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Abstract: Early detection of Diabetic Retinopathy (DR) is crucial to prevent patients from the risk of blindness or 

vision loss which is caused by retinal damage in the eye due to long-term diabetic mellitus. However, existing detection 

models have several drawbacks to detect DR such as subtle differences between severity levels, and poor quality of 

images, which makes the detection process ineffective. To overcome these limitations, a Morlet Wavelet Transform-

based Residual Network (MWT-ResNet) is to detect the DR accurately for early diagnosis. The MWT enable multi-

scale analysis which helps to analyze retinal images at different frequencies and times that enhance the detection of 

lesions correctly. The retinal images are acquired from two benchmark datasets and preprocessed to improve the 

contrast of images for the detection of lesions precisely. Then, the preprocessed retinal photos are augmented by a data 

augmentation method to balance data in severity classes and segmented by a marker-controlled watershed 

segmentation method. Finally, the proposed MWT-based ResNet model detects DR accurately by learning relevant 

information from extracted multi-scale features. The experimental results of the proposed MWT-ResNet method 

achieved an accuracy of 98.36 % and 0.983 for IDRiD and Messidor datasets which is higher than the existing methods 

like Gradient Boosting-ResNet (GB-ResNet). 

Keywords: Contrast limited Adaptive histogram equalization, Diabetic retinopathy, Marker controlled watershed 

segmentation, Morlet wavelet transform, Residual network. 

 

 

1. Introduction 

Diabetic Retinopathy (DR) is an eye disease due 

to retinal damage caused by the long-term illness of 

diabetes mellitus. Individuals with high blood sugar 

levels for long periods face an increased risk of 

developing this condition [1, 2]. Most people with 

high levels of diabetes which are not at a regular level 

for a long time, result in the weakening of the 

nephrons in kidneys and damage to neurons in the 

brain. [3, 4]. In recent years, doctors found that a high 

rise in sugar levels for a long period also affects blood 

vessels in the retina part of the eye which leads to 

blindness or vision loss. Thus, detection of DR 

presence and its difficulties using retinal images at an 

early stage helps to prevent its progression to 

advanced levels [5]. Based on the progression of 

lesions in the retina of the eye, DR is classified into 

Proliferative DR (PDR) and Non- PDR (NPDR), the 

NPDR is further categorized as ‘Mild’, ‘Moderate’, 

or ‘Severe’. The mild class DR is the earliest stage at 

which microaneurysms are formed in the retinal 

portion of the eye. The symptoms for moderate levels 

are like mild class where the blood vessels start 

swelling and lead to form lesions according to the 

period the patients suffered from diabetes [6].  

In PDR, the symptoms of the severe stage are the 

development of abnormal blood veins, extensive 

retinal fractures and detachment that results in vision 

loss [7]. However, the detection of DR based on the 

binary classification of DR and No DR without 

knowing the severity levels leads to the risk of vision 

loss. Hence, multi-class detection of DR levels is 

crucial for early diagnosis and to provide the right 

treatment [8]. In previous studies, researchers 

employed different Machine Learning (ML) and DL 

techniques for DR detection [9]. By using a single 

retinal image data set, the researchers obtained 

satisfactory results in binary class detection and 
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classification [10, 11]. However, binary class 

detection using a combined dataset with images of 

different resolutions is difficult to diagnose and leads 

to risk [12]. Thus, DL approaches are widely used in 

medical image processing for accurate detection, 

classification, and recognition of diseases for early 

diagnosis [13, 14]. However, existing detection 

approaches based on DL models have several 

limitations such as inadequate quality of images and 

difficulty in distinguishing severity levels due to 

subtle differences leading to decreased detection 

accuracy [15].  To overcome these problems, a 

Morlet Wavelet Transform-based Residual Network 

(MWT-ResNet) is proposed to accurately detect DR 

and its severity levels. 

The main contributions of this research are: 

• MWT-ResNet is proposed for DR detection 

which efficiently detects DR with the feature 

map obtained by integration of the MWT 

method which captures complex details about 

various lesions of DR at different spatial and 

frequency levels. 

• CLAHE is used to improve contrast in retinal 

images enhance image quality and increase 

detection accuracy, by enhancing the local 

contrasts and edges of retinal images without 

over-amplifying noise.  

• For segmenting lesions in retinal images, a 

Marker-Controlled Watershed (MCW) 

segmentation method is employed to segment 

exudates, blood vessels and lesions which are 

often overlapped in the retinal images. 

This research paper is organized as follows: 

Section 2 explains the literature review. Section 3 

describes the methodologies implemented for this 

research. The experimental results are illustrated in 

Section 4 and Section 5 concludes the paper. 

2. Literature review 

The advantages and limitations of DL methods 

utilized for feature extraction and detection of DR are 

described in this section. 

Bhutnal and Moparthi [16] designed an ensemble 

efficient with gazelle optimization (E-Effgaz) for DR 

classification. The designed E-EFFgaz model utilized 

a Dilation U-Net for segmentation and a 

convolutional swin transformer for feature extraction 

to enhance the classification of DR severity levels. 

An integration of gazelle optimization in EfficientNet 

reduced the delay and enhanced the early detection of 

DR based on retinal images. However, the gazelle 

optimization increased the speed of detection but 

failed to improve the accurate detection performance 

of DR severity levels due to similar features for mild 

and moderate classes. 

Srinivasan and Rajagopal [17] represented a 

multihead attention mechanism in Gradient Boosting 

based ResNet (GB-ResNet) for DR classification. 

The represented GB-ResNet model utilized 

multiscale attention to method to extract high-level 

features at various scales to improve the classification 

performance of DR by ResNet. An advantage of the 

represented ResNet model was the integration of the 

gradient boost algorithm which aimed to adjust the 

model’s errors and improve the detection of more 

complex cases of DR. However, the differentiation 

between severity grades due to subtle differences 

decreased the classification accuracy of ResNet. 

Kalyani [18] explored the DL based Capsule 

Networks (CapsNet) model for DR detection and 

classification. The explored CapsNet model utilized 

a capsule layer that extracts the features from retinal 

fundus images and is classified by a softmax layer. 

The main advantage of the CapsNet was that 

presented a capsule layer that recognized the various 

DR lesions effectively by capturing spatial 

hierarchies from the retinal image. However, the 

explored CapsNet model failed to segment the 

accurately diseased portion because of several other 

substances like exudates, and blood vessels in retinal 

images. 

Luo [19] designed a Deep Convolutional Neural 

Network (DCNN) for DR detection by mining local 

and long‐range patches of retinal images. The 

correlations between long‐range patches were used in 

DCNN framework to improve DR detection. The 

advantage of the DCNN model was to enhance the 

performance of DR detection by extraction of lesion 

features based on the interrelation between similar 

lesion patches in the feature map. However, the 

presented DCNN model failed to detect precisely due 

to inadequate quality and imbalanced datasets for 

severity level classes.  

Rachapudi [20] presented an optimized Deep 

Neural Network (DNN) model for DR detection 

based on the Butterfly Optimization Algorithm 

(DNN-BOA). The presented DNN-BOA model 

utilized CLAHE to preprocess various techniques for 

the segmentation of blood vessels, exudates and optic 

discs in retinal images. The BOA model optimizes 

feature selection from extracted features, which helps 

DNN to focus on the most relevant features in DR 

images, which leads to improved classification 

accuracy. However, the limitation of the presented 

model was difficult to differentiate normal and mild 

levels of DR accurately due to imbalanced datasets.  
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Figure. 1 Block diagram of Proposed DR detection using MWT-ResNet model 

 

The above-mentioned existing approaches have 

limitations of poor segmentation, difficulty in 

distinguishing between normal and mild classes, 

imbalanced datasets, and inadequate quality of 

images. To overcome these limitations, a MWT-

ResNet is proposed for effective DR detection using 

retinal images which extract the features of various 

DR levels including subtle differences that improve 

the DR detection. To enhance image quality, balance 

dataset and accurate segmentation CLAHE, data 

augmentation and MCW techniques are utilized for 

detection of DR. 

3. Methodology 

The proposed framework for DR detection 

includes four stages: Dataset, Preprocessing, 

Segmentation and Proposed Detection. The block 

diagram of the proposed DR detection is illustrated in 

Fig. 1. Initially, the retinal images are acquired from 

the two benchmark datasets of IDRiD and Messidor 

Datasets. Then, the quality of images is enhanced by 

the CLAHE approach and then augmented by several 

data augmentation techniques. After that, the 

diseased portions are segmented by the threshold-

based segmentation method. Finally, the proposed 

MWT-ResNet is used to detect DR and severity 

levels of DR accurately. 

3.1 Dataset 

This research utilized two benchmark datasets for 

DR detection are IDRiD and Messidor-2. 

3.1.1. IDRiD 

The IDRiD dataset [21] consists of 516 retinal 

images with regular retinal structure is utilized in this 

research. This dataset includes 413 and 103 training 

and test images according to severity levels. Every 

sample image in the IDRiD dataset is annotated with 

DR and Diabetic Macular Edema severity grades at a 

pixel level. According to the severity scale, the DR 

levels are labelled into five classes on a scale of 0 – 3 

categories. 

3.1.2. Messidor 

Messidor dataset [22] is a publicly available 

dataset that consists of 1200 RGB retinal images 

which are assimilated by three ophthalmologic 

departments. The retinal images are obtained with 8 

bits per color and have resolutions of 1440 × 960, 

2240 × 1488, or 2304 × 1536 pixels. The dataset 

consists of four levels 0, 1, 2, and 3 where 0 denotes 

normal or no DR. The remaining grades 1, 2, and 3 

denote the severity levels with 1 as minimum and 3 

as maximum. These retinal images are fed to the 

preprocessing phase to make a useful format for 

further processing. 

3.2 Preprocessing 

The raw data (retinal images) are fed to the 

preprocessing stage to enhance the quality of the 

images and increase the accurate detection 

performance of the proposed model. To enhance the 

quality of the retinal image in this research CLAHE 

technique is utilized for preprocessing.  The CLAHE 

is an enhanced version of histogram equalization 

which is used to improve image contrast for 

achieving precise segmentation and classification of 

severity levels. The contrast intensity and cumulative 

probability density of retinal images are evaluated by 

clipping local histograms to a multiple cut-off value 

of the mean height of the histogram in contextual 

regions. This cumulative histogram of the contextual 

region is estimated in Eq. (1). 

 

𝐶𝑘 =
∑ ℎ𝑗

𝑘
𝑗=0

∑ 𝑛𝑘
𝐿−1
𝑘=0

                                                     (1) 
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Where, 𝐶𝑘  denotes cumulative histogram for 

intensity level 𝑘; ∑ 𝑛𝑘
𝐿−1
𝑘=0  represents clipped pixels 𝑛 

for intensity level 𝑘  . After enhancing the contrast 

and edges of retinal images, a data augmentation 

process is performed to balance the images in all 

severity classes equally. 

3.2.1. Data augmentation 

Data augmentation is a technique used to generate 

data like actual data by several augmentation 

techniques which helps balance the data in 

imbalanced datasets. Data augmentation techniques 

used for balancing the images in two datasets are 

rotating, shifting, and flipping (horizontally and 

vertically) [23]. These augmented images are further 

passed to the segmentation process to segment the 

diseased portion from retinal images for accurate 

detection. 

3.3 Segmentation 

The augmented images are further segmented 

using Marked–Controller Watershed (MCW) 

segmentation algorithm which identifies the target 

with the subject of interest and generates an image 

with the dark area known as a segmented object. 

Initially, the MCW algorithm estimates the 

foreground markers which are interconnection of 

clusters of pixels with every object. The markers in 

the MCW segmentation algorithm mark the target 

object (diseased portion) around the area first and 

guide for accurate lesion segmentation. The 

limitation in the existing watershed segmentation 

algorithm is addressed by utilizing only the regional 

minima [24] which is a modification in the 

segmentation function at foreground and background 

marker locations. The regional minima operator 

based on morphological operation and the 

segmentation process of the modified MCW 

algorithm is mathematically expressed as follows: 

Regional minima for retinal images are given in 

Eq. (2) 

 

𝐼𝑁 = 𝑅𝑀𝐼𝑁 𝐼𝑁−1                                              (2) 

 

Erosion based Gray scale image reconstruction is 

expressed in Eq. (3). 

 

𝐼𝑁∆𝐷𝑓 = (𝑓 ⊖𝐼𝑁
𝐷)

∞
                                      (3) 

 

Dilation based Gray scale image reconstruction is 

expressed in Eq. (4). 

 

𝐼𝑁∆𝐷𝑓 = (𝑓 ⊕𝐼𝑁
𝐷)

∞
                                      (4) 

Where, 𝐼𝑁  represents a morphological 

reconstruction of the retinal image for 𝑁 

morphological operations; f  denotes marker; 𝐷 

represents a flat structuring element. 

The main steps of the MCW segmentation 

process are given below: 

Step 1: Initially the retinal images are 

converted into greyscale images and Otsu 

thresholding is employed to set threshold values for 

segmenting image background from foreground.  

Step 2: After that morphological operations like 

opening, closing and reconstruction are performed to 

eliminate noise for improving segmentation results.  

Step 3: Then, the regional maxima are identified, 

and distance transform is applied to assign value for 

every pixel in the image.  

Step 4: Finally, the watershed technique is 

applied to the distance transform image and labels are 

assigned for each region in the image based on 

intensity values and position. These segmented 

images are fed to the proposed MWT-ResNet model 

for accurate detection of DR. 

3.4 Proposed MWT-ResNet 

The Segmented images are fed to the proposed 

MWT-ResNet to detect the DR and its severity levels 

accurately for early diagnosis. An integration of 

MWT and ResNet enhanced the detection by 

extracting significant features from the retinal images 

that make the ResNet model able to differentiate and 

detect the severity levels accurately. The MWT 

performs a multiscale analysis by dividing an image 

into different scales that help to analyze and extract 

features across various resolutions. This makes the 

ResNet model easier to detect small lesions as well as 

larger structural changes in the retina, which are 

important for DR detection. In ResNet, residual 

blocks are used to mitigate vanishing/exploding 

gradient issues and employ a skip connection 

technique. 

3.4.1. Morlet wavelet transform 

 The segmented image is fed as input to MWT 

which is developed from Gabor Wavelet which is a 

Gauss envelope complex wavelet for signal time-

frequency analysis. The mathematical expression of 

MWT is expressed in Eqs. (5) and (6). 

 

𝑚(𝑡) = 𝑒𝑗𝜔0𝑡𝑒−
𝑡2

2                                             (5) 

 

�̂�(0) = √2𝜋𝑒−𝜔0
2/2 ≠ 0                                 (6) 
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Where, 𝑚(𝑡) denotes morlet wavelet which is a 

Fourier transform. The improved fundamental 

function wavelets are obtained as given in Eq. (7). 

 

𝜑(𝑡) =
1

√2𝜋
𝑒𝑥𝑝 (−

𝑡2

2
+ 𝑗2𝜋𝑡)                        (7) 

 

Where, 
1

√2𝜋
 represents wavelet amplitude 

parameter. The Morlet wavelet is then transformed by 

expansion and translation techniques which is 

mathematically expressed by the Eq. (8). 

 

𝜑𝑑𝑓,𝜏(𝑡) =
|𝑑𝑓|

√2𝜋
𝑒𝑥𝑝 [−

𝑑𝑓
2(𝑡−𝜏)2

2
+ 𝑗2𝜋𝑑𝑓(𝑡 − 𝜏)](8) 

 

Where, 𝑡 and 𝜏  indicates time parameters were 

variable unit of s; 𝑑𝑓  stands for wavelet dominant 

frequency. The MWT is a double–window function 

used for extracting multi-scale features which is 

crucial to identify subtle differences between various 

lesions corresponding to severity levels of DR. The 

real part in MWT is formulated as given in Eq. (9). 

 

𝜑(𝑡) = (
𝛽

√2𝜋
 𝑒−𝛽2𝑡2/2)  𝑐𝑜𝑠(𝜔0𝑡)                  (9) 

 

Where, 𝛽  represents bandwidth parameter that 

leverages the rate and frequency bandwidth of 

Gaussian filter which determines the resolution in the 

frequency domain. Thus, adjusting the frequency 

resolutions of wavelet transform leads to extracting 

significant features from the segmented image. These 

features are further fed as input to the ResNet for the 

detection process.  

3.4.2. ResNet 

The ResNet is a kind of deep neural network 

consists of convolutional, pooling and fully 

connected layers and mainly skip connections. The 

convolutional layers are presented at first which 

obtain input as extracted features by MWT and end 

with several pooling and fully connected layers.  

After completing the convolutional and pooling 

operations, the extracted features are processed using 

3 × 3 convolutional kernels with 64 channels. Then 

the features map obtained by combining all features 

is down-sampled by a convolutional operation with a 

step size of 2. The residual learning unit in ResNet is 

expressed in Eqs. (10) and (11). 

 

𝑌𝑙 = ℎ(𝑥𝑙) + 𝐹(𝑋𝑙 , 𝑊𝑙)                                  (10) 

 

𝑋𝑙+1 = 𝑓(𝑦𝑙)                                                 (11) 

 

Where, 𝐹  represents residual function; 𝑋𝑙  and 

𝑋𝑙+1 denotes input and output vectors of lth residual 

unit which consists of multiple layers; 𝑓(𝑦𝑙) stands 

for activation function; ℎ(𝑥𝑙)  represents identity 

mapping. 

The step size of two is applied in 1 × 1 

convolution operation on a Feature Map (FM) with 

the size of 56 × 56 × 4 during the skip connection 

that results in a 28 × 28 × 128 FM. This FM is then 

added to another 28 × 28 × 128 FM matrix that was 

generated earlier, producing a combined 28 × 28 ×
128 FM after the application of a loss function. 

Next, a convolution operation is performed with 

a 3 × 3  convolution kernel on an FM with 

dimensions 14 × 14 × 256 . Following this, data 

normalization is applied, and the FM is produced 

using the loss function. The output FM of this step is 

used as the input for the next operation. Data 

normalization is again applied, resulting in a new 

14 × 14 × 256  FM. This newly obtained feature 

map is then added to another FM from the previous 

step through a skip connection, then, a loss function 

is applied to obtain a final feature map as output. At 

last, the ResNet detection model detects the DR 

effectively by the fully connected layer which utilizes 

the information that obtained from lesion features. 

The hierarchical structure of ResNet can learn a rich 

set of features that are provided by the MWT method 

and distinguish the similarities between severity 

classes effectively. The skip connections in the 

ResNet model preserve essential information while 

learning high-level features that improve the DR 

detection process. 

4. Results and discussion 

The performance of the proposed MWT-ResNet 

model for DR detection is evaluated by four different 

performance metrics. The proposed MWT-ResNet 

method is simulated using Python 3.9 with a system 

configuration of i7 processor, 16 GB RAM and 

Windows 10 OS. Performance measures used for 

evaluation are Accuracy, Precision, Sensitivity 

(Recall), Specificity, F1-Score, Area Under the 

Curve (AUC), Kappa and Elapsed time. The 

mathematical expression of performance metrics is 

represented in Eqs. (12) to (22). 

 

𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =
𝑇𝑃+𝑇𝑁

𝑇𝑁+𝑇𝑃+𝐹𝑁+𝐹𝑃
× 100                (12) 

 

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =
𝑇𝑃

𝑇𝑃+𝐹𝑃
                           (13) 

 

𝑆𝑒𝑛𝑠𝑖𝑡𝑖𝑣𝑖𝑡𝑦 =
𝑇𝑃

𝑇𝑃+𝐹𝑁
                                     (14) 
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𝑆𝑝𝑒𝑐𝑖𝑓𝑖𝑐𝑖𝑡𝑦 =
𝑇𝑁

𝑇𝑁+𝐹𝑁
                                    (15)  

      

𝐹1 − 𝑆𝑐𝑜𝑟𝑒 =
2×𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛∗𝑆𝑒𝑛𝑠𝑖𝑡𝑖𝑣𝑖𝑡𝑦

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛+𝑆𝑒𝑛𝑠𝑖𝑡𝑖𝑣𝑖𝑡𝑦
            (16)   

 

𝐴𝑈𝐶 = ∫ 𝑇𝑃𝑅 (𝐹𝑃𝑅) 𝑑 (𝐹𝑃𝑅)
1

0
                   (17) 

 

𝐾𝑎𝑝𝑝𝑎 =
𝑝0−𝑝𝑐

1−𝑝𝑐
                                              (18) 

 

Where,  𝑝𝑜 =
∑ (𝑇𝑃(𝑘)+𝑇𝑁(𝑘))𝑁

𝑘=1

𝑁
                      (19) 

 

𝑃𝑐 =
𝑝𝑐1+𝑝𝑐2

𝑁2                                                      (20) 

 

𝑃𝑐1 = ∑ (𝑇𝑃(𝑘) + 𝐹𝑝(𝑘)) × ∑ (𝑇𝑃(𝑘) +𝑁
𝑘=1

𝑁
𝑘=1

𝐹𝑁(𝑘))                                                                 (21) 

 

𝑃𝑐2 = ∑ (𝐹𝑁(𝑘) + 𝑇𝑁(𝑘)) ×𝑁
𝑘=1

∑ (𝐹𝑃(𝑘) + 𝑇𝑁(𝑘))𝑁
𝑘=1                                        (22) 

 

Where, 𝑇𝑁  is True Negative, 𝐹𝑁  is False 

Negative, 𝑇𝑃  is True Positive, and 𝐹𝑃  is False 

Positive, 𝐹𝑃𝑅  – False Positive Rate, 𝑇𝑃𝑅  true 

Positive Rate, 𝑘 represent patients. 

4.1 Quantitative and qualitative analysis 

The performance analysis of the proposed MWT-

ResNet for DR detection using IDRiD and Messidor 

datasets is illustrated in Table 1. The proposed MWT-

ResNet algorithm is evaluated and compared with 

existing detection approaches such as Convolutional 

Neural Network (CNN), Long Short-Term Memory 

(LSTM), DenseNet-121, and Resnet utilized in DR 

detection. The proposed MWT-ResNet achieved an 

accuracy of 98.36%, precision of 97.91%, sensitivity 

of 97.86%, F1-score of 97.88% and Specificity of 

97.84%. The IDRiD dataset consists of retinal fundus 

images with annotations for lesions that related to DR. 

The proposed MWT-ResNet helps in detecting small-

scale lesions, such as micro aneurysms and 

hemorrhages, which are often hard to spot in raw 

images enhancing the detection of DR. 

The performance analysis using the Messidor 

dataset is illustrated in Table 2. The proposed MWT-

ResNet algorithm is evaluated and compared with 

existing approaches such as CNN, LSTM, DenseNet-

121, and ResNet utilized in DR detection. The 

proposed MWT-ResNet achieved accuracy of 0.993, 

precision of 0.988, sensitivity of 0.985, F1-score of 

0.986 and Specificity of 0.986. The utilization of 

MWT improved the ResNet model's detection 

performance by providing good features that make it 

easier for the network to learn discriminative patterns 

for DR detection. 

The performance analysis of the proposed MWT-

ResNet using IDRiD dataset is illustrated in Table 3. 

The proposed MWT-ResNet algorithm is evaluated 

and compared with other transform approaches such 

as Wavelet Transform (WT), Adaptive Wavelet 

Transform (AWT) and Discrete Wavelet Transform 

(DWT). In DR detection, this enables a precise 

extraction of localized features such as 

microaneurysms, haemorrhages, and exudates, which 

are key indicators of DR. The MWT’s ability to 

handle non-stationary signals (like retinal images) 

that helps to identify small but critical variations in 

textures and patterns. 

 
 

Table 1. Performance analysis of proposed MWT-ResNet in IDRiD dataset 

Methods Accuracy (%) Precision (%) Sensitivity (%) Specificity (%) F1-Score (%) 

CNN 94.59 94.24 93.68 93.33 93.95 

LSTM 95.47 94.88 94.62 93.81 94.74 

DenseNet-121 96.92 95.79 95.74 94.81 95.76 

ResNet 97.45 96.87 96.83 95.79 96.85 

Proposed MWT-ResNet 98.36 97.91 97.86 97.84 97.88 

 
 

Table 2. Performance analysis of proposed MWT-ResNet in Messidor dataset

Methods Accuracy Precision Sensitivity Specificity F1-Score 

CNN 0.932 0.932 0.928 0.923 0.930 

LSTM 0.949 0.947 0.942 0.937 0.945 

DenseNet-121 0.963 0.958 0.952 0.947 0.955 

ResNet 0.976 0.969 0.978 0.974 0.973 

Proposed MWT-ResNet 0.993 0.988 0.985 0.986 0.986 
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Table 3. Performance analysis of MWT-ResNet in IDRiD dataset 

Methods Accuracy (%) Precision (%) Sensitivity (%) Specificity (%) F1-Score (%) 

WT-ResNet 92.66 91.90 91.55 91.38 91.72 

AWT-ResNet 95.73 94.61 94.27 93.96 94.43 

DWT-ResNet 96.48 95.85 95.49 94.82 95.66 

Proposed MWT-ResNet 98.36 97.91 97.86 97.84 97.88 

 
Table 4. Performance analysis of proposed MWT-ResNet 

Methods Accuracy  Precision  Sensitivity  Specificity  F1-Score  

WT-ResNet 0.947 0.936 0.932 0.927 0.934 

AWT-ResNet 0.959 0.948 0.944 0.939 0.946 

DWT-ResNet 0.975 0.966 0.963 0.958 0.964 

Proposed MWT-ResNet 0.993 0.988 0.985 0.986 0.986 

The performance analysis of the proposed MWT-

ResNet using Messidor dataset is illustrated in Table 

4. The proposed MWT-ResNet algorithm is 

evaluated and compared with other transform 

approaches such as WT, AWT and DWT. 

The performance analysis of the proposed MWT-

ResNet using the IDRiD dataset is illustrated in Fig. 

2. The proposed MWT-ResNet algorithm is 

evaluated and compared with other classifiers and 

transform-based feature extraction approaches such 

as CNN, LSTM, DenseNet-121, ResNet, WT, AWT 

and DWT respectively. 

 

 

 
Figure. 2 Performance analysis of the proposed method in 

IDRiD dataset 

 

 

 
Figure. 3 Performance analysis of the proposed method in 

Messidor dataset 

 

The performance analysis of the proposed MWT-

ResNet using Messidor dataset is illustrated in Fig. 3. 

The proposed MWT-ResNet algorithm is evaluated 

and compared with other classifiers and transform 

based feature extraction approaches such as CNN, 

LSTM, DenseNet-121, ResNet, WT, AWT and DWT 

respectively. 
The performance of proposed MWT-ResNet in ROC 

curve for IDRiD and Messidor datasets is represented in 

Figure 3 and 4. The proposed method achieved AUC of 

98.50% and AUC 99.5% which is greater than existing 

detection methods due to the advantages of multi-scale 

features extracted by MWT with information of size, 

texture, shape of lesions. This helps the ResNet model to 

easily detect both small and big lesions efficiently. The 

performance of DR detection using MWT-ResNet using 

confusion matrix for IDRiD and Messidor dataset is 

illustrates in Figure 6 and Figure 7.  The proposed method 

achieved better results for IDRiD and Messidor datasets. 

The MCW segmentation method segments the lesions 

correctly by markers that lead the MWT feature extraction 

method to extract DR features with subtle differences of 

lesions between the severity stages. The features with in-

depth information enhanced the performance of DR 

detection by ResNet approach. 

 

 
Figure. 4 ROC curve for IDRiD dataset 
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Figure. 5 ROC curve for Messidor dataset 

 

 
Figure. 6 Confusion Matrix for IDRiD dataset 

 

 
Figure. 7 Confusion Matrix for Messidor dataset 

4.2 Comparative analysis 

The comparative analysis of the proposed MWT-

ResNet model with the existing DR detection model 

with two different datasets is depicted in this section. 

The comparative analysis with existing methods for 

two datasets is illustrated in Tables 5 and 6 using 

various performance metrics of accuracy, precision, 

sensitivity and specificity. The Comparative analysis 

using the IDRiD dataset is illustrated in Table 5. The 

proposed MWT-ResNet algorithm is evaluated and 

compared with existing approaches such as E-Effgaz 

[16] and GB-ResNet [17]. 

The Comparative analysis using Messidor dataset 

is illustrated in Table 6. The proposed MWT-ResNet 

algorithm is evaluated and compared with existing 

approaches such DCNN [16] and DNN-BOA [17]. 

The integration of MWT and ResNet achieved high 

accuracy of 98.36% and 0.993 for IDRiD and 

Messidor datasets. The MWT focused on multiscale 

and multi-frequency analysis of retinal images to 

extract relevant features. ResNet learns these features 

effectively and differentiates the severity levels of 

DR effectively which enhances the detection of DR. 

4.3 Discussion 

The proposed MWT-ResNet achieved better 

results in DR detection using IDRiD and Messidor 

datasets effectively. The advantages of the proposed 

method and the drawbacks of existing approaches are 

discussed in this section. E-Effgaz [16] model failed 

to improve the accurate detection performance of DR 

severity levels due to similar features for mild and 

moderate classes. GB-ResNet [17] model struggles to 

distinguish differentiation between severity grades 

due to subtle differences that decrease the 

classification accuracy of ResNet. DCNN [19] model 

faced challenges in precise detection due to 

inadequate quality and imbalanced datasets. DNN-

BOA [20] model has limitations of difficulties in 

differentiating similarities between the severity levels 

of DR, due to inadequate data in severity classes.

 
 

Table 5. Comparative analysis of MWT-ResNet in IDRiD dataset. 

Methods Accuracy 

(%) 

Precision 

(%) 

Sensitivity 

(%) 

Specificity 

(%) 

F1-Score 

(%) 

AUC 

E-Effgaz [16] 97.52 96 94 93.5 93 0.93 

GB-ResNet [17] 94.40 94.52 94.40 N/A 94.42 N/A 

Proposed MWT-

ResNet 

98.36 97.91 97.86 97.84 97.88 0.95 

 

Table 6. Comparative analysis of MWT-ResNet in Messidor dataset. 
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Methods Accuracy Precision Sensitivity Specificity Kappa Elapsed 

Time 

F1-

Score 

AUC 

DCNN [19] 0.935 N/A 0.936 0.935 0.838 12.035 N/A 0.967 

DNN-BOA [20] 0.989 0.973 0.983 0.987 N/A N/A 0.978 N/A 

Proposed MWT-

ResNet 

0.993 0.988 0.985 0.986 0.877 8.36 0.986 0.978 

To overcome these limitations, an MWT-ResNet 

is proposed for efficient DR detection using retinal 

images. The quality of retinal images is enhanced by 

the CLAHE technique and the MCW is employed to 

segment blood vessels, and exudates effectively 

using markers. MWT extracts features from 

multiscale regions of retinal images to identify the 

subtle differences between lesions. ResNet learns the 

information from extracted lesion features effectively 

by residual learning which enhances the detection of 

DR precisely. 

5. Conclusion 

The MWT-ResNet is proposed for accurate DR 

detection using retinal images to prevent vision loss 

by early diagnosis. MWT focused on multiscale and 

multi-frequency analysis of retinal images to extract 

relevant features. ResNet learns these features 

effectively and differentiates the severity levels of 

DR effectively which enhances the detection of DR. 

The CLAHE technique utilized in preprocessing 

enhances the contrast of retinal images to ensure that 

small pathological features are more prominent for 

DR detection. An MCW segmentation method is 

employed for segmenting the various sizes of lesions 

based on severity levels of DR. The enhanced 

boundary delineation in MCW helps to segment the 

small lesions associated with DR accurately. Finally, 

the proposed MWT-ResNet model detects the DR 

accurately with the help of extracted multi-scale 

features. The experimental results of the proposed 

MWT-ResNet method achieved high accuracy of 

98.36 % and 0.983 for IDRiD and Messidor datasets 

which is compared to existing methods like GB-

ResNet and DCNN. In future, advanced DL methods 

will be implemented to enhance detection and 

classification of severity levels of DR. 

preparation, writing—review and editing, 

visualization, have been done by 1st author. The 

supervision and project administration, have been 

done by 2nd author. 

Notation 

Notations Descriptions 

𝐶𝑘 Cumulative histogram 

𝑘 Intensity level 

∑ 𝑛𝑘

𝐿−1

𝑘=0

 
Total number of clipped 

pixels 𝑛  

𝐿 Total number of intensity 

levels 

𝐼𝑁 A morphological 

reconstruction of the retinal 

image  

𝑁 Morphological operations 

𝑓 Marker 

𝐷 A flat structuring element 

𝑚(𝑡) Morlet wavelet which is a 

Fourier transform. 
1

√2𝜋
 

Wavelet amplitude parameter 

𝑡 and 𝜏 Time parameters were variable 

unit 

s Seconds 

𝑑𝑓 Stands for wavelet dominant 

frequency. 

𝛽 Bandwidth parameter 

𝐹 Residual function 

𝑋𝑙 and 𝑋𝑙+1 Input and output vectors of  𝑙 
th residual unit which consists 

of multiple layers 

𝑓(𝑦𝑙) Activation function for 

residual learning 𝑦𝑙  

ℎ(𝑥𝑙) Identity mapping for input 𝑥𝑙  
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