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Abstract: Meconium-stained and vernix caseosa are two significant components found in amniotic fluid, each serving 

distinct roles in fetal development. These components have potential to hinder fetal development when detected in 

excessive amounts. Due to the urgency of early detection, the development of a model for detecting and classifying 

echogenicity types is considered necessary. Detection model for echogenicity type based on digital images has not 

been developed previously. Therefore, In this study, we used a private dataset obtained from a gynecology clinic, 

consisting of 110 original images in JPG format. Our proposed model designed by applying a CNN based semantic 

segmentation approach to amniotic fluid images, with modifications made to the dense layer. Pretrained models 

incorporating various CNN architectures, are utilized to extract features from meconium-stain and vernix caseosa. 

Feature selection is carried out using three methods: Chi-Square, ANOVA, and Mutual Information. Xtreme Gradient 

Boosting algorithm for classification. Our proposed model achieve accuracy of 0.94 or 94% for classifying 
echogenicity type. 

Keywords: Amniotic fluid, Vernix caseosa, Meconium stain, Semantic segmentation, Classification. 

 

 

1. Introduction  

All The examination of amniotic fluid focuses on 

two aspects: the volume of the fluid and its 

echogenicity. The echogenicity is caused by the 

presence of meconium-stain (feses) and vernix 
caseosa (a protective layer on the fetal skin) [1]. 

Meconium-stain and vernix caseosa are two 

significant components found in amniotic fluid, each 
serving distinct roles in fetal development [2]. 

Meconium, a sterile mixture produced in the fetal 

intestines, is composed of water, 
mucopolysaccharides, and solid materials such as 

vernix caseosa and lanugo [3]. Conversely, vernix 

caseosa, a protective substance covering the fetal, 

plays an important role in the skin’s barrier function 
and may also serve as a site for dioxin excretion, 

highlighting its importance in the detoxification 

process [4]. Research indicates that vernix contains 
branched-chain fatty acids, which are absent in 

meconium, suggesting that vernix may have a unique 

metabolic function. Meconium-stain (feces) is 
detected in the amniotic fluid, there is concern that 

the fetal may develop Meconium Aspiration 

Syndrome (MAS), a condition in which feces enter 
the lungs, potentially leading to fatal complications, 

fetal distress, and indicating underlying issues such 

as hypoxia or asphyxia, which can elevate the risk of 

perinatal morbidity and mortality [5]. The 
echogenicity instead of the fluid is caused by the 

presence of meconium (feces) and vernix caseosa. To 

determine the content of meconium and vernix in the 
amniotic fluid, clinicians perform clinical tests by 

examining the amniotic fluid obtained during 

delivery and comparing it with recorded examination 
results from pregnancy [6], as shown in Fig. 1. Fig. 1 

(a) illustrates the presence of meconium in the 

amniotic fluid, while (b) shows the presence of vernix 

caseosa [6, 7]. 
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(a) 

 
(b) 

Figure. 1 Clinical test results of echogenicity: (a) 

meconium-stained in amniotic fluid and (b) vernix-

caseosa in amniotic fluid 

 

 

The early detection of meconium-stain 
distribution is crucial for managing fetal conditions. 

This enables a more prompt response from clinicians 

in mitigating the risk of the fetal developing 
Meconium Aspiration Syndrome (MAS). 

Issues related to the detection and measurement 

of anatomical features in amniotic fluid images have 

been addressed with significantly satisfactory results 
through the use of artificial intelligence-based 

imaging analysis models, such as detection and 

segmentation. The classification of amniotic fluid 
volume, echogenic conditions, and the materials 

contributing to echogenicity is viewed as presenting 

promising opportunities for further research 

development.  
Several studies have investigated the 

segmentation and detection of amniotic fluid areas. 

For instance, ayu et al., segmented the amniotic fluid 
area using a pixel classification model based on local 

grey-level rectangle window sampling, achieving an 

average Dice Similarity Coefficient (DSC) of 84% 
and an Intersection over Union (IoU) of 72.7%[8]. 

Another study, using the Classification Pixel Using 

Local Window Information and Distance Angle Pixel 

method, classified amniotic fluid by separating it 
from objects based on a defined window size and 

incorporating several feature extractions, such as 

grey-level, grey-level local variance, and distance 
angle pixel, achieving a DSC of 87.6% [9]. A study 

employing a deep learning approach, specifically the 

dual path network method, reported a DSC of 85.9% 
[10]. Another study, using the AF-net model, a 

variation of the U-net architecture incorporating three 

complementary concepts atrous convolution, a multi-

scale side-input layer, and a side-output layer 
achieved a DSC of 87.7% [11]. Additionally, the U-

net method, when optimized through hyperparameter 

tuning, yielded a DSC of 88% [12]. Various 

approaches have been applied in classifying amniotic 
fluid volume. For example, a deep learning model 

based on the ResNet150 network combined with 

Extreme Gradient Boosting (XG-Boost) 

demonstrated a significant improvement in accuracy, 
reaching 96.5% [13]. The Single Deepest Vertical 

Detection approach achieved an accuracy of 92.63% 

[14]. In contrast, the Support Vector Machine (SVM) 
method, analysed across three different kernels, 

attained an accuracy of 77%. Lastly, a hybrid model 

combining rule-based methods with a Random Forest 
classifier achieved an accuracy of 90.52% [15]. 

Based on previous studies, the primary focus has 

been on the segmentation and classification of 

amniotic fluid volume. The potential to enhance 
segmentation accuracy remains a critical focus, as it 

significantly impacts the diagnosis of amniotic fluids. 

Furthermore, this study explores the underlying 
causes of echogenicity in amniotic fluids, specifically 

investigating whether it results from meconium-

stained or vernix caseosa. Therefore, this study 
focuses on classifying the types of echogenicity in 

amniotic fluid into two categories: meconium stained 

or vernix caseosa. The novelty and contributions of 

this study are stated as follows: 

• In our previous research [13, 16, 17, 18], the 
detection and classification of amniotic fluid into 

two categories Normal and Echogenic were the 

primary focus. In this study, that work is extended 
by specifically identifying the underlying cause 

of echogenicity, distinguishing between 

meconium-stained (fetal feces) and vernix 

caseosa. 

• Research related to the detection or classification 
of meconium and vernix caseosa from an image 

processing perspective has not yet been 

conducted. Considering the importance of early 
detection to assess the amount of meconium in 

amniotic fluid, which plays a crucial role in 

preventing MAS, the need for research on 
meconium detection is highly urgent as a 

development area for amniotic fluid studies in the 

field of image processing. 

• Our contribution in terms of methodology 

involves developing a model to classify the types 
of echogenicity. We propose a segmentation 

model that is capable of achieving higher 

accuracy and is robust against noise and blurred 
areas. The development includes applying a CNN 

approach for a semantic segmentation model of 

amniotic fluid, with modifications made to the 
dense layer. Pretrained models with various CNN 

architectures are employed to extract features 

from meconium and vernix caseosa. Feature 
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selection is carried out using three methods: Chi-
Square, ANOVA, and Mutual Information. For 

classification, the XG-Boost algorithm is 

implemented. This integrated model serves as a 

comprehensive solution for detecting and 
classifying the types of echogenicity in amniotic 

fluid. 

The remainder of the research paper is structured 
as follows: Section 2 presents the literature review, 

and Section 3 is proposed methodology. Section 4 

covers the experiment result, while Section 5 
provides the conclusion along with future work. 

2. Literature review  

Several studies have focused on segmenting 2D 
images of amniotic fluid. The accuracy and precision 

of amniotic fluid area segmentation are crucial 

factors in identifying the type of amniotic fluid. The 
segmented area serves as a feature that influences the 

volume and turbidity of the fluid. The higher the 

accuracy of the segmentation, the more precise the 

categorization of the amniotic fluid type. Several 
studies have been conducted to obtain the amniotic 

fluid area. However, challenges such as noise, blurred 

edges, and the presence of other particles remain. 
Study by [11] introduced a deep learning model 

known as AF-Net, A hierarchical deep-learning-

based method was developed, incorporating 
clinicians' anatomical knowledge-based approaches. 

The critical step involved the segmentation of the 

amniotic fluid pocket using the proposed deep 

learning network, AF-net. AF-net, which is a 
variation of U-net, integrates three complementary 

techniques: atrous convolution, a multi-scale side-

input layer, and a side-output layer. The experimental 
results demonstrated that this method provides a 

measurement of the Amniotic Fluid Index (AFI) with 

robustness and precision comparable to that of 

clinicians. The method achieved a Dice similarity 
score of 0.877 ± 0.086 for AF segmentation. 

In another study, [10] developed a deep learning 

network incorporating AF-Net and an auxiliary 
network, utilizing a dataset of 2,380 ultrasound 

images and achieving a DSC score of 0.8559. U-Net 

model by [12], segmented the amniotic fluid with U-
net model, and achieved DSC 0.88. Additionally, [8] 

employed a pixel classification method for 

segmentation, using a dataset of 50 images, and 

comparing local window techniques, which resulted 
in a DSC of 0.814. Another approach was proposed 

by [17], combining pixel classification with feature 

extraction methods such as gray-level, local variance, 
and distance angle pixel to identify amniotic fluid 

regions. This technique yielded a DSC of 0.876. 

However, the proposed model requires a relatively 
high computational time due to the involvement of 

multiple feature dimensions, resulting from the use of 

deep pixel information features. 

Another study for Amniotic fluid classification 
by Ayu et al, aimed to attain higher identification 

outcomes than previous examinations by using a 

model comprising a convolutional neural network 
(CNN) (feature extractor), chi-square (feature 

selection), Safe Level Synthetic Minority Over-

Sampling technique (SMOTE) (data oversampling), 
and XG-Boost (classifier), achieving accuracy 96.5% 

[13]. However, this study has not yet conducted an 

identification of the causes of turbidity in the 

amniotic fluid. In further research by Ayu et al., a 
classification of amniotic fluid conditions was 

performed using the Single Deep Pocket method and 

texture features (FOS and GLCM), classifying fluid 
conditions into six categories using an SVM with a 

Radial Basis Function (RBF) kernel, which resulted 

in an accuracy of 81.4% [14]. Another study, [19], 
classified amniotic fluid volume into two categories, 

use transfer learning models were utilized to classify 

the amniotic fluid (AF) levels as either normal or 

abnormal using ultrasound (US) images. The dataset, 
which consisted of 166 US images of pregnant 

women, was pre-processed before training the 

models. Five transfer learning models Xception, 
Densenet, Inception ResNet, MobileNet, and ResNet 

were applied. The results demonstrated that 

MobileNet achieved an overall accuracy of 0.94. 

Similar to the previous one, this study has not yet 
specifically categorized the causes of turbidity or the 

type of echogenicity in amniotic fluid. Research 

published by [20] employed fuzzy techniques to 
measure AFI, classifying conditions into 

oligohydramnios, borderline, normal, and 

polyhydramnios, achieving an accuracy of 0.925. 
However, this study is still focused on the 

categorization of amniotic fluid volume. 

The study utilized a classification model that 

combined rule-based methods and Random Forest. 
The rule-based method classified amniotic fluid 

volume based on the Single Deepest Pocket (SDP) 

feature, while Random Forest was applied to classify 
the condition of the amniotic fluid based on First 

Order Statistical (FOS) and Gray Level Co-

occurrence Matrix (GLCM) features, achieving an 
accuracy of 90.52% [15], where the classification of 

amniotic fluid conditions into six categories was 

performed. Ayu et all., [18] referred to as the 

modified Single Deepest Vertical Detection (SDVD) 
algorithm, was developed to automatically measure 

the longest vertical line according to medical 

guidelines and regulations. The SDVD algorithm was 
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designed to measure the depth of the amniotic fluid 
vertically by scanning the columns of pixels in the 

image sample, while excluding any intersections with 

the fetal body an average accuracy of 92.63% was 

achieved for the classification of amniotic fluid.  
Based on several studies mentioned above, the 

accuracy of amniotic fluid area segmentation remains 

a major challenge that needs improvement, as it 
directly affects the outcome of feature extraction. 

Moreover, previous studies have not been able to 

identify the causes of echogenicity. As is known, in 
addition to categorizing amniotic fluid into echogenic 

and clear types, it is also important to identify the 

cause of the echogenic. Echogenic in amniotic fluid 

may originate from meconium-stain or vernix 
caseosa, both of which require different medical 

treatments. Therefore, this study proposes a more 

accurate amniotic fluid segmentation model and aims 
to develop a more in-depth detection model to 

identify the cause of echogenicity, whether it is 

meconium-stain or vernix caseosa. 

3. Proposed methodology  

The process of detecting and classifying 

meconium-stained and vernix caseosa in images of 
the amniotic fluid cavity is divided into four stages: 

dataset acquisition, pre-processing (including data 
augmentation and segmentation of the amniotic fluid 

Region of Interest (ROI), feature extraction to obtain 

meconium-stain and vernix caseosa characteristics 

using the ResNet-18 model, feature selection using 
Chi-Square, ANOVA, and mutual information, and 

finally, classification using the XG-Boost method. 

The images are classified into two categories: 
meconium-stained and vernix caseosa. The stages of 

each process in this study are illustrated in Fig. 2. 

3.1 Data acquisition 

The dataset used in this study is private dataset 
was obtained in collaboration with the Kasih Medika 

Bali Obstetrics Clinic in Bali, Indonesia. The utilize 

an Ultrasonography used Voluson S8 machine with a 

transducer frequency of 3.5 Hz and a lateral 
resolution of 3 mm. We have obtained ethical 

clearance to ensure the confidentiality of patient data. 

The images were saved in .jpg format with a 
resolution of 800 x 600 pixels.  

A total of 110 images were collected, divided into 

two classes: 53 images in the ed-stained class and 57 

images in the vernix caseosa class. An example of the 
original dataset is shown in Fig. 3 

 

 
Figure. 2 The overall process of the proposed model for echogenicity classification 
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(a) 

 

 
(b) 

Figure. 3 Example of the dataset of amniotic fluid cavity 

images: (a) original dataset in the meconium-stained class 

and (b) original dataset in the vernix caseosa class 

 
 

 
(a) 

 
(b) 

 
(c) 

 
(d) 

Figure. 4 Example of the augmented dataset results: (a) 

original image, (b) rotation, (c) translation, and (d) 

reflection 

3.2 Data preprocessing 

The initial step in preprocessing is automatic 

cropping. This cropping is performed by reducing the 
image size from the original 800×600 pixels to 

300×400 pixels using the imcrop library in Matlab. 

The purpose of cropping is to remove unnecessary 

information, such as text or patient data annotations. 
The cropped images are then used as input for the 

augmentation process. 

3.2.1. Data augmentation 

Data augmentation is a process used to increase 

the size of a dataset by applying random 
transformations to the original data [21]. Given the 

limited number of original datasets, the augmentation 

technique is one approach to expanding the dataset to 
prevent overfitting, Table 1 showed the number of 

augmented image sued in this research. Several 

augmentation techniques used in this study include 

rotation, translation, and reflection. The parameters 
used in data augmentation can be seen in Table 2, 

while examples of each augmentation process are 

shown in Fig. 4. 
 

 
Table 1. Number of augmented dataset 

Image 

Classes 
Original 

Dataset 
Augmentation Dataset 

  Total Training Testing 
Tota

l 

Meconium

-Stained 
53 53 252 108 360 

Vernix-

Caseosa 
57 57 278 119 397 

 

 
Table 2. The parameters for data augmentation that we 

utilized in this research. 

Parameters 

name for 

data 

augmentation 

Parameter 

Value 

Action 

Rotation range 10 degree The input dataset 

create by 10  

degree slightly 

counter clockwise 

Translation 10 pixel The input dataset 

shifted to the left 

by 10 pixels and 

down by 10 pixels 

Reflection ‘2’ flips the 

image 

horizontally 
(along the 

columns). 

horizontal 

reflection (left-

right flip) on an 
image. 
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3.3 Segmentation 

The next step is segmentation to obtain the ROI 

of the amniotic fluid, a fundamental process for 
detecting the amniotic fluid's ROI. In several of our 

previous studies, segmentation methods used include 

pixel-wise classification and U-Net. In this study, we 

employed a semantic segmentation approach, 
comparing transfer learning models with 

architectures such as ResNet18, ResNet50, 

MobileNetV1, and Xception. ResNet introduced the 
concept of residual learning, which enables the 

training of very deep networks without encountering 

performance degradation issues.  

The ResNet architecture is constructed using 
residual blocks, each consisting of several 

convolutional layers followed by a shortcut 

connection. The purpose of each residual block is to 
learn the difference (residual) between the input and 

the desired output (𝑛 + 𝑥)𝑡ℎ[22]. In ResNet18, each 

residual block consists of two convolutional layers 

(typically with 3x3 filters). In ResNet50, each 
residual block consists of three convolutional layers 

with 1×1, 3×3, and 1×1 filters, arranged in a specific 

sequence. In this study, we used the ResNet18 and 
ResNet50 architectures from [22] and modified the 

input image size to 300×400 pixels and the output of 

the Dense layer to two categories: amniotic fluid and 

background.  
MobileNetV1 is a type of CNN specifically 

designed to operate on mobile devices with low-

power processors. Its architecture is efficiently 
designed using depth wise-separable convolutions, 

allowing the development of lightweight neural 

networks with low latency, making it ideal for mobile 
and embedded devices. MobileNetV1 primarily uses 

pointwise separable convolutions instead of full 

convolutions. MobileNetV1 consists of standard 3×3 

convolution layers followed by 13 blocks of 3×3 
depthwise convolutions, batch normalization, and 

ReLU, as well as 1x1 pointwise convolutions with 

batch normalization and ReLU[23]. There are no 
pooling layers between these depth wise-separable 

convolution blocks. Stride 2 is used to reduce the 

spatial dimensions of the input, and the number of 

output channels is doubled in the pointwise 
convolution layers. Each of these layers uses batch 

normalization. MobileNetV1 uses ReLU as its 

activation function. The modified architecture ends 
with a global average pooling layer, followed by 

three final layers: a flatten layer, a dense layer (128), 

and a dense layer (2). 
Xception is a variant of 'Inception' that uses 'depth 

wise separable convolution,' where the spatial 

𝑛 × 𝑛 convolution on each channel separately is 

called 'depth wise convolution. Xception is a CNN 
architecture with 71 layers. This architecture consists 

of 36 convolutional layers that form the feature 

extraction process, grouped into 14 modules. All 

modules, except the first and last, have linear residual 
connections. Xception is a linear stack of depth wise 

separable convolution layers with residual 

connections [24]. All modified architecture for 
segmentation model, showed in Fig. 5. 

The performance of segmentation models was 

evaluated using the Dice Similarity Coefficient 
(DSC) and Intersection over Union (IoU), as defined 

in Eqs. (1) and (2). The DSC is defined in Eq. (1) and 

ranges from 0 to 1. Additionally, the Jaccard 

Coefficient/IoU is calculated by dividing the number 
of intersecting pixels between A and B by the union 

of A and B, as shown in Eq. (2) [14]. 

 

𝐷𝑆𝐶 =
2|𝐴∩𝐵|

|𝐴|+|𝐵|
                                                    (1) 

 

𝐽𝑎𝑐𝑐𝑎𝑟𝑑/𝐼𝑜𝑈 =
|𝐴∩𝐵|

|𝐴∪𝐵|
                                       (2) 

 

3.4 Pretrain feature extraction 

Feature extraction using pre-trained models with 
Convolutional Neural Network (CNN) architectures 

involves the utilization of CNNs that have been 

previously trained on large datasets, such as 
ImageNet, to obtain features from new data. This 

method is considered highly effective in deep 

learning, particularly when applied to relatively small 

or domain-specific datasets.  
In this approach, features are extracted from 

labelled images of amniotic fluid, categorized as 

meconium-stained and vernix caseosa, using a pre-
trained model. General features such as edges and 

textures are captured by the early layers of the pre-

trained CNN, while more complex and specific 
features, including shapes and objects, are captured 

by the subsequent layers. After feature extraction, the 

fully connected layers at the end of the CNN are 

typically discarded, and the extracted features are 
used as input for other machine learning models, such 

as XG-Boost. Five pretrained CNN models—

ResNet18, ResNet50, ResNet101, Inceptionv3, and 
Squeeze Net—are employed in this study. Fig. 6 

illustrates one of the pre-trained models utilized in 

this research using ResNet101. For all the pre-trained 

architectures utilized, feature selection processes 
using chi-square, ANOVA, and Mutual Information 

were applied to identify the best features. A fully 

connected layer was then used as the prediction layer.  
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(a) 

 

 
(b) 

 

 
(c) 

 

 
(d) 

Figure. 5 The architecture for the segmentation model: (a) ResNet18, (b) ResNet50, (c) MobileNetV1, and (d) Xception 
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Figure. 6 The Resnet101 architecture for the pretrain 

 

 

In this study, the fully connected neural network was 
replaced by a classifier using XG-Boost. 

3.5 Feature selection 

3.5.1. Chi-Square 

The Chi-square test was employed to assess the 

deviation from the expected distribution by 
evaluating independent features that were not 

dependent on class values. The chi-square value was 

determined using metrics such as true positives (𝑡𝑝), 
dependent on class values. The chi-square value was 

determined using metrics such as true positives (𝑡𝑝), 

false positives (𝑓𝑝), true negatives (𝑡𝑛), false 

negatives (𝑓𝑛), the probability of positive cases 

(𝑃𝑝𝑜𝑠), and the probability of negative cases (𝑃𝑛𝑒𝑔) 

[13, 25] as detailed in Eq. (3) 

 

Chi-square_metric = 
t (𝑡𝑝,(𝑡𝑝  +  𝑓𝑝)𝑃𝑝𝑜𝑠) + 

𝑡(𝑓𝑛,(𝑓𝑛 + 𝑡𝑛  )𝑃𝑝𝑜𝑠) +  

𝑡(𝑓𝑝,(𝑡𝑝  + 𝑓𝑝  )𝑃𝑛𝑒𝑔 ) +  
𝑡(𝑓𝑛,(𝑓𝑛  +  𝑡𝑛  ) 𝑃𝑛𝑒𝑔                                              (3) 

 

Where t (count, expert) = (count-expect)²/ expect.  

3.5.2. ANOVA 

ANOVA compares the variability between 

groups (inter-group variability) with the variability 

within groups (intra-group variability). This ratio is 
summarized in the F-statistic[26]. F-statistic: 

Measures how much the variability between groups 

compares to the variability within groups. The larger 

the F-statistic, the greater the likelihood that the 
difference in means between groups is not due to 

chance. The equation for the F-statistic showed in Eq. 

(4).  
 

𝐹 =  
𝑀𝑆𝐵

𝑀𝑆𝑊
                                                           (4) 

 
Where, MSB is the Mean Square Between-groups 

(measures the variance between the group means), 

and MSW is the Mean Square Within-groups 
(measures the variance within the groups). 

3.5.3. Mutual information 

Mutual information is utilized as a statistical 

measure in feature selection to assess how much 

information a feature provides in predicting the target 
variable. Mutual Information (MI) is a measure from 

information theory that quantifies the amount of 

information one random variable provides about 
another. In feature selection, MI is used to evaluate 

the dependency between a feature ( 𝑋 ) and the target 

variable ( 𝑌 ). Features that share more information 

with the target are more relevant. The mutual 

information (𝐼(𝑋; 𝑌)) between two random variables 

( 𝑋 )  and ( 𝑌 ) is defined as in Eq. (5). 
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𝐼(𝑋; 𝑌) = ∑ ∑ 𝑃(𝑥, 𝑦)𝑦∈𝑌 log (
𝑃(𝑥,𝑦)

𝑃(𝑥)𝑃(𝑦)
)𝑥∈𝑋     (5) 

 

Where: (𝑃(𝑥, 𝑦))  is the joint probability 

distribution of ( 𝑋 ) and ( 𝑌 ), (𝑃(𝑥)) and (𝑃(𝑦)) are 

the marginal probability distributions of ( 𝑋 ) and ( 𝑌 ),   
(log) is the natural logarithm. The mutual information 

(𝐼(𝑋; 𝑌)) is 0 if ( 𝑋 ) and ( 𝑌 ) are independent, and it 

increases as their dependence grows. Mutual 

Information is closely related to the concept of entropy, 

which measures the uncertainty of a random variable. 

The entropy of a random variable ( 𝑋 ) is given by Eqs. 

(6) and (8)[27]. 

 

𝐻(𝑋) = − ∑ 𝑃(𝑥)𝑥∈𝑋 log 𝑃 (𝑥)                             (6) 
 

Joint Entropy of ( 𝑋 ) and ( 𝑌 ) defined as : 
 

𝐻(𝑋, 𝑌) = − ∑ ∑ 𝑃(𝑥, 𝑦)𝑦∈𝑌 log 𝑃 (𝑥, 𝑦)𝑥∈𝑋    (7) 

 

The conditional entropy of ( 𝑌 ) given ( 𝑋 ) is: 

 

𝐻(𝑌|𝑋) = − ∑ ∑ 𝑃(𝑥, 𝑦)𝑦∈𝑌 log 𝑃 (𝑦|𝑥)𝑥∈𝑋    (8) 

 

Mutual Information can also be expressed in 
terms of entropy by Eq. (9). 

 

𝐼(𝑋;  𝑌)  =  𝐻(𝑋)  −  𝐻(𝑋 | 𝑌)                            (9) 
 

This shows that mutual information measures the 

reduction in uncertainty about ( 𝑋 ) given knowledge 

of ( 𝑌 ).  To apply mutual information for feature 
selection, the mutual information between each 

feature (𝑋𝑖) and the target variable ( 𝑌 ) is computed 

in Eq. (10). 

 

(𝐼(𝑋𝑖; 𝑌))                                                           (10) 
 

Steps for feature selection for general can be first 

compute the mutual information (𝐼(𝑋𝑖; 𝑌)) for each 

feature (𝑋𝑖) in the dataset. Second steps are rank the 

features based on their mutual information scores and 

third step is select the top-k features with the highest 
mutual information. 

3.6 Xtreme gradient boosting classifier 

Boosting is known as a form of ensemble learning, 

where several different decision trees are typically 
used in the model. Errors that arise in the existing 

model can be corrected by adding another model. 

New models are continuously added until no further 
improvements in performance can be achieved. 

Gradient boosting utilizes a method called gradient 

descent to minimize the loss function in order to 

adjust the new models to the existing ones. 
Additionally, XG-Boost enhances the performance of 

weak learners in both classification and regression 

problems. When the method takes previously 

predicted values as input, it can build a new tree to 
refine the predictions further. In the proposed model, 

the XG-Boost classifier was employed to replace the 

Fully Connected Layer (FCL) in five CNN pretrain 

architecture. Where �̂�𝑖 represents the value of 

prediction, 𝑛 is the total cases in the training sample, 

𝐾 is the total number of trees that need to be 

constructed, and 𝑓𝑘 is a member of the group of trees 
known as the ensemble trees.  

The final prediction is the sum of the prediction 

scores for each tree showed in Eqs. (11) and (19) [13, 
28]. 

 

�̂�1  = 𝜑 (𝑋𝑖)  =  ∑ 𝑓𝑘
𝐾
𝑘=1  (𝑋𝑖), 𝑓𝑘  ∈  𝐹,          (11) 

 

Where the 𝑋𝑖 are members of the training set and 

𝑦𝑖  are the corresponding class labels, 𝑓𝑘 is the leaf 

score for the 𝑘𝑡ℎ tree and F is the set of all K scores 

for all CARTs. Regularization is applied to improve 

the final result: 
 

𝐿 (𝜑) ∑ 𝑙𝑖  (�̂�𝑖 , 𝑦𝑖) + ∑ 𝛺𝑘  (𝑓𝑘)                     (12) 

 
The first term, l, represents the differentiable loss 

function, which measures the difference between 

target yi and the prediction  �̂�𝑖  . The second term 

avoids over-fitting:  𝛺  penalizes the complexity of 
the model: 

 

𝛺 (𝑓)  =  𝛾𝑇 +
1

2
 𝜆 ∑ 𝑤𝑗

2𝑇
𝑗=1                            (13) 

 

Where 𝛾, 𝜆  are constants controlling the 

regularization degree, T is the number of leaves in the 
tree and w is the weight of each leaf. Gradient 

boosting (GB) is effective in regression and 

classification problems. GB was used with the loss 

function, extended by a second order Taylor 
expansion, with the constant term removed to 

produce a simplified objective at step t, as follows: 

 

�̃�(𝑡) = ∑ [
g𝑖𝑓𝑖(𝑋𝑖) +
1

2
ℎ𝑖𝑓𝑖

2(𝑋𝑖)
]𝑛

𝑖=1 + 𝛺(𝑓𝑡) =  

 ∑ [g𝑖𝑓𝑖 (𝑋𝑖) + 
1

2
 ℎ𝑖𝑓𝑖

2 (𝑋𝑖)]𝑛
𝑖=1 +  

𝛾𝑇 +
1

2
𝜆 ∑ 𝑤𝑗

2𝑇
𝑗=1 =  

∑ [
(∑ g𝑖𝑖∈𝐼𝑗

) 𝑤𝑗 +

1

2
(∑ ℎ𝑖 + 𝜆𝑖∈𝐼𝑗

) 𝑤𝑗
2

] + 𝛾𝑇𝑇
𝑗=1                        (14) 
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Table 3. Notation list 

Symbol Description 

𝐹 F-statistic 

𝐼(𝑋; 𝑌) Mutual Information 

𝑋 Dependency between a feature 

𝑌 Target variable 

𝐻(𝑋, 𝑌) Joint Entropy of ( 𝑋 ) and ( 𝑌 ) 

𝐻(𝑌|𝑋) The conditional entropy of ( 𝑌 ) given 

( 𝑋 ) 

�̂�𝑖 value of prediction 

𝑛 the total cases in the training sample 

𝐾 total number of trees that need to be 

constructed 

𝑓𝑘  member of the group of trees known as 

the ensemble trees 

𝛾, 𝜆 constants controlling the regularization 

degree 

T number of leaves in the tree 

w weight of each leaf 

 

 

Where 𝑙𝑗 = {𝑖|𝑞(𝑥𝑖) = 𝑗} denote the instance set 

of leaf t and 

 

𝑔𝑖 =
𝜕𝑙 (�̂�𝑖

(𝑡−1)
,𝑦𝑖)

𝜕�̂�
𝑖
(𝑡−1)                                               (15) 

 

ℎ𝑖 =
𝜕2𝑙(�̂�1

(𝑡−1)
,𝑦𝑖)

𝜕 (�̂�
𝑖
(𝑡−1)

)
2                                              (16) 

 

Are first and second order gradient statistics of 

the loss function. The optimal weight 𝑤𝑗
∗of leaf j and 

the quality of a tree structure q, for a given tree 

structure 𝑞(𝑥𝑖) can be computed: 

 

𝑤𝑗
∗ = −

∑ g𝑖𝑖∈𝐼𝑗

∑ ℎ𝑖+𝜆′
𝑖∈𝐼𝑖

                                             (17) 

 

�̃�(𝑡)(𝑞) = − 
1

2
∑

(∑ g1𝑖∈𝐼𝑖
)

2

∑ ℎ𝑖+𝜆𝑖∈𝐼𝑖

+ 𝛾𝑇𝑇
𝑗=1                 (18) 

 

In practice, the evaluating for split candidates by 

utilized the score in the instance sets of left 𝐼𝐿  and 

right 𝐼𝑅 nodes after the split, where I = 𝐼𝑅  ∪  𝐼𝐿  then 

the loss reduction after the split is: 

 

𝐿 𝑠𝑝𝑙𝑖𝑡 =
1

2
[

(∑ g𝑖𝑖∈𝐼𝐿
)

2

∑ ℎ𝑖 + 𝜆𝑖∈𝐼𝐿

+
(∑ g𝑖𝑖∈𝐼𝑅

)
2

∑ g𝑖 + 𝜆𝑖∈𝐼𝑅

+

(∑ g𝑖𝑖∈𝐼 )2

∑ ℎ𝑖+𝜆𝑖∈𝐼

] − 𝛾     (19) 

 

3.7 Evaluation and validation performance 

To evaluate the performance of the classifier, this 

study used a binary class confusion matrix. 
Performance validation for classification involved 

four variables namely accuracy, precision, recall and 

F1-Score, as indicate in Eqs. (20) and (22)[19]. 

 

Accuracy =
TP + TN

TP + FP + TN + FN
                                (20) 

 

Precision =
TP

TP + FP
                                          (21) 

 

Recall =
TP

TP + FN
                                               (22) 

 

4. Experiment result  

In this research, several scenarios were used to 

determine the best model for classifying the types of 

echogenicity of amniotic fluid. The following testing 
scenarios were conducted. 

4.1 Experiment on segmentation 

4.1.1. Optimizer performance scenario on semantic 

network model 

In this research, experiments were conducted to 
evaluate the performance of each model architecture 

in segmenting the Amniotic Fluid ROI. In this 

segmentation process, 720 datasets were used, and 
validation was performed using 5-fold validation. 

The performance of each CNN architecture was 

compared using three optimizers: Stochastic Gradient 
Descent (SGD), Adam, and RMSprop. The  

parameters for each optimizer were set as 

follows: max_epoch = 10, max_iteration = 600, 

minibatch = 16, and learning rate = 0.01. Based on 
the experiment, the performance accuracy 

comparison of ResNet18, ResNet50, MobileNetV1, 

and Xception of ResNet18, ResNet50, MobileNetV1, 
and Xception models using different optimizers over 

iterations in segmentation is shown in Table 4.  

It is shown in Table 4 that the SGD optimizer is 
regarded as the overall best optimizer for models, 

providing consistent high accuracy with stable 

convergence. The highest accuracy (99.63%) is 

achieved by ResNet50, followed closely by 
ResNet18 (99.57%), MobileNetV1 (99.40%), and 

Xception (99.47%). Good performance is observed in 

MobileNetV1 and Xception, reaching 98.81% and 
97.61%, respectively. However, a drop in accuracy to 

90.25% is seen in ResNet18, which is unusual and 

suggests that overfitting or learning rate issues might  
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Table 4. Accuracy comparison of ResNet18, ResNet50, MobileNetV1, and Xception models using different optimizers 

over iterations in segmentation 

Iteration 

Resnet18 ResNet50 MobileNetV1 Xception 

SGD ADAM 
RMS 

Prop 
SGD ADAM 

RMS 

Prop 
SGD ADAM 

RMS 

Prop 
SGD ADAM 

RMS 

Prop 

 Accuracy 

1 37.30 57.28 26.78 75.01 39.78 44.91 23.72 42.57 44.65 32.99 17.55 27.71 

50 98.02 93.22 90.11 98.83 91.98 90.95 98.11 95.58 92.44 97.25 90.79 93.24 

100 98.77 95.12 91.22 99.14 90.0 90.16 98.95 93.36 94.5 98.48 91.75 87.62 

150 98.78 96.67 91.84 99.29 93.98 86.74 99.11 93.82 90.32 98.7 95.62 94.95 

200 99.23 95.67 92.11 99.55 93.25 91.43 99.22 97.46 93.2 96.16 93.78 92.4 

250 99.18 95.75 92.31 99.48 92.19 92.01 99.35 98.63 90.15 99.19 95.52 92.34 

300 99.29 96.36 92.42 99.32 92.54 92.78 99.33 98.23 92.39 99.39 97.28 91.65 

350 99.14 95.68 93.51 99.54 96.2 90.92 99.49 98.26 95.41 99.46 96.5 94.66 

400 99.29 97.05 94.22 99.58 94.54 92.7 99.43 98.31 95.01 99.49 97.52 92.7 

450 99.57 90.25 95.12 99.63 95.22 92.13 99.4 98.81 90.24 99.47 97.61 95.05 

 

 

 
Figure. 7 Plot for accuracy comparison of ResNet18, ResNet50, MobileNetV1, and Xception models using different 

optimizers over iterations in segmentation 

 

 
be present. In general, lower final accuracy is 

achieved by this optimizer compared to the other two 

optimizers, with significant fluctuations observed, 

especially in MobileNetV1 (90.24%) and ResNet50 
(92.13%). Fig. 7, showed the plot for accuracy 

comparison of ResNet18, ResNet50, MobileNetV1, 

and Xception models using different optimizers over 
iterations in segmentation. 

In Fig. 7, the analysis regarding speed and 

convergence of the three optimizers indicates that all 

models using SGD are observed to converge quickly, 

reaching over 98% accuracy by the 50th iteration. 
This implies that SGD is highly effective at 

identifying a good minimum early in the process, 

particularly for deeper models. In terms of stability 
and fluctuations, the SGD optimizer is shown to 
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maintain high and stable accuracy across all models, 
with minimal fluctuations after the initial rapid 

convergence. ADAM is observed to perform well but 

exhibits some instability, particularly in ResNet18 

during the later iterations. Although ADAM and 
RMSprop can converge quickly, they may introduce 

variability, especially if not carefully tuned. In 

contrast, SGD provides more consistent stability, 
which is crucial for achieving the highest possible 

accuracy. 

4.1.2. DSC and IoU performance on semantic 

segmentation model 

In the second scenario, the performance of several 

semantic segmentation models was compared based 
on DSC and IoU values. The DSC and IoU 

performance of the CNN architecture model in 

semantic segmentation is shown in Table 5, and the 
graph is presented in Fig. 8. Segmentation results 

from the architecture models used are illustrated in 

Fig. 8. From several examples of segmentation 

results shown in Fig. 8, it is observed that, while all 
models are capable of segmenting the echogenicity 

regions to some extent, ResNet-50 is found to 

outperform the others in terms of accuracy and detail. 
The choice of model is determined by the trade-off 

between computational efficiency and the level of 

accuracy required in practice. Table 5 shows, for all 
models, SGD consistently provides the highest DSC 

and IoU scores, indicating that it is the most effective 

optimizer for semantic segmentation in these 

scenarios. The highest scores are achieved by 
ResNet50 with SGD (DSC: 0.96, and IoU: 0.92. 

MobileNetV1 with Adam achieves a very 

competitive DSC of 0.90 and IoU of 0.82, which is 
close to its performance with SGD. 

 
Table 5. Performance of optimizers on CNN architecture 

models for the segmentation of amniotic fluid 

echogenicity 

Seman

tic 

Segme

ntation 

Model 

Optimizer 

Adam SGD RMS 

prop 

  DSC IoU DSC IoU DSC IoU 

ResNet

18 

0,73 0,60 0.95 0.90 0,29 0,22 

ResNet

50 

0,71 0,56 0.96 0.92 0,33 0,22 

Mobile

NetV1 

0.90 0.82 0.94 0.89 0,53 0,38 

Xceptio

n 

0,69 0.82 0.93 0.89 0,51 0,37 

 
(a) 

 

 
(b) 

 

 
(c) 

 

 
(d) 

 

 
(e) 

 

 
(f) 

Figure. 8 Segmentation result based on CNN architecture 

model: (a) original dataset, (b) ground truth image, (c) 

segmentation result with ResNet-18, (d) segmentation 
result with ResNet-50, (e) segmentation result with 

MobilenetV1, and (f) segmentation result with Exception 

model 

 

 

4.1.3. Comparative analysis in segmentation model 

In this section, the efficiency of the proposed 
semantic segmentation model is compared with 

several previous studies that also focused on amniotic 

fluid segmentation. The segmentation model in this 
study applies a modified input and output approach 

to the ResNet18, ResNet50, MobileNetV1, and 

Xception models. We compared the proposed model 

with several previous studies that focused on 
amniotic fluid segmentation. Yan Li et al. [29] 

developed an autoencoder-decoder network model, 

achieving a DSC of 0.781 and an IoU of 0.544. In 
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addition, our previous studies have also initiated 
research on amniotic fluid starting in 2020. The pixel 

segmentation model using the Local Gray Level 

window [30] applies a texture-based approach 

limited to the window area. This model achieved a 
DSC score of 0.840 and an IoU of 0.727. The 

research continued with the proposal of the distance 

angle pixel [17] to classify each pixel in the image. 
This model achieved a DSC score of 0.876 and an 

IoU of 0.768. Then, in 2023, we, Ayu et al. [12], 

proposed using an unmodified U-Net architecture 
applied to amniotic fluid images. The U-Net model 

was able to achieve a DSC score of 0.880 and an IoU 

of 0.780. Finally, Csillag et al. [31] proposed 

AmnioML, leveraging deep learning and conformal 
prediction. This model achieved a DSC score of 

0.910. In our study, the modified semantic 

segmentation model was able to reach a DSC score 
of 0.961 and an IoU of 0.922. This result improved 

by 0.5 from the highest segmentation results in 

previous studies. These findings indicate that the 

proposed model can provide an improvement in 
segmentation accuracy of the amniotic fluid area. 

Table 6, show the comparative analysis in 

segmentation. 

4.2 Experimental on classification echogenicity 

type in amniotic fluids 

In the first experiment, feature extraction was 

performed using pre-trained deep learning models. In 

this study, five pre-trained CNN models were used: 
ResNet18, ResNet50, ResNet101, Inceptionv3, and 

Squeeze Net. After the segmentation models were 

tested, the process continued with feature extraction. 
The best segmentation result, which was obtained 

using the ResNet50 model, was used as the input 

image for the feature extraction process. In this 

experiment, the training data were divided into two 
classes: the meconium-stained class (feces), 

consisting of 360 images, and the caseosa class, 

consisting of 379 images. 

 

 
Table 6. Comparative analysis in segmentation amniotic fluid 

Authors Method Year Datasets DSC IoU 

Yan Li et al. [29] Encoder-Decoder 

Network 

2017 Private Amniotic 

Fluids Datasets 

Ultrasound  

(Waseda University) 

0,781 0.54 

Ayu et al. 

[30]  

Local Gray Level 

window 

2020 Private Amniotic 

Fluids Datasets 

Ultrasound 

(Indonesia) 

0.840 0.72 

Sun S et al. [10] RBV-Net 2021 Private Amniotic 

Fluids Dataset 

Ultraosund  

(Yonsei University) 

0.859 - 

Cho H et al [11] AF-Net 2021 Private Amniotic 

Fluids Dataset 

Ultraosund  

(Yonsei University) 

0.877 - 

Ayu et al  [17] Pixel Wise 

Classification 

2021 Private Amniotic 

Fluids Datasets 

Ultrasound 
(Indonesia) 

0.876 0.76 

Ayu et al [12] U-Net (Rms Prop) 2023 Private Amniotic 

Fluids Datasets 

Ultrasound 

(Indonesia) 

0,880 0,78 

Csillag et al [31] Amnio 

ML 

2023 Private Amniotic 

Fluids Datasets MRI 

0.910 - 

Proposed Model Semantic 

Segmentation 

(Modifed ResNet 50) 

2024 Private Amniotic 

Fluids Datasets 

Ultrasound 

(Indonesia) 

0.961 0.92 
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Table 7. Performance of the classifier and feature selection on the pretrained ResNet50 model 

XG-Boost 

Classifier 

Chi-Square ANOVA 
Mutual 

Information 

No Feature 

Selection 

Feces Vernix Feces Vernix Feces Vernix Feces Vernix 

Accuracy 0.93 0.93 0.93 0.92 0.93 0.93 0.93 0.93 

Precision 0.93 0.93 0.94 0.93 0.92 0.96 0.93 0.94 

Recall 0.94 0.93 0.94 0.93 0.96 0.90 0.95 0.91 

F1-score 0.93 0.92 0.94 0.93 0.94 0.93 0.94 0.92 

Best Number of 

Feature 
695 500 120   

Best accuracy 0.92 0.93 0.93 0.93 

 

 
Table 8. Performance of the classifier and feature selection on the pretrained ResNet18 model 

XG-Boost 

Classifier 

Chi-Square ANOVA 
Mutual 

Information 

No Feature 

Selection 

Feces Vernix Feces Vernix Feces Vernix Feces Vernix 

Accuracy 0.93 0.93 0.93 0.92 0.93 0.93 0.93 0.93 

Precision 0.93 0.93 0.94 0.93 0.92 0.96 0.93 0.94 

Recall 0.94 0.93 0.94 0.93 0.96 0.90 0.95 0.91 

F1-score 0.93 0.92 0.94 0.93 0.94 0.93 0.94 0.92 

Best Number of 

Feature 
695 500 120   

Best accuracy 0.92 0.93 0.93 0.93 

 

 
Table 9. Performance of the classifier and feature selection on the pretrained  ResNet101 model 

XG-Boost 

Classifier 

Chi-Square ANOVA 
Mutual 

Information 

No Feature 

Selection 

Feces Vernix Feces Vernix Feces Vernix Feces Vernix 

Accuracy 0.93 0.93 0.93 0.92 0.93 0.93 0.93 0.93 

Precision 0.93 0.93 0.94 0.93 0.92 0.96 0.93 0.94 

Recall 0.94 0.93 0.94 0.93 0.96 0.90 0.95 0.91 

F1-score 0.93 0.92 0.94 0.93 0.94 0.93 0.94 0.92 

Best Number of 

Feature 
695 500 120   

Best accuracy 0.92 0.93 0.93 0.93 

 
 

Table 10. Performance of the classifier and feature selection on the pretrained  InceptionV3 model 

XG-Boost 

Classifier 

Chi-Square ANOVA 
Mutual 

Information 

No Feature 

Selection 

Feces Vernix Feces Vernix Feces Vernix Feces Vernix 

Accuracy 0.92 0.92 0.93 0.92 0.93 0.93 0.91 0.91 

Precision 0.92 0.93 0.92 0.93 0.95 0.94 0.90 0.93 

Recall 0.94 0.90 0.94 0.90 0.93 0.90 0.95 0.86 

F1-score 0.93 0.91 0.93 0.91 0.93 0.92 0.92 0.90 

Best Number of 

Feature 
650 630 725   

Best accuracy 0.92 0.92 0.93 0.91 

 

A total of 720 features with a dimension of 2048 were 

generated by each pre-trained model. In the 

subsequent experiment, three feature selection 
methods—Chi-Square, ANOVA, and Mutual 

Information—were tested. The purpose of this testing 

was to evaluate the best performance in supporting 

the Extreme Boosting Classifier method for 

classifying the types of echogenicity in amniotic fluid. 
The results of the tests are shown in the Tables 7-11. 
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Table 11. Performance of the classifier and feature selection on the pretrained  Squezee Net model 

XG-Boost 

Classifier 

Chi-Square ANOVA 
Mutual 

Information 

No Feature 

Selection 

Feces Vernix Feces Vernix Feces Vernix Feces Vernix 

Accuracy 0.94 0.94 0.92 0.93 0.94 0.94 0.91 0.91 

Precision 0.95 0.94 0.93 0.96 0.93 0.96 0.92 0.91 

Recall 0.94 0.93 0.96 0.92 0.96 0.92 0.93 0.89 

F1-score 0.92 0.94 0.95 0.94 0.95 0.94 0.92 0.90 

Best Number of 

Feature 

315 375 220   

Best accuracy 0.94 0.92 0.94 0.91 

 

The performance metrics for the XG-Boost 
classifier with four different feature selection 

methods Chi-Square, ANOVA, Mutual Information 

and No Feature Selection are shown in Tables 7-11. 
The metrics provided include Accuracy, Precision, 

Recall, and F1-score for two classes, feces and 

Vernix, as well as the best number of features and 
best accuracy obtained with each method. In 

summary, the pretrained model with the Squeeze Net 

architecture in Table 11 was found to deliver the best 

performance compared to the other pretrained models. 
It is demonstrated in Table 10 that Mutual 

Information emerges as the most effective feature 

selection method, providing the highest accuracy 
while requiring the fewest features (220), making it 

both accurate and computationally efficient. Chi-

Square also performs well, achieving high accuracy 

and balanced performance for both classes, although 
it requires more features (315). ANOVA shows 

strong precision and recall, particularly for the Vernix 

caseosa class, but it necessitates the largest number 
of features (375) to reach optimal performance. No 

Feature Selection significantly underperforms in 

comparison to the other methods, with lower 
accuracy and F1-scores, highlighting the importance 

of feature selection in improving classifier 

performance. 

In Fig. 9, it is shown that Mutual Information is 
the most reliable and efficient feature selection 

method, particularly when fewer features are selected. 

It is observed to outperform the other methods early 
on and maintain stable performance as more features 

are added. Chi-Square is shown to exhibit variability, 

especially with a smaller number of features, but its 
performance improves as additional features are 

selected. ANOVA is consistently shown to provide 

strong results. In performance convergence observed 

across all charts that, as the number of features 
increases, the performance of all feature selection 

methods tends to converge. This indicates that with a 

sufficient number of features, the choice of feature 
selection method may become less significant.  

In Fig. 10 shows four Receiver Operating 
Characteristic (ROC) curves, where the performance 

of different feature selection methods applied to the 

Squeeze Net architecture for two classes, Meconium-
stained (Feces) and Vernix caseosa, is compared. 

ROC curves are commonly used to illustrate the 

trade-off between the True Positive Rate (Sensitivity) 
and the False Positive Rate of a classifier at various 

threshold levels. The Area Under the Curve (AUC) is 

provided as an aggregate measure of performance 

across all classification thresholds. Fig. 10 (a) Chi- 
Square + Squeeze Net showed ROC curve for the 

Meconium-stained (Feces) class (Blue Line) is 

shown to reach an AUC of 0.96, indicating strong 
performance. Similarly, the ROC curve for the 

Vernix caseosa class (Green Line) is observed to 

achieve an AUC of 0.96, demonstrating that the 

classifier performs equally well for both classes when 
Chi-Square is used for feature selection. 

Fig. 10 (b) ANOVA + Squeeze Net showed ROC 

curve for the Meconium-stained (Feces) class (Blue 
Line) is observed to achieve an AUC of 0.96, 

indicating that the classifier performs well. Similarly, 

the ROC curve for the Vernix class (Green Line) is 
shown to reach an AUC of 0.96. Fig. 10 (c) Mutual 

Information + Squeeze Net showed the ROC curve 

for the Meconium-stained (Feces) class (Blue Line) 

is seen to achieve an AUC of 0.96, indicating 
excellent performance. The ROC curve for the 

Vernix caseosa class (Green Line) is also observed to 

reach an AUC of 0.96. Fig 10 (d) No Selection + 
Squeeze Net showed the AUC for the Meconium-

stained (Feces) class (Blue Line) is shown to drop 

slightly to 0.94, indicating slightly worse 
performance compared to the feature selection 

method. The AUC for the Vernix caseosa class 

(Green Line) is also observed to drop to 0.94.  

Although the curves for both classes still indicate 
good classification performance, it is noted that 

without feature selection, the classifier does not 

perform as well as it does when feature selection  
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Figure. 9 Comparison of feature selection method for different pretrain CNN architecture: (a) ReNet150, (b) ResNet18, 

(c) ResNet101, (d) InceptionV3, and (e) Squeeze Net 
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Figure. 10 ROC curve comparison of squeeze net with different selection method: (a) chi-square, (b) ANOVA, (c) 

mutual information, and (d) no selection feature method 
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methods like Chi-Square, ANOVA, or Mutual 
Information are applied. Strong classification results 

are achieved by all feature selection methods (Chi-

Square, ANOVA, and Mutual Information), with an 

AUC of 0.96 for both classes, indicating their 
effectiveness in enhancing the classifier's ability to 

distinguish between the Meconium-stained (feces) 

and Vernix caseosa classes. Across all methods, both 

classes show consistent performance, with no 
significant differences in AUC, demonstrating that 

the classifier handles both classes equally well. While 

all feature selection methods perform similarly well 

(AUC = 0.96), they consistently outperform the 
model without feature selection, making their 

application preferable to omitting feature selection 

altogether. 
 

Table 12. Comparative analysis proposed model in this study and previous state-of-the-art works for amniotic 

classification 

Authors Methods Datasets Amniotic Fluid 

Class 

Accuracy 

% 

Precision 

% 

Recall 

% 

F1-

Score % 

Amuthadevi 

et al. 2019 

[20] 

Fuzzy logic Private 2D 

ultrasound 

images 

Normal, 

borderline, 

oligohydramnios 

and hydramnios 

92.5 - - - 

Ayu et al. 

2021 [14] 

Graylevel 

Co-occurance 

matrix 

(GLCM), 
First order 

statistical 

(FOS), and 

Single deep 

pocket (SDP) 

Private 2D 

ultrasound 

images 

Normal 

echogenic, 

normal clear, 

oligohydramnios 
echogenic, 

oligohydramnios 

clear, and 

polyhydramnios 

clear 

81.4 80.8 81.4 81.0 

Ayu et al. 

2021 [15] 

Combination 

Rule based 

model and 

texture 

analysis 

Private 2D 

ultrasound 

images 

Normal 

echogenic, 

normal clear, 

oligohydramnios 

echogenic, 

oligohydramnios 

clear, and 
polyhydramnios 

clear 

90.52 95.72 75.57 81.51 

Khan et al 

2022 [19] 

Transfer 

learning 

models 

US images 

from King 

Fahd 

Hospital of 

the 

University 

(KFHU) 

and Elite 

Clinic in 

Dammam, 

KSA 

Abnormal AF 

and normal AF 

94.0 96.0 94.0 95.0 

Ayu et al. 
2023 [18] 

Single 
Deepest 

Vertical 

Detection 

(SDVD) 

algorithm 

Private 2D 
ultrasound 

images 

Normal, 
oligohydramnios, 

and 

polyhydramnios 

92.63 85.23 95.6 - 

Proposed 

Method 

Semantic 

segmentation 

and Squeeze 

Net as 

feature 

extractor 

Private 2D 

ultrasound 

images 

Amniotic 

Echogenicity 

Meconium-

stained (feces) 

and Amniotic 

Echogenicity 

Vernix caseosa 

94.1 95.1 94.1 94.1 



Received:  September 18, 2024.     Revised: October 31, 2024.                                                                                        264 

International Journal of Intelligent Engineering and Systems, Vol.18, No.1, 2025           DOI: 10.22266/ijies2025.0229.18 

 

4.3 Comparative analysis in classification 

amniotic fluids 

In this section, we discuss the comparison and 

performance evaluation of methods used to identify 

and classify types of amniotic fluids. Amniotic fluids 

are categorized into two classes (normal and 
abnormal), four classes (oligohydramnios, borderline, 

normal, and hydramnios), and five classes (normal 

echogenic, normal clear, oligohydramnios echogenic, 
oligohydramnios clear, and polyhydramnios clear) in 

various studies. In our current research, we focus on 

identifying the causes of echogenicity, which are 
divided into two categories: meconium-stained and  

caseosa. Amuthadevi et al. 2019 [14, 20] proposed 

contour points to find the AFI. After that, features are 

extracted and fuzzy logic algorithm is used to classify 
the given image into one of the four categories such 

as oligohydramnios, borderline, normal and 

hydramnios state. This approach achieves an average 
prediction accuracy of up to 92.5%. Ayu et al [14] 

utilized the Gray Level Co-occurrence Matrix 

(GLCM), First Order Statistics (FOS), and Single 

Deep Pocket (SDP) as feature extraction methods. 
Their model was capable of attaining average values 

of 81.4% for accuracy, 80.8% for precision, 81.4% 

for recall, 81% for F-measure, and 0.88 for the 
Receiver Operating Characteristic (ROC) curve, 

respectively. Subsequently, the study was expanded 

by experimenting with a combination of rule-based 
models applied to volume and echogenicity values 

using texture analysis [15].  

The resulting model was able to improve 

performance, achieving an accuracy of 90.52%, 
precision of 95.72%, recall of 75.57%, and an F-

measure of 81.51%. Subsequently, Ayu et al. [18] 

further developed an algorithm to measure the depth 
of the amniotic sac by implementing the Single 

Deepest Vertical Detection (SDVD) algorithm. This 

approach automatically measures the longest vertical 
line in accordance with medical rules and regulations. 

The model achieved average accuracy, precision, and 

recall of 92.63%, 85.23%, and 95.6%, respectively, 

for amniotic fluid classification. The approach was 
further developed by employing Convolutional 

Neural Networks (CNN) as a feature extractor [13]. 

Each extracted feature was then selected using the 
chi-square algorithm, and the learning process was 

conducted using the XG-Boost machine learning 

method. With this approach, an accuracy of 

approximately 96.5% was achieved. 
In this study, we employed a two-stage approach 

consisting of semantic segmentation for detecting 

areas of amniotic fluids and Squeeze Net as a feature 

extractor for identifying the causes of echogenicity in 
amniotic fluids. The proposed model achieved an 

average accuracy of 94%, precision of 95.1%, recall 

of 94.1%, and an F1-Measure of 94.1%. Table 12 

presents a comparison between the proposed model 
in this study and previous state-of-the-art works. 

5. Conclusion and future work  

In this study, a model was developed to detect and 

classify types of echogenicity present in amniotic 

fluid. In the initial stage, during data acquisition, 

three augmentation techniques rotation, translation, 
and reflection were applied to increase the amount of 

data. As a result, the total dataset used in this study 

consisted of 720 images, which were divided into two 
classes: Meconium-stain (feces) and vernix-caseosa. 

A segmentation model was implemented and 

developed to obtain the Region of Interest (ROI) from 
the amniotic fluid, particularly focusing on 

meconium-satin and vernix caseosa. A semantic 

segmentation model was used, utilizing five CNN 

model architectures: ResNet18, ResNet50, 
MobileNetv1, and Xception. Modifications were 

made to the final Dense Layer to classify the data into 

two classes (amniotic and background). During the 
segmentation stage, several optimizers, including 

Adam and SGD, were tested, with parameters set as 

RMSprop, max_epoch = 10, max_iteration = 600, 
minibatch = 16, and a learning rate of 0.01. The test 

results showed that the best semantic segmentation 

model was ResNet50, optimized using SGD, 

achieving an accuracy of 99.63%. 
In the next testing scenario, the performance of 

the semantic segmentation models was compared in 

terms of DSC and IoU metrics. It was found that the 
ResNet50 model with the SGD optimizer achieved a 

DSC score of 0.96 and an IoU score of 0.92. The next 

step involved classifying the types of echogenicity in 

the amniotic fluid. The first step taken was feature 
extraction using a pre-trained CNN model. Five 

architectures were used: ResNet18, ResNet50, 

ResNet101, Inceptionv3, and Squeeze Net. Pre-
trained feature extraction resulted in features with 

dimensions of 720x2048. In the second stage, feature 

selection was performed by applying three models: 
Chi-Square, ANOVA, and Mutual Information, with 

the aim of determining which combination of pre-

trained models and feature selection methods 

produced the best performance when used with the 
Extreme Boosting Classifier to classify echogenicity 

types in the amniotic fluid. It was found that the 

combination of the Squeeze Net pre-trained model 
and Mutual Information achieved the best accuracy 

score, both in terms of class accuracy (feces and 
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vernix) and global accuracy. The combination of 
Squeeze Net and Mutual Information resulted in a 

global accuracy of 0.94, with an ROC score of 0.96. 

Additionally, a comparison was made between the 

performance with and without feature selection. It 
was found that without feature selection, the best 

accuracy achieved was 0.93, obtained using the 

ResNet101 pre-trained model. Thus, it was 
concluded that the combination of augmentation 

models, semantic segmentation, pre-trained models, 

feature selection, and the XG-Boost classifier 
achieved an accuracy of 0.94 or 94% in classifying 

echogenicity types in amniotic fluid. Based on the 

results of the model developed in this study, future 

research will focus on exploring feature fusion and 
developing a more advanced classifier model. 
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