in 7,311 designated for training, 2,089 images are 

allocated for testing, and  1,044  images  are  reserved  

 
Table 1. Overview of Dataset: Train, Test, and Validation 

Splits 

Dataset 

Split 

Total 

Images 

Cataract 

Images 

Non-

Cataract 

Images 

Training Set 7,311 3,671 3,640 

Testing Set 2,089 1,049 1,040 

Validation 

Set 
1,044 524 520 

for validation. The distribution of images in each set 

is as follows: 

Training Set: 3,671 images with cataract and 

3,640 are non-cataract images. 

Testing Set: 1,049 images with cataract and 1,040 

are non-cataract images. 

Validation Set: 524 images with cataract and 520 

are non-cataract images. 

3.2. Data preprocessing 

To make fundus images more effective for 

analysis, several preprocessing steps are crucial. First, 

we resize the images using bicubic interpolation, 

ensuring they fit the necessary parameters for further 

examination. We then perform green channel 

extraction from the RGB images to combat uneven 

lighting issues. The green channel stands out for its 

ability to highlight important details while 

maintaining the essential features of the original 

images as illustrated in Fig. 3, and it also speeds up 

processing time by about a third. Next, we normalize 

the images by standardizing the intensity values, 

which involves subtracting the average pixel 

intensity and normalizing by the standard deviation. 

We also use data augmentation to expand the 

dataset to enhance model performance, reducing the 

risk of overfitting. This involves generating new 

images by rotating them at different angles (0°, 45°, 

90°, 135°, 180°), flipping them horizontally, 

cropping them at the corners, and shifting them 

within a specific frame. These techniques ensure that 

the model can generalize better across different 

datasets. The result is a collection of high-quality, 

resilient images prepared for additional analysis, as 

illustrated in Fig. 4. 

 

 
Figure. 3 RGB image in the first column, Red channel in 

the second column, Green channel in the third column, 

Blue channel in the fourth column 
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Figure. 4 The resulting fundus images after the 

preprocessing steps: Resized image in the first column, 

Green channel of the image in the second column, 

Normalized image in the third column, Augmented 

images in the fourth column 
 

3.3. Attention U-Net architecture 

Fully Convolutional Networks (FCNs) have 

gained considerable interest in image segmentation 

research, particularly with the U-Net design. The U-

Net structure is highly effective in binary 

segmentation, making it widely applicable in 

biomedical image segmentation tasks [32]. The U-

Net design comprises two main components: (1) the 

encoder, referred to as the contracting path, and (2) 

the decoder, also called the expansion path. In the 

encoder, there are 5 stages, each utilizing a sequence 

of convolutional layers followed by max-pooling 

layers to progressively reduce the spatial dimensions 

of the image and extract localized features. The 

decoder path also contains 5 stages, where transposed 

convolutional layers are used for upsampling to 

restore spatial resolution while refining the feature 

maps. 

Unlike architectures that rely on dense layers, the 

U-Net uses only convolutional layers, making it 

capable of handling images of varying sizes [33]. 

Additionally, skip connections are utilized to pass 

feature maps from the encoder to the corresponding 

layers in the decoder, helping retain spatial details 

that might otherwise be lost during downsampling. 

These skip connections are s in our Attention U-Net 

model by integrating attention gates at each of the 5 

skip connections, these connections enable the model 

to concentrate on the most important spatial 

information This addresses a limitation in the original 

U-Net design, where early-stage feature maps are 

often less informative due to a lack of focus on 

important details [34]. 

The DAUCD model further improves 

performance by replacing the standard U-Net 

encoder with pre-trained backbones (ResNet50, 

Inception-v3, and VGG19), which provide more 

powerful and efficient feature extraction. The 

combination of these enhancements allows our model 

to deliver more accurate segmentation results in 

biomedical image analysis. 

3.4. Proposed DAUCD model 

The U-Net model has been improved to produce 

optimum outcomes, resulting in the development of 

Attention U-Net. This design has an encoder, the 

decoder, and the attention gates included in each 

level’s skip connection. Our proposed Attention U-

Net integrates attention gates at each skip connection. 

For evaluating the optimal segmentation performance, 

replaced the original encoder of the standard U-Net 

with pre-trained networks ResNet50, Inception-v3, 

and VGG19 serving as backbones in contracting path. 

These three models share identical decoders, which 

include convolutional, upsampling, and 

concatenation layers [35]. The concatenation layers 

merge the upsampled output with the feature maps 

from the encoder. Additionally, each convolutional 

layer is succeeded by batch normalization and the 

Rectified Linear Unit (ReLU) activation function. 

The ReLU activation function, denoted as (1), is 

known as the input 𝒳 of a neuron, which enhances 

the model's performance. The main distinction 

among the three networks is found in encoder. A 

prevalent method for training the deep neural 

networks, batch normalization improves efficiency 

and the consistency. 

 

𝑒𝐿𝑈(𝒳) = 𝑚𝑎𝑥(0,1)                       (1) 

 

In the Attention U-Net framework, each level 

incorporates an attention gate that receives the signal 

inputs: G and X, G being a deeper layer gating signal, 

providing the spatial information. The signal X 

comes from a skip connection which contains richer 

feature representations. Combining signals X and G 

ensures the retention of both attributes and spatial 

details. X represents the encoder's feature map, while 

 

 
Figure. 5 AG Gate Design Overview 
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Figure. 6 Attention U-Net Model Framework 

 

G represents the gating signal in the decoder path’s 

attention gate, as illustrated in Fig. 5. The attention 

gate's output, X1 is represented as X ∙ 𝛼. The vector of 

attention coefficients 𝛼 is defined in (2), with 𝜎1and 

𝜎2 corresponding to the ReLU and sigmoid activation 

functions, correspondingly. wX  and w𝐺  represents 

linear transformations, while 𝐵𝐺  and 𝐵𝜃 indicate the 

biases. 

 

𝛼 = 𝜎2(w𝜃
𝑡 (𝜎1(wX

𝑡  X + w𝐺
𝑡  𝐺 + 𝐵𝐺)) + 𝐵𝜃)    (2) 

 

The proposed attention U-Net architecture is 

illustrated in Fig. 6. This model replaces the 

backbone with pre-trained models, specifically 

ResNet50, Inception-v3, and VGG19. The first 

architecture utilizes Inception-v3 as the encoder, 

blending layers of convolution with max-pooling. 

Inception modules are used instead of the original U-

Net’s convolutional layers, applying 3 × 3 and 1 × 1 

convolutions alongside 3 × 3 max-pooling. The 

alternative design utilizes VGG19 as the encoder, 

with convolutional and max-pooling layers, 

increasing the filter size after each pooling operation. 

The third architecture features ResNet50 utilizes 

residual blocks with skip connections to address the 

issue of vanishing gradients. 

3.5. Process of classification 

After performing blood vessel segmentation with 

the Attention U-Net model, which utilizes pre-trained 

backbones like ResNet50, Inception-v3, and VGG19, 

the segmented images are then fed into a VGG16 

model for classification. 

The classification process begins by passing the 

segmented retinal images through a series of 

convolutional layers in VGG16. These convolutional 

layers apply multiple filters to the input images to 

extract hierarchical features. The ReLU activation 

function is applied after each convolutional layer to 

introduce non-linearity, enhancing the model's 

capacity to capture intricate patterns. Max-pooling 

layers follow each convolution block, downsampling 

the feature maps and reducing their spatial 

dimensions while retaining key information. As 

illustrated in Fig. 7, the VGG16 architecture consists 

of multiple convolutional layers, each followed by 

max-pooling operations that systematically decrease 

the feature map size while preserving essential 

information for classification. 

As the input passes through successive 

convolutional and pooling layers, VGG16 learns 

high-level features that represent complex attributes 

of the segmented images. At the conclusion of the 

convolutional stages, the feature maps are flattened 

into a one-dimensional vector, which is then passed 

into a sequence of fully connected layers. These fully 

connected layers, analogous to the decision-making 

part of the network, analyze the learned features and 

determine the relationship between them. 

Finally, the output from the last fully connected 

layer passes through a softmax activation function, 

which outputs the probabilities of the image 

belonging to two distinct classes: "cataract" or "non-

cataract." The class with the highest probability is 

chosen as the final classification label. This 

classification task effectively builds on the precise 

blood vessel segmentation by the Attention U-Net, 

ensuring that the system combines segmentation 

accuracy with robust diagnostic capabilities. In this 

way, the model segments the retinal images and 

accurately classifies them into their respective 

categories, facilitating an end-to-end approach for 

cataract detection. 

4. Experimental results and discussion 

All the experiments were carried out within a 

Google Colab environment, on a system with a 2.30 

GHz Intel Core i7 processor, and 16 GB of RAM. The 

dataset was split into three parts: 70% for training, 

10% for validation, and 20% for testing. 

The Attention U-Net model was enhanced with 

three distinct backbones ResNet50, Inception-v3, and 

VGG19, and undergone training with 150 epochs 

while a learning rate set to 1×10^(-3)   using a dataset 

of fundus images. For optimization, Inception-v3 

utilized the Adam algorithm, while Stochastic 

Gradient Descent (SGD) was used in training 

ResNet50, VGG19. Model performance on the test 

set was measured through metrics such as accuracy, 

sensitivity, specificity, and precision. 

Following segmentation, the VGG16 model was 

utilized for classification, where the segmented 

images   were   classified   into   "cataract"   or   "non- 
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Figure. 7 VGG16 architecture for binary classification 

 

cataract." The VGG16 classifier was also trained with 

the Adam optimizer, and its performance was 

assessed using the same metrics and AUC to ensure 

robust diagnostic capability across both segmentation 

and classification tasks. 

4.1. Evaluation criteria 

This study evaluates each architecture’s 

performance using multiple metrics: Accuracy (Acc), 

sensitivity (Sen), specificity (Spe), precision (Pre), 

and the Area Under the Curve (AUC). Equations (3) 

through (6) represent the corresponding calculations. 

Acc is the count of correct predictions generated by a 

framework in these equations. Pre represents the 

proportion of correct positive predictions out of all 

positive predictions generated by the model. Sen 

assesses the accuracy of the model by measuring the 

ratio of properly detected positive examples to the 

total number of real positive instances. Spe, in 

contrast, measures the accuracy of identifying 

negative cases and indicates the model's capability to 

accurately detect non-positive examples. The AUC 

metric quantifies the discriminatory power of a 

classifier in distinguishing between many classes. It 

offers a concise overview of the Receiver Operating 

Characteristic (ROC) curve. 

 

𝐴𝑐𝑐 =
𝑇𝑃+𝑇𝑁

𝑇𝑃+𝐹𝑃+𝑇𝑁+𝐹𝑁
                         (3) 

 

𝑆𝑒𝑛 =
𝑇𝑃

𝑇𝑃+𝐹𝑁
                                 (4) 

 

𝑆𝑝𝑒 =
𝑇𝑁

𝑇𝑁+𝐹𝑃
                                 (5) 

 

𝑃𝑟𝑒 =
𝑇𝑃

𝑇𝑃+𝐹𝑃
                                 (6) 

 

4.2. Performance evaluation 

Table 2 presents the segmentation performance 

metrics for each architecture, where Models K, L, and 

M correspond to U-Net frameworks using ResNet50, 

Inception-v3, and VGG19 as backbones, respectively. 

Model K (ResNet50) demonstrates the highest 

performance, with an accuracy (Acc) of 97.50%, 

sensitivity (Sen) of 98.10%, specificity (Spe) of 

96.23%, and precision (Pre) of 97.20%. Model M 

(VGG19) and Model L (Inception-v3) show slightly 

lower segmentation performance, with Model M 

achieving an Acc of 96.10%, Sen of 98.50%, Spe of 

90.86%, and Pre of 94.21%. Model L follows with an 

Acc of 95.80%, Sen of 97.50%, Spe of 93.63%, and 

Pre of 97.50%. These results suggest that Model K 

provides superior segmentation performance, 

outperforming the other models in nearly all metrics. 

 
Table 2. Segmentation Performance Metrics for Models 

K, L, and M 

Metrics U-Net Backbones 

K L M 

Acc 97.50% 95.80% 96.10% 

Sen 98.10% 97.50% 98.50% 

Spe 96.23% 93.63% 90.86% 

Pre 97.20% 97.50% 94.21% 

 

Table 3. Classification Performance Metrics for Models 

K, L, and M 

Metrics U-Net Backbones 

K L M 

Acc 98.24% 96.36% 97.33% 

Sen 99.77% 98.28% 99.10% 

Spe 97.83% 94.34% 92.68% 

Pre 98.42% 98.24% 95.12% 

AUC 99.24% 97.36% 98.33% 
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Figure. 8 Comparison of Retinal Blood Vessel 

Segmentation Across Different U-Net Backbones for 

Normal and Cataract-Affected Images 
 

 

For classification, Table 3 summarizes the 

performance metrics where the same backbones are 

used in the U-Net model for segmentation, and the 

segmented images are classified into "cataract" or 

"non-cataract" using the VGG16 model. Model K 

again leads the classification task, achieving an Acc 

of 98.24%, Sen of 99.77%, Spe of 97.83%, Pre of 

98.42%, and an AUC of 99.24%. Model M (VGG19) 

and Model L (Inception-v3) exhibit slightly lower 

classification performance, with Model M reaching 

an Acc of 97.33%, Sen of 99.10%, Spe of 92.68%, 

Pre of 95.12%, and an AUC of 98.33%. Model L 

shows the lowest classification performance, with an 

Acc of 96.36%, Sen of 98.28%, Spe of 94.34%, Pre 

of 98.24%, and an AUC of 97.36%. 

These results confirm that the U-Net framework 

with ResNet50 as the backbone is the most effective 

model for both segmentation and classification tasks, 

achieving the highest performance across all key 

metrics. 

Fig. 8 illustrates the segmentation results of blood 

vessels from retinal images using three different 

backbones ResNet50 (Model K), Inception-v3 

(Model L), and VGG19 (Model M). The original 

fundus images are presented on the left, showing both 

normal and cataract-affected retinas. The 

segmentation outputs of the three models are 

compared for both normal and cataract images. 

ResNet50 captures more detailed and continuous 

blood vessel structures for the normal image, 

followed by Inception-v3 and VGG19. However, in 

the cataract-affected images, the models show 

diminished ability to capture the vessels due to the 

cloudiness introduced by cataracts, with the 

ResNet50 backbone still providing the most robust 

segmentation, while Inception-v3 and VGG19 

exhibit less accurate and incomplete vessel 

segmentation, particularly in images with severe 

cataracts. The effectiveness of ResNet50 in 

segmenting vessels is most apparent in clearer images, 

making it the best-performing model. 

In Fig. 9, the accuracy and loss curves for the 

classification task using VGG16 after the 

segmentation stage are shown. Models K, L, and M 

represent ResNet50, Inception-v3, and VGG19, 

respectively, as the backbones used during the 

segmentation process. These curves depict the 

classification accuracy of the VGG16 model as it 

processes the segmented images and classifies them 

into "cataract" or "non-cataract" categories. The close 

alignment of training and validation accuracy, along 

with the steady decrease in loss, indicates stable 

training and suggests that the model is not overfitting. 

This highlights the model's strong generalization 

capability and consistent learning performance.  

Fig. 10 displays the confusion matrix for the 

classification predictions made using VGG16 after 

segmentation, across three different U-Net 

backbones. The matrix is divided into four sections: 

the top-left quadrant shows True Positives (TP), 

representing correctly classified cataract cases, and 

the top-right indicates False Positives (FP), where 

non-cataract images are incorrectly classified as 

cataract. The bottom-left represents False Negatives 

(FN), where cataract images are misclassified as non-

cataract, and the bottom-right shows True Negatives 

(TN), representing correctly classified non-cataract 

images. The results indicate that the classification 

model performs well, with high true positive and true 

negative values across all backbones, reflecting 

strong accuracy in both cataract and non-cataract 

classifications. Low values in the false positive and 

false negative sections suggest minimal 

misclassification, further highlighting the robustness 

of the classification technique across different 

backbones. 

The ROC curve offers a complete assessment of 

the classification model’s efficacy at various 

thresholds, emphasizing the balance between 

sensitivity and specificity. 

In Fig. 11, the ROC curves for the classification 

task using VGG16 after segmentation with ResNet50, 

Inception-v3, and VGG19 backbones are shown. 

These curves are positioned close to the top-left 

corner, indicating high classifier performance and 

accuracy. 

Among the models evaluated, the classification 

accuracy using the ResNet50-based U-Net exhibits 

the best performance, as its ROC curve is closer to 
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Figure. 9 Accuracy and Loss curves for the: (a) Inception-v3, (b) VGG-19, and (c) ResNet50 backbones 
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Figure. 10 Confusion Matrix Comparison Across Diverse Backbones 

 

 

 
Figure. 11 ROC Curves for U-Net Models Across 

Different Backbones 
 

the top-left corner compared to the Inception-v3 and 

VGG19-based models. This highlights superior 

sensitivity and specificity for the ResNet50 backbone 

in the classification of cataract and non-cataract 

images. The ResNet50-based model demonstrates 

exceptional classification performance, further 

emphasizing its robustness and reliability across the 

dataset. 

4.3. Ablation study 

In this ablation study, we examine the impact of 

removing attention gates from the DAUCD model, 

which uses three U-Net backbones: ResNet50 

(Model K), Inception-v3 (Model L), and VGG19 

(Model M). Attention gates, which help focus on key 

spatial features during segmentation, were removed, 

and the model performance was evaluated across 

segmentation and classification tasks. All other 

components, including the pre-trained backbones and 

the VGG16 classifier, remained unchanged. The 

performance of the models without attention gates is 

summarized below in Tables 4 and 5 respectively.  

The ablation results demonstrate that the removal 

of attention gates led to a consistent drop in 

performance across all models. In terms of 

segmentation accuracy, Model K (ResNet50) saw a 

reduction from 97.50% to 95.50%, Model L 



Received:  September 12, 2024.     Revised: October 30, 2024.                                                                                        194 

International Journal of Intelligent Engineering and Systems, Vol.18, No.1, 2025           DOI: 10.22266/ijies2025.0229.15 

 

(Inception-v3) decreased from 95.80% to 93.10%, 

and Model M (VGG19) dropped from 96.10% to 

94.50%. 

A similar pattern was observed in classification 

accuracy, with Model K falling from 98.24% to 

96.10%, Model L from 96.36% to 94.50%, and 

Model M from 97.33% to 95.80%. 

The models also experienced significant declines 

in specificity, particularly Model K, which dropped 

from 97.83% to 94.10%, indicating a reduced ability 

to correctly identify non-cataract cases. Similarly, 

Model L decreased from 94.34% to 92.23%, and 

Model M from 92.68% to 89.63%. The AUC values 

followed this downward trend, with Model K 

dropping from 99.24% to 97.50%, Model L from 

97.36% to 95.36%, and Model M from 98.33% to 

96.33%. These results clearly confirm that the 

attention gates play a crucial role in improving the 

model's ability to extract meaningful features during 

the segmentation process, which directly contributes 

to more accurate classification outcomes. 

This ablation study reaffirms that attention gates 

are essential for achieving optimal performance in the 

DAUCD model. The absence of attention gates led to 

a decline in both segmentation and classification 

performance across all models, with the most notable 

reductions in accuracy, specificity, and AUC. For 

instance, Model K's classification accuracy decreased 

by 2.14%, while its specificity dropped by 3.73%. 

These findings emphasize the importance of attention 

mechanisms in enhancing feature extraction and 

ensuring accurate diagnostic outcomes in cataract 

detection. 
 

Table 4. Segmentation Performance Metrics for Models 

K, L, and M (Without Attention Gates) 

Metrics U-Net Backbones 

K L M 

Acc 95.50% 93.10% 94.50% 

Sen 96.10% 95.30% 96.63% 

Spe 93.23% 91.32% 88.29% 

Pre 94.63% 95.21% 91.12% 

 

Table 5. Classification Performance Metrics for Models 

K, L, and M (Without Attention Gates) 

Metrics U-Net Backbones 

K L M 

Acc 96.10% 94.50% 95.80% 

Sen 97.30% 96.10% 97.50% 

Spe 94.10% 92.23% 89.63% 

Pre 95.12% 96.20% 95.12% 

AUC 97.50% 95.36% 96.33% 

 

4.4. Comparative analysis and discussion 

The accuracy and loss curves shown in Fig. 9 

indicate that the DAUCD method effectively avoids 

both underfitting and overfitting, highlighting its 

robustness in managing training and testing of image 

data. This performance surpasses the existing 

methods, as detailed in Table 6 and illustrated in 

Fig.12. The proposed DAUCD model surpassed 

other existing approaches with an accuracy of 

98.24%, as clearly detailed in Table 6. 

The proposed DAUCD model demonstrates 

significant advancements in cataract detection 

accuracy, achieving a remarkable 98.24%. This 

performance surpasses several state-of-the-art 

methods using the same ODIR-5K dataset for 

consistency in comparison. For instance, VGG-19, as 

reported by [20], achieved an accuracy of 95.27%. 

The CataractNetDetect model reached an accuracy of 

94.21% [23]. Similarly, a ResNet-50-based 

architecture yielded an accuracy of 92.00% [24]. 

Another method, the DNN-based ensemble model, 

achieved a lower accuracy of 90.24% [26]. Despite 

these strong results, the DAUCD model 

outperformed them all, demonstrating its superior 

capability in handling the complexities of cataract 

detection through the innovative use of Attention U-

Net for segmentation and VGG-16 for classification.  

 
Table 6. Comparison of the proposed DAUCD Model 

with existing approaches. 

Model Acc (%) 

VGG-19 [20] 95.27 

CataractNetDetect [23] 94.21 

ResNet-50 [24] 92.00 

DNN-based Ensemble 

Model [26] 

90.24 

DAUCD (Proposed) 98.24 

 

 
Figure. 12 Performance Comparison of the proposed 

DAUCD model with existing approaches in terms of 

Accuracy 
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The improved accuracy indicates that the DAUCD 

model effectively leverages attention mechanisms to 

enhance feature extraction and classification, 

providing more precise and reliable diagnostic results. 

5. Conclusion 

In conclusion, the proposed DAUCD model 

significantly advances cataract detection through its 

combination of segmentation and classification tasks, 

demonstrating superior accuracy and robust 

performance. By integrating attention mechanisms 

within the U-Net architecture for blood vessel 

segmentation and leveraging pre-trained CNN 

backbones such as ResNet50, Inception-v3, and 

VGG19, the model achieves impressive 

segmentation results. Furthermore, the classified 

outputs from the VGG16 model, based on these 

segmented images, attain a high classification 

accuracy of 98.24%. The DAUCD model effectively 

addresses the challenges of underfitting and 

overfitting, ensuring reliable diagnostic results in 

both segmentation and classification tasks. Its high 

sensitivity and specificity validate its clinical 

effectiveness, potentially improving early detection 

and treatment outcomes for cataract patients. This 

work underscores the promise of deep learning and 

attention mechanisms in medical image analysis, 

setting the stage for further research and 

advancements in this critical area of healthcare. 
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Notations: 

Variable Notation 

     𝒳 Input to the ReLU activation function. 

X Feature map from the encoder (skip 

connection). 

G Gating signal from the decoder path. 

X1 Attention gate output X ∙ 𝛼. 

𝛼 Attention coefficients. 

wX
𝑡  Transposed weight matrix for X. 

w𝐺
𝑡  Transposed weight matrix for G. 

𝐵𝐺 Bias for the gating signal G. 

𝐵𝜃 Bias for the attention gate. 

𝜎1 ReLU activation function. 

𝜎2 Sigmoid activation function. 

𝑤𝜃 Weight matrix in the attention gate. 

𝑤𝜃
𝑡  Transposed weight matrix for the attention 

gate. 
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