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Abstract: The emergence of DC microgrids has heightened interest in optimizing photovoltaic (PV) panels and storage 

systems to enhance energy management, minimize power losses, and bolster system stability. This study addresses a 

critical gap in current methodologies by proposing the Aquila algorithm, an optimization technique specifically 

designed for the unique characteristics of DC power distribution systems. Unlike traditional optimization methods that 

primarily cater to AC microgrids, the Aquila algorithm uniquely focuses on the intricate dynamics of DC microgrids, 

enabling it to determine optimal locations and sizes for PV panels and battery storage systems effectively. The 

efficiency of the proposed PV system optimization was validated using a MATLAB/Simulink model, with simulations 

executed under controlled settings to ensure accurate results. Notably, the system achieved a rapid settling time of just 

0.2 seconds during load fluctuations, with the Aquila algorithm mitigating temporary imbalances and deviations in 

key parameters like grid power, battery power, and load power. Simulation results revealed that the PV system operated 

under a solar irradiance level of 700 W/m², generating a controlled power output of 10 kW with a corresponding PV 

output of 8 kW. The algorithm demonstrated a significant reduction in system oscillations and fluctuations, ensuring 

consistent performance even when sudden load changes occurred. At a critical moment (t = 0.025 s), the Aquila 

algorithm-maintained system stability despite a drop in solar generation, thus emphasizing its reliability in adapting to 

varying solar conditions. Overall, the findings indicate that the Aquila algorithm significantly enhances energy 

management within PV-connected DC microgrids, optimizing battery performance and improving overall system 

reliability and efficiency. This research presents a promising approach for optimizing battery-connected PV systems, 

ultimately contributing to the advancement of sustainable energy solutions within DC microgrid frameworks. 
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1. Introduction 

The use of renewable energy sources (RESs) has 

grown recently in response to the depletion of 

traditional energy supplies and the detrimental 

impact of emissions of greenhouse gases on the 

environment. In the medium run, conventional 

generation systems powered by fossil fuels respond 

more slowly to control frequency deviation [1]. These 

issues and the risk to the stability of the electricity 

system have gotten worse as the number and overall 

capacity of RES installations have increased. This 

issue might be solved by deploying larger RES 

systems [2]. But the expense of the investment is 

substantial as a result. BESS, or battery energy 

storage systems, appear to be a useful remedy for this 

issue [3]. When compared to other forms of energy 

storage systems or conventional generators, a BESS's 

quick dynamic reaction qualities can help maintain 

the right equilibrium between supply and demand [4].  

The introduction of microgrids has emerged as an 

efficient solution for integrating diverse renewable 

energy sources and supplying power to remote areas 

[5]. Microgrid represent a collective system that 

integrates various distributed generators (DGs). 

Historically, the utility electrical grid has 

predominantly relied on alternating current (AC) 
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systems, leading to substantial research focus on AC 

microgrids. However, renewable energy resources, as 

well as certain loads like photovoltaic (PV) systems 

and energy storage systems, inherently operate on 

direct current (DC). The integration of such DC 

sources and loads into AC microgrids has often 

resulted in inefficiencies related to power conversion 

and system cost. Consequently, there has been a 

growing interest in DC microgrids. Fig. 1 illustrates 

a typical DC microgrid, where a common DC bus 

connects all of the DGs and loads. This transition to 

DC microgrids marks a pivotal shift in energy 

distribution and management, allowing for a more 

seamless and efficient incorporation of DC-coupled 

renewable energy sources and loads. The growing 

demand for energy has driven the widespread 

deployment of Renewable Energy Sources (RESs), 

which can be seamlessly integrated into both 

standalone power systems and traditional non-

renewable energy grids. This integration helps 

enhance the overall reliability and sustainability of 

energy supply while reducing dependency on 

conventional energy sources. Among RESs, PV 

technology stands out as an attractive solution. 

However, environmental factors like temperature and 

solar radiation have a significant impact on solar 

energy generation [6]. Integrating energy storage 

systems (ESSs), such as super capacitors, batteries, 

flywheels, and hydrogen storage devices, has become 

crucial in addressing the intermittent nature of solar 

energy [7]. To ensure a stable energy supply, the 

integration of ESSs with renewable energy sources 

(RESs), particularly in standalone applications, has 

been explored [8]. Additionally, DC microgrids are 

reported to have higher efficiency compared to AC 

microgrids [9]. 

In many different applications, including 

telecommunications, smart structures, and electric 

automobiles, PV/battery systems are the fundamental 

building blocks of a DC microgrid. Integration of 

various RESs to create a microgrid has become much 

easier with the ongoing development of power 

converters. There are several alternative 

configurations when it comes to the variety of power 

converters used in a PV/battery system. In an ideal 

setup, a DC-DC power converter is utilized to link the 

PV module to a shared DC bus, and an alternate DC-

DC power converter is employed to link the battery. 

Using or ignoring a surplus DC-DC power converter, 

DC loads can be connected directly to the DC bus. 

This diverse range of configurations offers flexibility 

and adaptability in designing DC microgrids to suit 

specific applications and requirements, enhancing the 

efficiency and reliability of energy distribution in 

modern power systems. 

 

 

 
Figure. 1 DC Microgrid configuration 
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The proposed study presents a novel approach to 

optimizing PV energy utilization in DC microgrids 

(MG) with integrated battery systems. It revolves 

around harnessing the potential of solar energy 

captured by PV panels and efficiently managing the 

energy stored in the battery. This tailored energy 

management strategy (EMS) significantly 

contributes to improving the efficiency, reliability, 

and sustainability of DC microgrid systems. The 

Aquila algorithm introduces new features that 

enhance the performance of PV systems by 

determining optimal panel placements and sizes, 

thereby addressing specific characteristics of DC 

power distribution that traditional methods may 

overlook. Among its main advantages, the algorithm 

effectively reduces power losses, mitigates frequency 

deviations, and ensures alignment of power demands 

within the microgrid. By maintaining system stability 

during load fluctuations and adapting to varying solar 

conditions, the Aquila algorithm represents a 

significant advancement over existing methodologies, 

particularly those designed for AC microgrids. This 

research not only optimizes the deployment of PV 

panels but also enhances overall energy management 

in battery-connected PV systems, thereby promoting 

the sustainable use of solar resources. The main 

contribution of the proposed research work are as 

follows: 

• The study optimizes the utilization of PV panels, 

ensuring efficient harnessing of solar energy in 

DC microgrids. 

• The proposed Aquila Algorithm enhances 

energy management in DC microgrids, leading 

to better power distribution. 

• By maximizing the use of renewable energy 

sources like PV panels, the study contributes to 

the sustainability of energy systems and 

enhances the reliability of DC microgrids. 

 

The paper proceeds as follows: Section 2 reviews 

existing methods relevant to the current study. The 

proposed approach is presented in Section 3. Section 

4 showcases the experimental findings and 

subsequent discussion. Finally, Section 5 outlines the 

conclusions drawn from the study. 

2. Literature review 

Grisales-Noreña et al. [10] addressed the 

challenge of optimizing battery performance in both 

standalone and grid-connected DC microgrids 

equipped with photovoltaic (PV) generators 

operating at their maximum power point (MPP). 

They developed a comprehensive mathematical 

framework that focused on three primary objectives: 

minimizing operational costs, reducing energy losses 

associated with DC microgrid energy distribution, 

and minimizing emissions from conventional 

generators. To tackle this complex issue, the study 

utilized three parallel optimization methodologies: 

the Parallel Ant Lion Optimizer (PALO), the Parallel 

Vortex Search Algorithm (PVSA), and the Parallel 

Particle Swarm Optimization (PPSO). The hourly 

power flow was optimized using these methods, 

taking into account various constraints and relying on 

successive approximations. The efficacy of these 

solution techniques was rigorously validated through 

simulations conducted on two distinct test systems in 

Colombia. The results demonstrated the superiority 

of PVSA for standalone grids and PALO for grid-

connected networks, with significant average 

reductions in CO2 emissions, energy losses, and both 

fixed and variable costs. However, a limitation of the 

study was that the economic indicators indicated that 

variable costs were not adequately accounted for in 

the operational analysis, suggesting that a more 

comprehensive evaluation of variable costs is 

necessary for optimizing energy management 

systems. 

Nasr et al. [11] conducted a study aimed at 

enhancing the performance of PV energy systems by 

employing various metaheuristic optimization 

algorithms for MPP tracking under partially shaded 

conditions. They identified that common MPP 

tracking techniques, including perturb and observe 

(P&O), parasitic capacitance, hill climbing, 

incremental conductance, and constant voltage 

methods, often produced oscillatory results, which 

diminished accuracy, especially in scenarios 

involving partial shading. The authors compared the 

performance of several algorithms, including whale 

optimization algorithm (WOA), particle swarm 

optimization (PSO), grey wolf optimization (GWO), 

and cuckoo search algorithm (CSA), utilizing 

MATLAB SIMULINK for simulations. Their 

findings revealed that PSO and CSA exhibited lower 

tracking efficiency, whereas WOA and GWO 

demonstrated the highest efficiency in tracking the 

MPP. Notably, the conventional incremental 

conductance method struggled to effectively track the 

MPP under partial shading conditions. To address the 

issues of premature convergence, the study 

introduced a nanoparticle WOA algorithm, which 

proved to be superior in tracking local peaks within 

PV systems. WOA outperformed the other methods, 

achieving a tracking time of only 0.15 seconds, 

highlighting its improved convergence speed and 

ease of implementation compared to traditional 

techniques. However, a limitation of this study was 

that it did not explore the performance of the 



Received:  September 16, 2024.     Revised: October 30, 2024.                                                                                        201 

International Journal of Intelligent Engineering and Systems, Vol.18, No.1, 2025           DOI: 10.22266/ijies2025.0229.16 

 

proposed algorithm under a wider range of shading 

patterns and environmental conditions, which could 

further validate its robustness and applicability in 

real-world scenarios. 

Senthil Kumar et al. [12] addressed a critical issue 

within the power system network, highlighting the 

importance of power quality in preventing 

disruptions and financial challenges for consumers. 

Their study examined electricity quality in a PV-

linked power system and introduced a novel 

optimization technique for day-ahead trading and 

control within DC microgrid power management. 

The researchers employed a multi-objective 

optimization dispatch (MOOD) approach aimed at 

minimizing operational costs, power losses, and 

emissions of pollutants such as nitrogen oxides, 

sulfur dioxide, and CO₂. They simplified the multi-

objective problem using a weighted sum approach, 

determining weight coefficients through the 

analytical hierarchy process (AHP). Their research 

comprehensively considered power balancing, 

renewable energy integration, battery scheduling, 

load control, and system constraints in both grid-

connected and standalone approaches. The 

application of the ant lion optimizer (ALO) 

demonstrated the effectiveness of their proposed 

method, revealing substantial cost savings of 

approximately 4.70% in the grid-connected mode. 

Additionally, the authors introduced a two-layer 

energy management system (EMS) that integrated 

various distributed energy sources and controllers, 

employing ALO for multi-objective optimization 

alongside fuzzy logic to minimize power losses, 

operational expenses, and pollution emissions. 

However, a limitation of their study was the reliance 

on a weighted sum approach, which may not 

adequately represent the complex trade-offs inherent 

in multi-objective optimization, potentially leading to 

suboptimal solutions in certain scenarios. 

Alam et al. [13] introduced an energy 

management model for home microgrids that 

featured BESS and RES. Their approach combined 

deep learning-based predictive modeling, utilizing 

bidirectional long short-term memory (Bi-LSTM), 

with optimization algorithms to minimize daily 

electricity costs, taking into account time-of-use 

pricing and peak demand penalties. The research 

demonstrated robust performance in forecasting load 

and PV generation, achieving a significant reduction 

in daily electricity costs by up to 38.77% under 

specific conditions, while also optimizing the 

utilization of BESS energy. However, one notable 

limitation was the insufficient discussion on the 

practical challenges of implementing deep learning 

models in real-world residential settings, including 

issues related to data availability, training, and model 

interpretability, which are crucial for broader 

application and acceptance of the proposed model. 

Liu et al. [14] presented an enhanced method 

employing Improved Particle Swarm Optimization 

(IPSO) to optimize the sizing and configuration of 

standalone PV systems and battery energy storage for 

a remote area in Iran. Their primary goal was to 

minimize the Total Net Annual Cost (TNAC) while 

maintaining high levels of reliability. The results 

indicated that IPSO achieved significant cost savings, 

approximately 22.9% compared to Simulated 

Annealing (SA) and 0.35% compared to traditional 

PSO across various reliability indexes (1%, 3%, and 

5%). Additionally, increasing the reliability index 

from 1% to 5% resulted in a 38% reduction in TNAC, 

along with decreased energy storage requirements for 

the battery bank and lower power generation needs 

for the PV panels. However, a limitation of this study 

was its insufficient consideration of critical factors 

such as component degradation, system maintenance, 

and environmental variability, which could adversely 

affect the long-term economic and operational 

performance of the PV system. 

Aziz et al. [15] conducted a study to determine 

the optimal design and control strategy for a grid-

connected PV and battery hybrid energy system 

(HES) serving a residential residence in Iraq. They 

developed a new dispatch strategy using the 

MATLAB Link Module in HOMER software and 

compared it to the default methods of load following 

(LF) and cycle charging (CC). The modified strategy 

demonstrated enhanced techno-economic and 

environmental performance, resulting in a 16.3% 

reduction in Net Present Cost (NPC), a decrease in 

unmet load by 39.5 kWh/year compared to LF and by 

31 kWh/year compared to CC, and a reduction in CO₂ 

emissions by 14% relative to LF and by 50.1% 

compared to CC. Furthermore, a sensitivity analysis 

revealed that factors such as the cost of grid power, 

PV capital expenses, solar radiation, frequency of 

grid outages, temperature, and project duration 

significantly influenced the efficacy of the HES. 

However, one limitation of the study was its focus on 

a specific geographical region, which may affect the 

generalizability of the findings to other locations with 

different environmental conditions or energy needs. 

Garip et al. [16] presented a method for 

determining the optimal sizing of a PV system and 

BESS within a grid-connected MG. Their primary 

objective was to minimize energy costs, and they 

achieved this by combining an EMS with a PSO 

algorithm. The grid-connected MG was designed to 

prioritize the use of renewable energy resources 

while allowing for energy procurement from the grid 
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under specific constraints and penalties when 

necessary. The study introduced a self-contained MG 

structure, incorporating an energy management 

algorithm for controlling grid energy and utilizing the 

PSO algorithm as part of the EMS. The results 

indicated that the proposed approach effectively 

identified the optimal sizes for both the PV system 

and BESS at the lowest cost, even in scenarios where 

the microgrid needed to draw energy from the grid. 

Furthermore, the technique demonstrated superior 

performance compared to the Genetic Algorithm 

(GA) in optimizing the sizes of PV and BESS under 

defined energy cost constraints. However, a 

limitation of the study was that it did not extensively 

explore the impact of varying load profiles on the 

optimization results, potentially affecting the 

robustness of the findings in real-world applications. 

Alidrissi et al. [17] presented an EMS for DC 

microgrids, highlighting the increasing preference for 

DC over AC microgrids due to the rise of DC power 

sources, DC loads, and energy storage systems. The 

proposed system integrated a PV module as the 

primary power source, alongside an ESS and 

essential DC loads. Their design incorporated DC-

DC boost and bidirectional converters, facilitating 

efficient energy flow control. A key feature of this 

strategy was its consideration of battery lifespan, 

which involved implementing constraints on 

charging and discharging to ensure longevity. Unlike 

other methods, this approach avoided complex 

algorithms for energy management or MPPT, making 

it straightforward and effective in supplying DC 

loads. The simulation results indicated impressive 

performance and stability, consistently meeting load 

demands. However, a limitation of this study was the 

lack of extensive real-world testing, which could 

have validated the system's performance and 

reliability under varied operating conditions. 

Mah et al. [18] presented a multi-period P-graph 

optimization approach for PV-based microgrids that 

incorporated battery-hydrogen energy storage, 

effectively addressing the intermittent nature of RESs. 

The methodology utilized an embedded accelerated 

branch-and-bound algorithm to accurately determine 

optimal solutions for energy management. Their case 

studies demonstrated the cost-effectiveness of the 

hybrid energy storage system; however, they 

highlighted the requirement of a carbon price of 

$1000 USD/t or higher for economic viability when 

compared to conventional electricity use. When 

hydrogen storage was eliminated and grid electricity 

was employed to compensate for energy shortages, 

the overall costs were significantly reduced. 

Nevertheless, this approach exhibited limitations 

concerning its scalability and practical application, as 

it was confined to specific scenarios. 

Murty et al. [19] discussed the advantages of 

microgrids powered by hybrid renewable energy 

sources, emphasizing their significance in scenarios 

where traditional grid expansion was impractical or 

economically unfeasible. The authors formulated the 

energy management of microgrids as a mixed-integer 

linear programming (MILP) problem and proposed a 

multi-objective solution that incorporated 

considerations for cost, emissions, and demand 

response. By employing fuzzy logic for energy 

storage scheduling, their simulation results 

demonstrated a notable reduction in CO₂ emissions, 

achieving a 51.60% decrease in standalone hybrid 

microgrids compared to grid-only systems. The 

research compared their approach against various 

evolutionary algorithms, confirming its effectiveness. 

Moreover, the integration of demand response 

programs resulted in decreased operating costs, lower 

emissions penalties, and reduced power losses. While 

the study provided valuable insights for microgrid 

operators and informed planning for rural 

electrification and hybrid microgrid design, a 

limitation was noted in the potential complexity and 

computational intensity of the MILP formulation. 

Singh et al. [20] introduced a pioneering power 

management strategy (PMS) based on a Hybrid Bat 

Search and Artificial Neural Network (HBSANN) for 

the efficient control of DC MG equipped with hybrid 

energy storage systems (HESS). The primary goal of 

their strategy was to optimize power distribution 

among batteries and supercapacitors within the 

microgrid, thereby mitigating discrepancies between 

demand and generation while regulating the state-of-

charge (SOC) within predetermined limits and 

controlling the DC bus voltage. Their research 

focused on a low-voltage DC (LVDC) MG 

configuration that included PV panels, a HESS 

comprising both batteries and supercapacitors, as 

well as DC and AC loads. The outcomes of this novel 

approach led to an extended battery lifespan due to 

the effective transfer of high-frequency components 

of unwarranted battery currents to the supercapacitor. 

Additionally, the study examined the Total Harmonic 

Distortion (THD) of the AC output voltage. 

Experimental validation conducted on an FPGA-

based real-time simulator, using a hardware-in-loop 

(HIL) setup, confirmed the effectiveness of the 

proposed approach, which not only enhanced power-

sharing between HESS components but also 

demonstrated rapid control of the DC bus voltage. 

However, a limitation of this study was that it did not 

address the scalability of the HBSANN strategy for 

larger, more complex DC microgrid systems, 
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potentially restricting its applicability in diverse 

operational environments. 

Energy yield was significantly influenced by the 

sun's varying irradiance throughout the year and 

across different geographical locations. To address 

this challenge, Ananthu et al. [21] investigated 

various forecasting strategies aimed at improving 

solar PV power prediction. Their recent analysis 

provided a critical overview of existing models, 

highlighting the advantages and disadvantages of 

data-driven processes in solar PV power forecasting. 

This clarity contributed to the understanding 

necessary for developing more accurate future 

models and applications. In the context of microgrids, 

EMS were identified as essential for optimizing 

power distribution. A comprehensive review 

conducted by Sriram et al. [22] explored decision-

making approaches and solution techniques for 

microgrid EMS. The study discussed uncertainty 

quantification techniques to manage the 

unpredictability of renewable energy resources and 

load demand, emphasizing the importance of 

effective load shedding and power quality 

maintenance. However, a limitation of this research 

was its reliance on historical data, which may not 

adequately capture the dynamic nature of renewable 

energy resources and their impact on forecasting 

accuracy. 

Bandyopadhyay et al. [23] proposed a hybrid 

microgeneration system that combined hydropower 

and solar PV power, designed to provide continuous 

electricity by utilizing solar energy during the day 

and stored water energy from a small reservoir at 

night. This system was particularly well-suited for 

off-grid applications, demonstrating its feasibility in 

scenarios where grid connectivity was unavailable. 

However, a limitation of the proposed system was its 

reliance on specific geographic conditions that might 

restrict the availability of sufficient water resources 

for hydropower generation, potentially affecting its 

overall effectiveness in various locations. 

Madathil et al. [24] investigated active and 

passive strategies aimed at enhancing the energy 

efficiency of buildings. The study emphasized the 

importance of integrating automated management 

systems with energy storage solutions and renewable 

energy sources to achieve net-zero energy buildings. 

Additionally, the research considered various aspects 

such as user comfort, energy policy, data privacy, and 

security, providing valuable insights for sustainable 

development. However, a limitation of the study was 

its reliance on theoretical models, which may not 

fully capture the complexities and variability of real-

world building environments and user behaviors. 

Tooryan et al. [25] presented an innovative 

optimization approach aimed at reducing operational 

costs in a hybrid residential microgrid, which 

incorporated a wind turbine, diesel generator, PV 

array, and a BESS. Traditionally, residential 

microgrids primarily relied on diesel generators; 

however, the integration of renewable energy sources 

and BESS yielded substantial benefits, such as 

reduced generation costs, lower environmental 

emissions, and improved generation efficiency. The 

authors employed a PSO algorithm to address the 

optimization problem, focusing on three primary 

objectives: minimizing the total costs of DERs, 

decreasing environmental emissions within the 

microgrid, and increasing the penetration of RES. 

The numerical results demonstrated the effectiveness 

of their approach, revealing a significant 35% 

reduction in CO₂ emissions compared to scenarios 

relying solely on diesel generators to meet microgrid 

demands. However, a limitation of the study was its 

reliance on historical data for load growth projections, 

which may not account for unexpected fluctuations in 

demand or changes in user behavior over time, 

potentially affecting the long-term viability of the 

proposed optimization strategy. 

Despite the advancements made in optimizing 

hybrid residential microgrids through methodologies 

like PSO and other traditional approaches, significant 

research gaps remain. Most existing methodologies 

primarily focus on cost reduction and emissions 

minimization but often overlook the dynamic 

interplay between RES, BESS, and the associated 

demand response strategies that are crucial for 

enhancing system resilience and operational 

efficiency. Additionally, many studies rely heavily 

on static models that do not adequately account for 

real-time variations in load profiles, solar irradiance, 

and wind speeds, leading to suboptimal performance 

under fluctuating environmental conditions. 

Furthermore, existing optimization techniques 

frequently fail to integrate advanced predictive 

analytics or machine learning algorithms, which 

could provide more accurate forecasts of energy 

generation and consumption patterns. This gap 

underscores the need for innovative frameworks that 

incorporate real-time data analytics and adaptive 

control mechanisms to dynamically optimize energy 

management in hybrid microgrids, ensuring 

enhanced reliability, stability, and sustainability of 

the overall system. 
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Figure. 2 Proposed Architecture 

 

 

3. Proposed methodology 

The microgrid illustrated in Fig. 2 serves as the 

foundation for the development of the suggested 

EMS-based approach in this research. This DC 

microgrid comprises several crucial components, 

including DC loads, a BESS, and a solar PV array. 

With the help of a DC–DC converter, these 

components are effectively integrated via a shared 

DC-bus. Within this MG set up, the primary power 

source is the solar PV array, responsible for 

delivering electricity to the loads. The control 

strategy assumes the use of an incremental 

conductance approach to acquire the maximum 

power output from the PV array efficiently. 

An intelligent energy system is a multifaceted 

framework comprised of three primary subsystems: 

production, storage, and load. The configuration and 

scale of these components can vary considerably 

based on certain elements, including the accessibility 

of sustainable resources, the intended functions to be 

provided, and the distinctive energy usage patterns 

associated with the system's target applications. This 

adaptability allows intelligent energy systems to be 

tailored to meet diverse requirements, making them a 

versatile and responsive solution for modern energy 

needs. 

The successful design and optimization of the 

entire system hinge primarily on a set of crucial 

variables. These variables encompass a vast range of 

factors, involving the selection and integration of 

various power sources, as well as the utilization of 

high-quality components. The choice of power 

sources, their efficient integration, and the quality of 

components collectively play a pivotal role in 

assessing the system's overall effectiveness and its 

expected lifespan. As such, these considerations are 

paramount in ensuring the success and longevity of 

the system's performance. 

3.1 The PV modeling 

The solar cells are equipped with a PN junction, 

a critical component that facilitates the solar energy 

conversion to DC power. The power generated by PV 

systems is significantly influenced by various factors, 

including solar irradiance, temperature, production 

characteristics, and geographic location. Furthermore, 

a PV system's voltage and capacity can be tailored to 

meet specific requirements by configuring PV panels 

in either parallel or series arrangements [26]. In an 

effort to increase PV systems' efficiency and ensure 

they operate at their maximum potential; the usage of 

Maximum Power Point Tracking (MPPT) 

technologies is popular. These techniques enable the 

solar panel to continuously track and operate at the 

MPP, optimizing energy production [27]. An 

incremental conductance (IC)-based MPPT 

algorithm is utilized to optimize the solar PV system's 

performance in extracting maximum power. 

The output power of a solar PV array is intimately 

linked to the voltage and current it generates, and this 

connection is crucial in understanding its 

performance. These voltage and current parameters 

are not static but vary depending on several factors, 

such as solar irradiance, temperature, and the specific 

characteristics of the PV panels employed. To capture 

this relationship more comprehensively, it is common 

practice to model the current (I) as a function of 

voltage (V). This modeling approach often involves 

the use of the diode equation or the single diode 

model, which considers various intricacies of the PV 

cell's behavior. These intricacies may encompass 

elements such as the number of cells within the array, 

prevailing solar irradiance levels, and ambient 
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temperature. The utilization of such models enables a 

more precise and detailed representation of the 

current-voltage dynamics of the PV array, facilitating 

a deeper understanding of its performance and aiding 

in effective energy management and optimization 

within a DC microgrid. 

 

𝐼 = 𝐼𝑝ℎ − 𝐼0(𝑒
𝑞𝑣

𝑛𝑘𝑇 − 1)                 (1) 

 

I represents the current produced by the PV array, 

𝐼𝑝ℎ  stands for the photo-generated current, 𝐼0 

indicates the diode's reverse saturation current; q 

symbolizes the elementary charge, V corresponds to 

the voltage across the PV array, n represents the 

ideality factor, k is the Boltzmann constant, and T 

denotes the temperature in Kelvin. 

The variables 𝑅𝑠 and 𝑅𝑠ℎ correspond to the series 

and shunt resistances in the system, respectively. 𝑉𝑡ℎ 

designates the thermal voltage as shown in Fig. 3. 

Applying Kirchhoff's laws to this circuit, the 

generated current can be stated as a function of its 

generated voltage in the following manner. 

 

𝐼𝑝𝑣 = 𝐼𝑝ℎ − 𝐼0(exp (
𝑉𝑝𝑣+𝑅𝑠𝐼𝑝𝑣

𝑛 𝑉𝑡ℎ
) − 1)

𝑉𝑝𝑣+𝑅𝑠𝐼𝑝𝑣

𝑅𝑠ℎ
   

(2) 

 

The characteristics of a PV cell, commonly 

depicted in its voltage-current (V-I) curve, provide 

valuable insights into its behavior and efficiency. Fig. 

4 illustrates these V-I characteristics, helping to 

visualize the relationship between voltage and 

current in a PV cell. 

Table 1 depicts the specifications of the PV panel 

employed in the proposed research. 

 

 
Figure. 3 Single-diode solar cell concept 

 

 

 
Figure. 4 Characteristics of Solar PV Cell: I-V and P-V Curves 
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Table 1. PV module specifications 

Parameters Values 

Maximum Power (W) 250.1234 

Cells per module (𝑁𝑐𝑒𝑙𝑙) 72 

Open Circuit 

Voltage(𝑉𝑂𝐶), V 

37.50 

Short Circuit Current 
(𝐼𝑆𝐶),A 

9.20 

Voltage at Maximum 

Power Point (𝑉𝑀𝑃), V 

30.40 

Current at Maximum 

Power Point (𝐼𝑀𝑃),A 

8.80 

 

 

 
Figure. 5 Solar PV combined with a DC/DC Converter 

3.2 DC/DC converter modeling 

A DC-DC boost converter is used in the 

illustrated DC microgrid system to meet the 

particular need in which the output voltage created by 

the solar PV system is less than the standard DC-bus 

voltage. This converter efficiently raises the PV 

array's output voltage to match the voltage level of 

the common DC bus, ensuring seamless integration 

and distribution of the generated solar power within 

the microgrid. In the setup illustrated in Fig. 5, a 

DC/DC boost converter is interposed among the PV 

module and the DC/AC inverter. In this configuration, 

the circuit following the PV module can be viewed as 

the load. 

The output voltage (𝑉𝑜𝑢𝑡) in a switching circuit is 

determined by the input voltage (𝑉𝑖𝑛) and the duty 

cycle (D) of the switching operation. The Eq. (3) 

describes the functioning of a solar PV system using 

a DC-DC boost converter. 

 

𝑉𝑜𝑢𝑡 =
𝑉𝑖𝑛

1−𝐷
                         (3) 

 

The Perturb and Observe (P&O) approach is 

harnessed to regulate the duty cycle of the converter. 

This control mechanism allows for the adjustment of 

the voltage as well as current output of the converter, 

thereby facilitating the achievement of impedance 

matching. Consequently, when the internal resistance 

of the system equals the impedance of the equivalent 

circuit downstream from the PV module (𝑅𝑖 = 𝑅𝐿), 

the PV module can function at its MPP.  

This approach assures that the PV system runs at 

peak efficiency, optimizing power conversion and 

energy output. The P&O method involves a 

straightforward process of incrementally adjusting 

the reference voltage value or duty ratio of the 

converter and monitoring its impact on the power 

output from the system as shown in Fig. 6. If the 

power at the kth iteration (P(k)) exceeds that at the 

previous iteration (P(k-1)), the controller maintains 

the same direction of change; otherwise, it reverses 

the direction. This change is implemented by 

perturbation, and its consequences are observed. This 

iterative process is aptly named "perturb and 

observe" and serves as a means to enhance the PV 

array's efficiency and power output by continuously 

monitoring the MPP. 

 

 
Figure. 6 MPPT P&O algorithm 
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Figure. 7 Modelling of battery 

 

The D of the converter continually adapts to 

accommodate variations in load conditions and 

source output, striving to align with the peak point of 

power until the maximum power output is achieved. 

This control scheme ensures that the PV system 

operates efficiently by continuously seeking the 

maximum power output while adapting to changing 

environmental conditions and load requirements. 

3.3 Modelling the battery 

In the domain of DC microgrids, BESSs assume 

a pivotal role by not only ensuring the steady 

maintenance of a consistent common-mode DC-bus 

voltage but also by compensating for both surplus and 

deficit energy. This function is particularly vital when 

dealing with the fluctuating nature of solar power 

output. The quantity of excess or inadequate energy 

in the microgrid is to be ascertained by the EMS. This 

energy surplus or deficit data from the EMS directs 

the management of switching control activities, 

guaranteeing the efficient maintenance of the DC 

microgrid's power balance. When controlling 

switching control operations for the DC-DC 

converter, it is vital to consider the state-of-charge 

(SoC) as the BESS's functioning, including charging 

and discharging, depends on whether there is an 

energy surplus or deficit. Consequently, the control 

strategy for the BESS must be meticulously planned, 

taking into consideration critical parameters such as 

the DC-bus voltage and the SoC, to guarantee the 

optimal performance and consistency of the DC MG. 

Renewable energy resources are inherently 

intermittent in nature, and to mitigate the challenges 

posed by periods of low or non-existent sunlight, 

energy storage systems are considered integral 

components of the solution. The core of these power 

storage systems typically consists of a battery and a 

battery charging controller, as illustrated in Fig. 7. By 

coupling solar PV systems with energy storage, 

uncertainties surrounding the local availability of 

renewable energy sources can be significantly 

reduced. During instances of insufficient energy 

generation or high demand, the energy stored in the 

battery system can be harnessed to supply the 

required power, ensuring a more dependable and 

stable microgrid power system. It is worth noting that 

the performance and efficiency of the battery are 

sensitive to various factors, including environmental 

temperature, charge level, voltage influences, and the 

rate of charging and discharging. 

 
Table 2. Battery Specifications 

Parameters Values 

Internal Resistance 0.195 ohms 

Volumetric Energy Density 210-260 Wh/L 

Exponential Zone 230.237 V, 1.48 Ah 

Fully Charged Voltage 225.782 V 

Energy Capacity 8.100 Ah 

Maximum Capacity 9.042 Ah 

Discharging Current Range 60, 120 A 

Nominal Discharge Current 148 A 
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Figure. 8 Aquila Algorithm flowchart 

 

The longevity of a battery is influenced by a set 

of parameters, and these parameters can have varying 

effects depending on the type of battery used. In the 

proposed study, lithium-ion batteries have been 

chosen due to their favorable attributes such as cost-

effectiveness, durability, safety, and high efficiency 

when compared to other battery types. To ensure the 

durability of these batteries, it is imperative that they 

are not overcharged, as excessive charging can 

diminish their effectiveness and lead to a shortened 

lifespan. Similarly, over-discharging the battery is 

detrimental, as it can also result in a reduced lifespan. 

A key requirement for maintaining the battery's 

durability is to set its SoC to match its nominal 

capacity. Furthermore, it is essential to ensure that the 

battery's SoC does not fall below 30% at any given 

time. 

When the DC microgrid is operating, the SoC of 

the BESS is constrained within defined limits, 

𝑆𝑜𝐶𝐵𝐸𝑆,𝑚𝑎𝑥  and 𝑆𝑜𝐶𝐵𝐸𝑆,𝑚𝑖𝑛 , which in turn restrict 

the charging and discharging currents of the BESS to 

fall within the allowable range, delineated by 𝑖𝑏𝑠,𝑚𝑎𝑥 

and 𝑖𝑏𝑠,𝑚𝑖𝑛 . These limitations are put in place to 

safeguard the BESS from potential over-charging or 

over-discharging, and they are succinctly described 

by the conditions outlined in Eqs. (4) and (5). 

 

𝑆𝑜𝐶𝐵𝐸𝑆,𝑚𝑖𝑛 ≤ 𝑆𝑜𝐶𝐵𝐸𝑆(𝑡) ≤  𝑆𝑜𝐶𝐵𝐸𝑆,𝑚𝑎𝑥   (4) 

 

𝑖𝑏𝑠,𝑚𝑖𝑛 ≤ 𝑖𝑏𝑠(𝑡) ≤ 𝑖𝑏𝑠,𝑚𝑎𝑥           (5) 

 

3.4 Proposed Aquila optimization algorithm 

3.4.1 Inspiration and behavior 

The Aquila hawk, a popular raptor in the 

Northern Hemisphere, exhibits remarkable 

adaptability and hunting skills. Similarly, in the realm 

of PV optimization for DC microgrid energy 

management, adaptability and efficiency are key 

goals. The Aquila's ability to swiftly switch between 

hunting techniques has inspired the development of 

innovative algorithms like the Aquila Optimizer 

(AOA) for optimizing PV systems in DC microgrids 

[28]. Just as the hawk employs various hunting 

techniques based on the circumstances, an effective 

PV system in a DC microgrid must adapt to changing 

environmental factors to maximize energy capture. 

The Aquila's adeptness at catching prey serves as an 

inspiration for developing an optimization algorithm 

that can swiftly and intelligently adjust the PV 

system's parameters for optimal energy utilization. 

By modeling and simulating these dynamic activities, 

the proposed algorithm aims to enhance the 

efficiency and adaptability of energy management in 

DC microgrids with PV arrays. 

Aquila, employs four distinct approaches that it 

can swiftly switch between depending on the 

circumstances. 

• Involves flying high and stooping vertically, is 

intended to be used for bird hunting. This tactic 
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involves soaring high above the ground, 

followed by a rapid dive to capture prey.  

• Involves contour flying combined with a brief 

glide, is the most commonly employed and is 

ideal for chasing ground-dwelling prey.  

• Slow-down attack in low flight, suitable for 

targeting slower-moving prey that lacks an 

effective escape response.  

• Involves walking and grabbing prey, often used 

to pull the young of large prey out of their hiding 

places.  

These adaptive hunting techniques enable Aquila 

to effectively capture a wide range of prey in various 

situations. The proposed AO algorithm draws its 

primary inspiration from the above-mentioned 

hunting methods of the Aquila. 

3.4.2 Initialization 

In the AO, being a population-based optimization 

method, the optimization process commences with a 

population of potential solutions denoted as X, 

following the probabilistic generation method 

described in Eq. (6). These solutions are 

stochastically generated within the defined upper 

bound (UB) and lower bound (LB) constraints of the 

specific challenge at hand. The best solution achieved 

up to the current iteration is regarded as the 

approximate optimal solution. This population-

driven approach underlines the quest for the best 

possible solution in each iteration, making AO an 

effective optimization technique. 

 

𝑋 = 

[
 
 
 
 
 

𝑥1,1 ⋯ 𝑥1,𝑗 𝑥1,𝐷𝑖𝑚−1 𝑥1,𝐷𝑖𝑚

𝑥2,1 ⋯ 𝑥2,𝑗 ⋯ 𝑥2,𝐷𝑖𝑚

⋯ ⋯ 𝑥𝑖,𝑗 ⋯ ⋯

⋮ ⋮ ⋮ ⋮ ⋮
𝑥𝑁−1,1 ⋯ 𝑥𝑁,1−𝑗 ⋯ 𝑥𝑁−1,𝐷𝑖𝑚

𝑥𝑁,1 ⋯ 𝑥𝑁,𝑗 𝑥𝑁,𝐷𝑖𝑚−1 𝑥𝑁,𝐷𝑖𝑚 ]
 
 
 
 
 

 

(6) 

 

where X represents the collection of current 

candidate solutions, each of which is produced 

through a random process defined by Eq. (7). 

𝑋𝑖corresponds to the decision scores or locations of 

the i-th solution within this set. Whereas Dim denotes 

the dimension size, N is the total number of potential 

solutions in the population. 

 

𝑋𝑖𝑗 = 𝑟𝑎𝑛𝑑 ∗ (𝑈𝐵𝑗 − 𝐿𝐵𝑗) + 𝐿𝐵𝑗         (7) 

 

where i=1, 2….,  im and term "rand" represents 

a randomly generated number. 

3.4.3 Theoretical framework of AO 

As previously mentioned, the AOA operates 

through four primary global steps. The shift among 

exploration and exploitation stages in the AO 

al orithm is determined based on the scenario “if 𝑡≤ 

(
2

3
) ×𝑇,” where exploration phases are initiated. 

Following this, the exploitation phases are executed. 

The fundamental mathematical model for these four 

main steps within the AO algorithm is presented as 

follows: 

In the initial stage, Expanded exploration (𝑋1), 

the Aquila adeptly locates the prey's location and 

strategically selects the best hunting ground using a 

high soar followed by a vertical stoop. To replicate 

this behavior, the AO employs an extensive 

exploration approach, akin to the bird's high soar, to 

pinpoint the region within the search arena where the 

prey is likely located. This process is illustrated in Fig. 

9, depicting the mathematical representation as 

expressed in Eq. (8). This method mimics the bird's 

systematic approach to identifying the ideal hunting 

zone in the search space. 

 

𝑋1(𝑡 + 1) = 𝑋𝑏𝑒𝑠𝑡(𝑡) ∙ (1 −
𝑡

𝑇
)                    

+(𝑋𝑀(𝑡) − 𝑋𝑏𝑒𝑠𝑡(𝑡) ∙ 𝑟𝑎𝑛𝑑)        (8) 

 

𝑋1 (t+1) denotes the solution for the next 

generation produced by the initial search step𝑋1 . 

𝑋𝑏𝑒𝑠𝑡  (t) signifies the best solution achieved in the 

current generation. To guide the expanded 

exploration, the formula (1 −
𝑡

𝑇
) is employed, where 

𝑡 represents the current generation, and 𝑇 is the total 

number of generations. Additionally, 𝑋𝑀  stands for 

the mean value of the location in the current solution 

of the 𝑖𝑡ℎ generation, computed using Eq. (9). 

 

𝑋𝑀(𝑡) =  
1

𝑁
∑ 𝑋𝑖(𝑡), ∀𝑗

𝑁
𝑖=1 =1, 2…,  im    (9) 

 

where the population size, or N, is the number of 

candidate solutions. 

In the second phase, Narrowed exploration (𝑋2), 

also known as "contour flight with short glide attack," 

the Aquila, after spotting the prey from a higher 

altitude, engages in a circling maneuver above the 

intended target area as shown in Fig. 10. This 

technique involves a careful preparation and 

narrowing of focus before launching the attack. 

Mathematically, this behavior is represented by Eq. 

(10). 

 

𝑋2(𝑡 + 1) = 𝑋𝑏𝑒𝑠𝑡(𝑡) ∙ Levy( )                    

+𝑋𝑅(𝑡) + (𝑦 − 𝑥) ∙ 𝑟𝑎𝑛𝑑     (10) 
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Figure. 9 The Aquila's vertical stoop and high soar 

behavior 

 

 

 
Figure. 10 Aquila's short glide attack characteristic during 

contour flight 
 

 

Where 𝑋2(𝑡 + 1)  represents the solution in the 

next iteration (t + 1) produced by the second method 

(𝑋2). The variable D stands for the dimension space, 

while  e y( ) represents the “ e y fli ht 

distribution function”.  dditionally, 𝑋𝑅(𝑡) 

corresponds to a randomly selected solution within 

the range of [1, N] at the 𝑖𝑡ℎ iteration. 

In the third hunting method, Expanded 

exploitation (𝑋3 ), the Aquila drops vertically, and 

attacks the victim in order to determine how it will 

react. This approach, is employed when the prey's 

location is exactly known. The Aquila utilizes this 

method to exploit the selected target area, gradually 

closing in on the prey for a calculated attack. This 

behavior is illustrated in Fig. 11 and is 

mathematically represented by Eq. (11). 

 

𝑋3(𝑡 + 1) = (𝑋𝑏𝑒𝑠𝑡(𝑡) − 𝑋𝑀(𝑡)) ∙ 𝛼 − 𝑟𝑎𝑛𝑑        

+((𝑈𝐵 − 𝐿𝐵) ∙ 𝑟𝑎𝑛𝑑 + 𝐿𝐵) ∙ 𝛿    (11) 

 
Figure. 11 Aquila's low-flying, slow-descending assault 

behavior 

 

 
Figure. 12 Aquila's walk-and-grab method of hunting 

 

 
Figure. 13 The impact of the G1, G2, and QF on the AO's 

behavior 

 

Where, 𝑋3(𝑡 + 1)  signifies the solution in the 

subsequent iteration produced by the third method 

(𝑋3 ). 𝑋𝑏𝑒𝑠𝑡(𝑡)  indicates the best solution attained 

until the 𝑖𝑡ℎ  iteration, which serves as an 

approximation of the prey's location. 𝑋𝑀(𝑡) 

represents the mean value of the current solution at 

the 𝑡𝑡ℎ  iteration, determined using Eq. (9). The 

variable "rand" ranges from 0 to 1. Additionally, the 

parameters δ and α, which are set at a small  alue of 

0.1, are exploitation adjustment parameters. 

In the fourth hunting method, Narrowed 

exploitation (𝑋4 ), known as "walk and grab prey" 

(X4), involves the aquila approaching its target on 

land and engages in a pursuit that considers the 

unpredictable motions of the prey. This method 

involves a final attack by the Aquila, ensuring a 

successful capture. The way the Aquila behaves 

during this "walk and grab prey" method is illustrated 

in Fig. 12, and its mathematical representation is 

presented in Eq. (12). 
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𝑋4(𝑡 + 1) = 𝑄𝐹 ∙ 𝑋𝑏𝑒𝑠𝑡(𝑡) − (𝐺1 ∙ 𝑋(𝑡) ∙ 𝑟𝑎𝑛𝑑)   

−𝐺2 ∙ 𝑙𝑒𝑣𝑦(𝐷) + 𝑟𝑎𝑛𝑑 ∙ 𝐺1           (12) 

 

Where the result of the fourth search technique 

(𝑋4) is the solution for the subsequent iteration of t, 

denoted as 𝑋4(𝑡 + 1). QF is computed using Eq. (13), 

and it is utilized to balance the search techniques. 

 

𝑄𝐹(𝑡) = 𝑡
2∗𝑟𝑎𝑛𝑑−1

(1−𝑇)2                (13) 

 

𝐺1 = 2 ∙ 𝑟𝑎𝑛𝑑 − 1                (14) 
 

𝐺2 = 2(1 −
𝑡

𝑇
)                (15) 

 

In Fig. 13, the impact of the quality function (QF), 

as well as the parameters G1 and G2, on the behavior 

of the optimization algorithm (AO), is illustrated. 

3.5 Problem formulation 

This study's main goal is to improve energy 

management by effectively optimizing the 

deployment of PV panels in a DC microgrid that 

includes a battery storage system. The central focus 

revolves around determining the ideal locations and 

sizes of PV panels within the microgrid, leveraging 

the Aquila Algorithm for optimization. In the context 

of load flow simulation, PV panels are integrated as 

a source of power generation. The candidate buses for 

PV panel deployment encompass all system buses, 

except for the substation bus. The study formulates 

an objective function, akin to [27], where the 

locations and sizes of PV panels serve as control 

variables. The proposed algorithm seeks to identify 

the optimal values for these variables, ensuring the 

efficient utilization of PV resources. The selection of 

the most suitable PV panel configuration is driven by 

an objective function (OF), which aggregates 

weighted criteria aimed at maximizing the efficiency 

and effectiveness of PV energy generation in the DC 

microgrid. 

3.5.1 Objective function (OF) 

The objective function aims to optimize the 

utilization of PV panels in the DC micro grid while 

ensuring power balance and minimizing power losses. 

The objective function is formulated as follows: 

 

OF=Maximize ∑ 𝑃𝑃𝑉𝑖

𝑁
𝑖=1  

Subject to following constraints: 

Power Balance Constraint:  

∑𝑃𝑃𝑉𝑖

𝑁

𝑖=1

− 𝑃𝑙𝑜𝑎𝑑 − 𝑃𝑏𝑎𝑡𝑡𝑒𝑟𝑦 = 0 

 

Power Loss Minimization 

𝑃𝑙𝑜𝑠𝑠 = ∑𝑃𝑃𝑉𝑖

𝑁

𝑖=1

− 𝑃𝑙𝑜𝑎𝑑 − 𝑃𝑏𝑎𝑡𝑡𝑒𝑟𝑦 

 

Voltage Deviation Constraint 

 

∑ 𝑉𝑖
𝑁
𝑖=1 -𝑉𝑟𝑒𝑓 ≤ ∆𝑉 

 

Where, N represents the quantity of PV panels 

used in the system, 𝑃𝑃𝑉𝑖
 is the power output 

generated by a specific PV panel, i is the panel's index, 

𝑃𝑙𝑜𝑎𝑑  signifies the electrical power utilized by the 

load within the system, 𝑃𝑏𝑎𝑡𝑡𝑒𝑟𝑦is the electric power 

supplied or discharged by the battery storage, 𝑉𝑖 

corresponds to the voltage measurement at the 𝑖𝑡ℎ 

bus or location in the micro grid, 𝑉𝑟𝑒𝑓 is the 

designated reference voltage level used as a 

benchmark, ΔV designates the acceptable voltage 

variation or deviation from the reference level. 

4. Results and discussion 

The efficiency of the suggested PV system 

optimization was validated through the utilization of 

the MATLAB/Simulink system model. The 

simulation was executed with specific settings to 

ensure accurate results. We conducted a 

comprehensive performance evaluation of our PV 

panel optimization strategy, meticulously examining 

how the system behaves under varying control 

approaches and different levels of PV power. As 

depicted in Fig. 14, a notable event occurs at t = 0.025 

s when there is a rapid surge in the model's load, 

leading to a temporary imbalance within the micro 

grid. This, in turn, results in deviations in several 

critical parameters. However, through the application 

of the Aquila algorithm, our research effectively 

mitigated these imbalances and brought the system 

back to a stable state. 

Our focus extended to ensuring equilibrium in 

key system aspects, and the outcomes depicted in Fig. 

14 demonstrate the positive impact of our PV panel 

optimization, especially when considering critical 

variables like grid power, battery power, load power, 

and DC load. The Aquila algorithm's effectiveness is 

evident as it aids in maintaining these system 

variables within desirable ranges. Furthermore, the 

study delved into improving the overall performance 

of PV panels within the microgrid, making certain 

that they operate at their maximum efficiency and 
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generate power effectively. By harnessing the Aquila 

algorithm, we aimed to enhance the system's 

operation by optimizing the placement and size of PV 

panels, thereby ensuring that the microgrid operates 

with increased efficiency and improved performance. 

In the initial phase, the PV system commences its 

operation under an irradiance level of 1000 W/m². 

This condition is associated with a voltage reading of 

320V and a current flow of 30A. Fig. 15 visually 

depicts the AC side voltage and current attributes 

influenced by our optimization approach using the 

Aquila algorithm. It strikingly demonstrates a 

substantial decrease in system oscillations, yielding a 

remarkably smoother performance profile. Notably, 

at t=0.025 seconds, a sudden increase in system 

fluctuation is observed. The algorithm ensures that 

the PV system operates with a higher degree of 

consistency and precision, minimizing discrepancies 

and fluctuations. 

Fig. 16 illustrates the performance characteristics 

of DC link voltage, current, and power, showcasing 

the remarkable outcomes achieved through the 

implementation of our optimization technique. This 

study focuses on a PV system operating under 

conditions of 700 W/𝑚2  solar radiation, with an 

incoming solar power of 7.5 kW, while the 

anticipated PV output is set at 8 kW. The controlled 

power supply from the system is established at 10 kW. 

At the critical time point of t = 0.025 s, the PV 

generation experiences a decline due to a decrease in 

illumination, necessitating the microgrid to provide 

the remaining power required to fulfill the system's 

energy demands. This transition triggers fluctuations 

in the DC circuit's voltage levels while introducing 

minimal changes in other critical parameters, such as 

frequency. 

An essential aspect of this scenario is the synergy 

of competitive power and solar system-generated 

power, which not only serves to maintain grid 

frequency within acceptable limits but also 

remarkably reduces the system's settling time. Also, 

it becomes evident that the system attains a 

remarkably swift settling time of merely 0.2 seconds, 

underscoring the efficiency of our proposed 

optimization technique. This outcome is a proof to 

the technique's effectiveness in ensuring that the PV 

system promptly and seamlessly adapts to variations 

in solar generation, ultimately enhancing the 

reliability and responsiveness of the DC microgrid. 

4.1 Convergence study 

A maximum iteration count of 100 was chosen to 

control the optimization process effectively. 

Furthermore, to minimize errors and enhance 

reliability, the simulation was run a maximum of 10 

times. In this optimization process, the fitness 

function was designed to focus on attaining the 

maximum power point for the solar system, 

represented as a negative value. This unique 

representation simplifies the optimization process, 

given that the maximum power aligns with the 

minimum fitness function value. Initially, the 

simulation was executed under uniform irradiation 

conditions, with all three PV panels exposed to an 

insolation level of 1000 W/𝑚2. 

 

 
Figure. 14 Load Variation using Aquila Algorithm 
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Figure. 15 AC side Voltage and current from PV battery system 

 

 
Figure. 16 DC link Voltage, current and power using Aquila Optimizer 

 

 
Figure. 17 Fitness function vs. iteration curve for Aquila optimizer 
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Table 3. Performance Comparison of the proposed model with existing methods 

Algorithm 
Settling 

Time (s) 

Voltage 

Fluctuations 

(V) 

Power Loss 

(%) 

Stability 

(%) 

Response 

Time (s) 

Oscillation 

Amplitude 

(V) 

Particle 

Swarm 

Optimization 

(PSO) 

0.5 ±6 5 91 0.05 12 

Genetic 

Algorithm 

(GA) 

0.4 ±5 4 93 0.045 10 

Perturb and 

Observe 

(P&O) 

0.8 ±8 7 85 0.07 15 

Incremental 

Conductance 

(IC) 

0.6 ±7 6 88 0.06 13 

Artificial Bee 

Colony 

(ABC) 

0.35 ±4 3 95 0.03 8 

Aquila 

Algorithm 

(Proposed) 

0.2 ±2 2 98 0.025 5 

 

 

The optimization performance is effectively 

illustrated in Fig. 17, where we can observe the 

evolution of the best fitness value over time. It 

assesses how effectively the Aquila algorithm 

optimizes the PV panel configuration by examining 

the behavior of the fitness function over multiple 

iterations, ultimately ensuring that the DC microgrid 

operates at its peak efficiency. The optimized 

operation showcased in this study bodes well for the 

resilience and stability of PV systems within the DC 

microgrid, offering a promising solution for 

improved energy management and performance. 

The Table 3 clearly illustrates the superiority of 

the proposed Aquila algorithm in optimizing 

photovoltaic (PV) systems within a DC microgrid 

across multiple performance metrics. The Aquila 

algorithm achieves a significantly faster settling time 

of 0.2 seconds, indicating its ability to stabilize the 

system more quickly compared to conventional 

methods like PSO (0.5 seconds) and P&O (0.8 

seconds). This rapid response is crucial for adapting 

to sudden changes in solar irradiance or load 

conditions. Furthermore, the voltage fluctuations are 

minimized to just ±2V, showcasing better control 

over voltage stability, whereas traditional techniques 

like P&O exhibit greater fluctuations (±8V). The 

Aquila algorithm also demonstrates improved energy 

efficiency with only 2% power loss, compared to 

higher losses in PSO (5%) and P&O (7%), 

underscoring its ability to minimize energy wastage. 

In terms of system stability, the proposed model 

maintains 98% stability, outperforming other 

methods in managing grid and load power with 

minimal oscillations. Additionally, the response time 

to sudden load changes (0.025 seconds) and reduced 

oscillation amplitude (5V) highlight its superior 

transient handling capabilities. These factors 

collectively contribute to the overall enhanced 

performance and reliability of the Aquila algorithm 

in PV system optimization, making it a more 

effective solution for energy management in DC 

microgrids. 

5. Conclusion 

The proposed research focused on optimizing 

photovoltaic (PV) systems within a direct current 

(DC) microgrid, utilizing the Aquila algorithm to 

enhance energy management and performance. The 

methodology involved developing a 

MATLAB/Simulink model to simulate the PV 

system's behavior under various control approaches 

and solar irradiance levels, specifically starting from 

an initial condition of 1000 W/m². Performance 

evaluations demonstrated that the Aquila algorithm 

effectively mitigated load imbalances, particularly 

evident at t = 0.025 s when a sudden surge in load led 

to deviations in critical system parameters. Results 

indicated a significant improvement in system 

stability, with the algorithm maintaining grid power, 

battery power, load power, and DC load within 

desirable ranges. Additionally, the simulation 

illustrated a remarkable reduction in oscillations and 
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fluctuations in AC side voltage and current, 

enhancing the overall operational efficiency of the 

PV panels. The study also achieved a swift settling 

time of just 0.2 seconds during conditions of 

fluctuating illumination, showcasing the ability of the 

optimization technique to adapt to changes in solar 

generation seamlessly. Overall, the findings 

substantiate the effectiveness of the Aquila algorithm 

in optimizing the configuration of PV systems, thus 

contributing to the advancement of reliable and 

sustainable energy solutions in DC microgrid 

applications. 

 

NOTATIONS 

  Current produced by    array 

Iph  hoto  enerated current 

I0  iode's re erse saturation current 

q Elementary char e 

   olta e across    array 

n  deality factor 

k  oltzmann constant 

T Temperature (in Kel in) 

Rs Series resistance 

Rsh Shunt resistance 

Vth Thermal  olta e 

Vout Output  olta e 

Vin  nput  olta e 

   uty cycle 

Xij Candidate solution 

QF Quality function 

Ppvi  ower output of    panel 

Pload Electrical power used by load 

Pbattery  ower supplied/dischar ed by battery 

Vref Reference  olta e 

∆V  cceptable  olta e  ariation 

N Total number of    panels 
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