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Abstract: Sensor-based Human Activity Recognition has advanced rapidly, incorporating techniques such as sliding 

windows, feature extraction, and machine-learning parameter optimization for activity classification. Sliding windows 

and feature extraction are vital, as they occur early and significantly influence the classification outcomes. The 

proposed novel approach involves using feature ratios from three sub-windows and a static window combined with 

feature selection via Analysis of Variance (ANOVA) and machine learning algorithms such as Artificial Neural 

Networks (ANN) and Extreme Gradient Boosting (XGBoost). The primary objective of the proposed approach is to 

enhance the efficacy of machine-learning algorithms for recognizing human activities. The effectiveness of the 

proposed approach is evaluated using three datasets: FORTH-TRACE, SBHARPT, and WISDM. The experimental 

results indicate that the highest accuracy, precision, recall, and F1 score were achieved on the WISDM dataset, with 

values of 97.64%, 97.64%, 97.64%, and 97.64%, respectively, using 45 features and an Artificial Neural Network 
(ANN) classifier. The experiments demonstrated that an overlapping window of 25% enhanced the performance of the 

machine-learning model. 

Keywords: Human-activity-recognition, Sliding-window, Sub-window, Feature ratio. 

 

 

1. Introduction 

Human Activity Recognition (HAR) has been 

widely applied in various fields, such as healthcare [1, 

2], sports [3, 4], elderly monitoring [5], and smart 
homes [6, 7]. Human Activity Recognition (HAR) 

can be performed using sensors [8], cameras [9], or a 

combination of both [10]. These devices collect data 

representing various activities, such as walking, 
running, sitting, sleeping, and other daily routines, 

which are then analyzed and classified using machine 

learning algorithms. The use of cameras has 
limitations when dealing with moving objects 

because they require a broader range and a larger 

number of cameras [2, 11]. The use of sensor devices 
for activity recognition is commonly referred to as 

wearable sensors because these devices are worn by 

users on specific parts of the body, such as the chest, 

waist, upper and lower limbs, pockets, shoes, or 

attached directly to the skin [12, 13]. Wearable 

sensors can be an effective option for recognizing the 
activities of moving objects, because the devices are 

directly attached to the user. Sensors such as 

accelerometers, gyroscopes, and magnetometers can 
be used for this process [8, 12, 14-16]. The raw data 

from these sensors consist of numerical sequences, 

making the preprocessing lighter than image or video 
data.  

Wearable devices used by users continuously 

generate a series of data. From this data stream, a 

specific portion must be extracted and converted into 
features for classification using machine-learning 

algorithms. The process of selecting a portion of the 

data is known as segmentation. Several techniques 
are available for segmentation, and one of the most 

popular is the sliding window [8]. The sliding 

window plays a crucial role in determining the 

classification results of machine-learning algorithms 
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[17]. This was performed prior to the feature 
extraction and classification stages. The window size 

is a critical parameter in the sliding window method. 

A window that is too large may capture multiple 

activities, whereas a window that is too small may 
cause the data of an activity to be fragmented [17]. 

Both static and dynamic window sizing approaches 

have been previously developed [17, 18]. However, 
determining the optimal sliding window size and the 

best way to extract features from the window to 

achieve improved machine-learning classification 
performance remains a significant challenge. 

The proposed approach optimizes feature 

extraction, the number of features, window size, 

machine learning models, Artificial Neural Network 
(ANN), and Extreme Gradient Boosting (XGBoost). 

The sensor data used were sourced from a single 

accelerometer sensor, with the rationale of using only 
one accelerometer sensor to reduce processing 

complexity. Before the feature extraction process, the 

initial step involved dividing the window into sub-
windows. Features were extracted from each window 

using statistical approaches, crossing values, and 

ratio values. The extracted features were then 

selected using an Analysis of Variance (ANOVA). 
The selected features were used to form feature 

combinations, and the effectiveness of these 

combinations was evaluated using Extreme Gradient 
Boosting (XGBoost). The contributions of the 

proposed approach are as follows: (1) sub-windows 

are generated from the current sliding window 

process; (2) features are extracted not only from the 
window but also from each sub-window; (3) the 

relationships between sub-windows are extracted as 

feature ratios; (4) the extracted features are selected 
using Analysis of Variance (ANOVA), and feature 

combinations are evaluated using an Artificial Neural 

Network (ANN) and Extreme Gradient Boosting 
(XGBoost). 

The remainder of this paper is organized as 

follows. Section 2 discusses the related work. Section 

3 elucidates the proposed model, which comprises 
preprocessing, feature extraction, analysis of 

variance (ANOVA), feature selection, construction 

of the machine learning model, and evaluation of the 
model. Section 4 delineates the experiments, 

including the dataset description and experimental 

setup. Section 5 presents the results and discussion, 
which encompass forming feature combinations, 

performance of the proposed model, and comparison 

with previous research. Finally, Section 6 concludes 

the paper. 
 

 

2. Related work 

Previous studies have extensively developed 

approaches to detect sensor-based human activities [1, 

4-9, 17-19]. The framework for human activity 
recognition comprises data collection, pre-processing, 

and training [20]. Segmentation is a critical sub-step 

in preprocessing. Data segmentation and feature 
extraction have been demonstrated to be crucial 

components that influence the performance of 

machine-learning models [21]. Sliding window is a 

technique employed in segmentation [8, 17]. There 
are two categories of sliding windows: fixed and 

adaptive [22, 23]. The primary elements of a sliding 

window include samples, window sizes, and features 
[22].  

Previous research has utilized accelerometers, 

gyroscopes, and pressure sensors to detect human 
activity [17]. In this investigation, adaptive sliding 

windows and multilevel machine-learning algorithms 

were employed. The sliding window size is expanded 

if the first-level machine-learning algorithm detects a 
transition activity. A second-level machine learning 

algorithm was subsequently utilized to classify the 

overall activity. The features employed in this study 
included the mean, signal energy, mean trend, 

window mean difference, variance trend, and 

window variance difference. The proposed method 
demonstrated an improvement in the F-score by up to 

15.3% compared with the static approach. A 

transitional activity is identified through the 

utilization of two hierarchical machine-learning 
algorithms, which may potentially impact the 

computational burden and result in delayed activity 

recognition. The adaptive sliding window proposed 
by Alhammad and Al-Dossari [24] applies two 

parameters: peak and valley boundaries. Activity data 

were obtained from an accelerometer worn on the 

wrist. The decision to expand the window size was 
based on the ratio of values from the x- and z-axes or 

the intersection of the x- and y-axes at certain peak or 

valley boundaries. A threshold value was utilized as 
a reference to identify the peaks and valleys, with all 

the data required to determine the threshold. The 

distance value was employed to avoid multiple peaks 
for a single activity. The features utilized included the 

minimum, maximum, range, mean, standard 

deviation, and root mean square. The proposed 

method achieved an accuracy of 96.67 ± 2.7% using 
a Support Vector Machine (SVM) machine learning 

algorithm. Although this approach achieves 

relatively high accuracy, it necessitates the 
determination of a threshold value as a reference for 

detecting valleys and peaks. 
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Human Activity Recognition (HAR) for detecting 
drivers entering and exiting a vehicle has been 

investigated in previous research [18]. In that study, 

a dynamic window size was employed, which was 

adjusted to the duration of the activity. Longer 
activity durations resulted in larger window sizes and 

vice versa. The methodology utilized to calculate the 

duration of each activity involved identifying 
transitions between activities from a set of labeled 

activity data. A total of 120 features were extracted 

from the acceleration, gravitation, orientation, linear 
acceleration, and rotational data. The features were 

extracted using statistical methods, including the 

mean, median, minimum, maximum, standard 

deviation, and mean absolute deviation. The 
machine-learning models that demonstrated the most 

optimal performance on the dataset included Logistic 

Regression, Linear Support Vector Classifier (SVC), 
Decision Tree, Random Forest, Gradient Boosting, 

and K-Nearest Neighbor (KNN), achieving an 

accuracy of 100%. Although the proposed approach 
exhibits high accuracy, the efficacy of the method 

requires further evaluation on datasets with different 

characteristics. Furthermore, the utilization of 

window sizes based on activity duration may result in 
continuous activities, potentially leading to 

excessively large window sizes [23]. 

Baraka and Mohd Noor [25] employed a static 
sliding window approach. Signals from the 

accelerometer, gyroscope, and magnetometer sensors 

were divided into adjacent windows, including the 

current and previous windows. Each window was 
further divided into three sub-windows. The sub-

windows from a given window were utilized to 

calculate similarity values using the Euclidean 
distance, Manhattan (City Block) distance, and 

cosine similarity; this operation is referred to as the 

inner similarity. The inner similarity values from the 
current window and the previous window were 

utilized to determine the end of a basic activity (non-

transition), the start of a transition activity, the start 

of a basic activity (non-transition), and the end of a 
transition activity; this operation is termed adjacent 

window dissimilarity. Inner similarity and adjacent-

window dissimilarity operations were employed to 
identify whether a window contained a transition 

activity or a basic activity (non-transition). Windows 

containing transition activities were classified by a 
model for transition activities, whereas windows 

containing basic activities (non-transition) were 

classified by a model for basic activities. The two 

machine learning models utilized were Convolutional 
Neural Networks (CNN). The proposed model was 

evaluated using two datasets and achieved accuracies 

of 92.71% and 86.65% for the respective datasets. 

The proposed approach still necessitates threshold 
value determination, particularly in the calculation of 

adjacent-window dissimilarity. To address the 

limitations of threshold-based approaches, deep 

similarity segmentation has been introduced as a 
solution and the development of a previous approach 

[26]. This study focused on distinguishing between 

transition and basic activities using a combination of 
local and temporal features. The time-series data 

were divided into three consecutive windows, each of 

which was extracted using convolutional layers and 
max pooling, yielding local features. The local 

features from the windows were subsequently 

utilized to extract the temporal features. Based on the 

local features from several windows, the temporal 
features were extracted by measuring the similarity 

between adjacent windows. Overall, the proposed 

approach achieved an optimal accuracy performance 
of 93.35%. The proposed approach [25][26] requires 

2–3 windows per activity prediction; thus, the 

processing complexity necessitates further evaluation. 
The Human Activity Recognition (HAR) model 

proposed by Vidya [20] focuses on classifying 

activities such as bending, cycling, lying down, 

sitting, standing, and walking. Data obtained from 
multi-sensor accelerometers and Received Signal 

Strength (RSS) from Wireless Sensor Networks 

(WSN) were transformed into time and frequency 
domains utilizing Discrete Wavelet Transform 

(DWT) and Empirical Mode Decomposition (EMD). 

The resultant features generated encompassed 

entropy, energy, and statistical features (Mean, Mean 
Absolute Deviation, Median Absolute Deviation, 

Standard Deviation, L2 Norm). Feature selection was 

performed using Pearson's correlation, and 
classification was conducted using Support Vector 

Machine (SVM), K-nearest neighbor (KNN), 

Ensemble Classifier (EC), and Decision Tree (DT). 
The proposed approach demonstrates significant 

enhancement in machine learning performance, 

particularly for the Decision Tree (DT) classifier. A 

comparable study conducted by Geravesh et al. [27] 
classified daily activities as sitting, standing, walking, 

cycling, ascending stairs, and descending stairs. Six 

features were extracted from the combination of 
accelerometer and gyroscope sensors, sourced 

directly from each sensor axis. Multilayer Perceptron 

(MLP), K-nearest neighbor (KNN), Random Forest 
(RF), Decision Tree (DT), and Logistic Regression 

(LR) were employed to evaluate the extracted 

features. The optimal performance was achieved 

utilizing the Multilayer Perceptron (MLP) model. It 
is noteworthy that the studies conducted by [20] and 

Geravesh et al. [27] did not explicitly address the 
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sliding-window technique employed; however, both 
utilized a static approach. 

Sliding windows and feature values are two 
inseparable  elements  [21].  Features  were  extracted  

 

 

 
Figure. 1 Proposed Method 

 

 
Figure. 2 Feature Extraction Process 



Received:  September 30, 2024.     Revised: November 12, 2024.                                                                                    485 

International Journal of Intelligent Engineering and Systems, Vol.18, No.1, 2025           DOI: 10.22266/ijies2025.0229.34 

 

from a window and subsequently classified using 
machine learning algorithms. Adaptive and static 

sliding windows have been proposed by several 

researchers [17, 18, 24-26]. The utilization of 

adaptive or dynamic sliding windows eliminates the 
necessity to determine the window size but may result 

in excessively large window sizes [23]. Conversely, 

the static approach necessitates determining a 
window size; however, the optimal size can be 

identified through the evaluation of various window 

sizes, as demonstrated in previous research [22]. 
Regarding sensor data usage, previous studies have 

utilized multiple sensors [17, 18, 20, 25-27], which 

can increase data dimensionality and potentially 

elevate processing complexity [20]. Previous 
approaches [25, 26] employed multiple windows to 

generate features, necessitating the extraction of 

more windows into the features. In the proposed 
approach, a single window with a static size is 

utilized to classify an activity. This window was 

divided into subwindows, and the features were 
subsequently extracted from each sub-window. The 

relationships between the subwindows were 

extracted as feature ratios. To reduce data 

dimensionality, only accelerometer sensor data were 
utilized. Feature selection using Analysis of Variance 

(ANOVA) is applied to determine the most optimal 

feature combinations. 

3. Proposed method 

This research focuses on developing a feature 

extraction and selection mechanism using 
accelerometer sensor data for human activity 

recognition. The proposed model consists of five 

main components: preprocessing, feature extraction, 
feature selection, building a machine learning model, 

and model evaluation. The proposed human activity 

recognition model is illustrated in Fig . 1. 

3.1. Pre-processing 

In this study, only a single accelerometer sensor 
was used; therefore, only portions of the dataset 

containing the accelerometer sensor data were 

utilized. During the data collection process, there is 
potential for certain data points to exhibit extreme 

values or missing data. Consequently, a data 

cleansing process is required. For excessively large 

values and missing data, they are replaced with the 
mean value of the corresponding column containing 

the extreme or missing values. 

3.2. Feature extraction 

Accelerometer sensor data may consist of 

multiple activities. To obtain data representing a 
specific activity, a sliding window process was 

applied using a static window. Two types of windows 

are used: non-overlapping and overlapping windows. 

An illustration of the sliding window process and the 
division of windows into subwindows is shown in Fig. 

2. Each window representing an activity is divided 

into three subwindows. Each sub-window is then 
extracted into feature values using Eqs. (1) to (16). 

Table 1 provides a comprehensive breakdown of the 

equation, delineating its constituent elements 

numbered from 1 to 26. 
 

𝑚𝑖𝑛 = 𝑚𝑖𝑛(𝑠𝑏𝑤𝑗)                         (1) 

 

𝑚𝑎𝑥 = 𝑚𝑎𝑥(𝑠𝑏𝑤𝑗)                        (2) 

 

𝑠𝑏𝑤̅̅ ̅̅ ̅ =
1

𝑛
∑ (𝑠𝑏𝑤𝑗)

𝑛

𝑗=1
                      (3) 

 

𝑚𝑒𝑑 =  {

𝑠𝑏𝑤
[
𝑛+1

2
]
, 𝑖𝑓 𝑛 𝑜𝑑𝑑

1

2
(𝑠𝑏𝑤

[
𝑛

2
] 
+ 𝑠𝑏𝑤

[
𝑛+1

2
]
) , 𝑖𝑓 𝑛 𝑒𝑣𝑒𝑛

    (4) 

 

𝑠𝑡𝑑 = √
1

𝑛
∑ (𝑠𝑏𝑤𝑗 − 𝑠𝑏𝑤̅̅ ̅̅ ̅)

2
𝑛

𝑗=1
             (5) 

 

𝑖𝑞𝑟 =  𝑞3 − 𝑞1                           (6) 

 

3.3. Analysis of Variance (ANOVA) feature 

selection 

Data dimensionality is a critical factor in classical 

machine learning [28],[29]. Feature selection can 

enhance machine-learning performance by reducing 
irrelevant and redundant data while minimizing 

computational resource requirements [28, 30, 31]. 

Numerous studies have demonstrated that feature 
selection utilizing Analysis of Variance (ANOVA) 

significantly improves machine learning 

performance [32-36]. Analysis of Variance 

(ANOVA) is a statistical method that compares the 
variance between groups and within groups, as 

expressed in Eq. (17) [19]. A description of the 

notation in the equation is presented in Table 1, 
covering entries 27 to 38. 

 

𝐹𝑣𝑎𝑙𝑢𝑒 =
𝑠𝑏𝑔
2

𝑠𝑤𝑔
2                          (17) 
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𝐴𝑐𝑢 =
1

𝑛𝑢
∑ 𝑔𝑢𝑣
𝑛𝑢
𝑣=1                      (18) 

 

𝐴𝑐 =
1

𝐾
∑ 𝐺𝑚

𝐾

𝑚=1

 

𝑔𝑢𝑣  𝜖 𝐺𝑚                          (19) 

 

s𝑏𝑔
2 =

1

k−1
∑ 𝑛𝑖
𝑘
𝑖=1 (𝐴𝑐𝑖 − 𝐴𝑐)

2
              (20) 

 

s𝑤𝑔
2 =

1

𝐾−𝑘
∑ ∑ (𝑔𝑖𝑗 − 𝐴𝑐𝑖)

2𝑛𝑖

𝑗=1

𝑘

𝑖=1

        (21) 

 

3.4. Bulding model machine leaning and 

evaluation model 

The extracted feature data are used to build 

machine learning models, namely an Artificial 

Neural Network (ANN) and Extreme Gradient 

Boosting (XGBoost). The resulting machine learning 
models were evaluated using four metrics: accuracy 

(acc), precision (prec), recall (rec), and F1 score 

(𝐹1 𝑠𝑐𝑜𝑟𝑒), using Eq. (22) through (25). These metrics 
are commonly used to evaluate various Human 

Activity Recognition (HAR) applications and other 

related applications [20, 42]. Accuracy measures the 
number of correct predictions (both positive and 

negative) out of the total number of predictions 

produced by the model. Precision is used to measure 
the accuracy of positive predictions, specifically the 

percentage of samples that are truly positive out of all 

the samples predicted as positive. A high precision 

indicates that the model rarely misclassifies negative 
samples as positive. Recall measures the model's 

ability to detect positive samples, defined as the 

percentage of truly positive samples out of all the 
actual positive samples. A high recall signifies that 

the model rarely misses the actual positive samples. 

The F1 score is the harmonic mean of the precision 
and recall, balancing the two metrics. This score is 

particularly useful when working with unbalanced 

data. True Positives (TP) are samples that are 

correctly predicted. True Negatives (TN) are negative 
samples that are correctly predicted. False Positives 

(FP) refer to samples predicted as positive but are 

actually negative. False Negatives (FN) refer to 
samples predicted as negative but are actually 

positive. 

 

𝑎𝑐𝑐 =
𝑇𝑃+𝑇𝑁

𝑇𝑃+𝑇𝑁+𝐹𝑃+𝐹𝑁
                       (22) 

 

𝑝𝑟𝑒𝑐 =
𝑇𝑃

𝑇𝑃+𝐹𝑃
                            (23) 

 

𝑟𝑒𝑐 =
𝑇𝑃

𝑇𝑃+𝐹𝑁
                             (24) 

 

𝐹1 𝑠𝑐𝑜𝑟𝑒 = 2 × 
𝑝𝑟𝑒𝑐 × 𝑟𝑒𝑐

𝑝𝑟𝑒𝑐+ 𝑟𝑒𝑐
              (25) 

 

 
 

𝑐𝑚𝑐 ̅̅ ̅̅ ̅̅ =

{
 
 

 
 ∑ 𝑓(𝑠𝑏𝑤)𝑖

𝑛

𝑖=1

𝑓(𝑠𝑏𝑤)𝑖 = {

1, 𝑖𝑓  𝑠𝑏𝑤𝑗−1 > 𝑠𝑏𝑤̅̅ ̅̅ ̅   >  𝑠𝑏𝑤𝑗

1, 𝑖𝑓  𝑠𝑏𝑤𝑗−1 <  𝑠𝑏𝑤̅̅ ̅̅ ̅  <  𝑠𝑏𝑤𝑗
0, 𝑒𝑙𝑠𝑒

                                            (7) 

 
 

 

𝑠𝑚𝑐 ̅̅ ̅̅ ̅̅ =

{
 
 

 
 ∑ 𝑓(𝑠𝑏𝑤)𝑖

𝑛

𝑖=1

𝑓(𝑠𝑏𝑤)𝑖 = {

𝑠𝑏𝑤𝑗−1 + 𝑠𝑏𝑤𝑗 , 𝑖𝑓  𝑠𝑏𝑤𝑗−1 > 𝑠𝑏𝑤̅̅ ̅̅ ̅   >  𝑠𝑏𝑤𝑗

𝑠𝑏𝑤𝑖−1 + 𝑠𝑏𝑤𝑗 , 𝑖𝑓  𝑠𝑏𝑤𝑗−1 <  𝑠𝑏𝑤̅̅ ̅̅ ̅  <  𝑠𝑏𝑤𝑗
0, 𝑒𝑙𝑠𝑒

                                (8) 

 

 

 

𝑐𝑝𝑘 = {

∑ 𝑓(𝑠𝑏𝑤)𝑖
𝑛

𝑗=1

𝑓(𝑠𝑏𝑤)𝑖 = {
1, 𝑖𝑓  𝑠𝑏𝑤𝑗−1  <  𝑠𝑏𝑤𝑗   >  𝑠𝑏𝑤𝑗+1

0, 𝑒𝑙𝑠𝑒

                                       (9) 
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𝑠𝑝𝑘 = {

∑ 𝑓(𝑠𝑏𝑤)𝑖
𝑛

𝑖=1

𝑓(𝑠𝑏𝑤)𝑖 = {
𝑠𝑏𝑤𝑗 , 𝑖𝑓  𝑠𝑏𝑤𝑗−1  <  𝑠𝑏𝑤𝑗   >  𝑠𝑏𝑤𝑗+1

0, 𝑒𝑙𝑠𝑒

                                  (10) 

 
 

 

𝑐𝑣𝑎 = {

∑ 𝑓(𝑠𝑏𝑤)𝑖
𝑛

𝑖=1

𝑓(𝑠𝑏𝑤)𝑖 = {
1, 𝑖𝑓  𝑠𝑏𝑤𝑗−1 > 𝑠𝑏𝑤𝑗  <  𝑠𝑏𝑤𝑗+1

0, 𝑒𝑙𝑠𝑒

                                         (11) 

 

 

 

𝑠𝑣𝑎 = {

∑ 𝑓(𝑠𝑏𝑤)𝑖
𝑛

𝑖=1

𝑓(𝑠𝑏𝑤)𝑖 = {
𝑠𝑏𝑤𝑗, 𝑖𝑓  𝑠𝑏𝑤𝑗−1 > 𝑠𝑏𝑤𝑗  <  𝑠𝑏𝑤𝑗+1

0, 𝑒𝑙𝑠𝑒

                                     (12) 

 

 

 

𝑚𝑖𝑛𝑐𝑟𝑜𝑠
𝑐 =

{
  
 

  
 
{

 𝑠𝑏𝑤𝑗
𝑠 + 𝑠𝑏𝑤𝑗−1

𝑠  , 𝑖𝑓  𝑠𝑏𝑤𝑗
𝑠 >  min (𝑠𝑏𝑤𝑗

𝑟)   >  𝑠𝑏𝑤𝑗−1
𝑠  

 𝑠𝑏𝑤𝑗
𝑠 + 𝑠𝑏𝑤𝑗−1

𝑠 , 𝑖𝑓  𝑠𝑏𝑤𝑗
𝑠 <   min (𝑠𝑏𝑤𝑗

1)  <  𝑠𝑏𝑤𝑗−1
𝑠

0, 𝑒𝑙𝑠𝑒

𝑐𝑜𝑚𝑏𝑖𝑛𝑎𝑡𝑖𝑜𝑛𝑠 = { 
 𝑟 = 1 𝑎𝑛𝑑 𝑠 = 2  
𝑟 = 1 𝑎𝑛𝑑 𝑠 = 3 
𝑟 =  2 𝑎𝑛𝑑  𝑠 = 3 

                         (13) 

 

 

 

𝑚𝑎𝑥𝑟𝑎𝑡𝑖𝑜
𝑐 =

{
 
 

 
 

max(𝑠𝑏𝑤𝑗
𝑟 )

max(𝑠𝑏𝑤𝑗
𝑠 )+ max(𝑠𝑏𝑤𝑗

𝑡 )

𝑐𝑜𝑚𝑏𝑖𝑛𝑎𝑡𝑖𝑜𝑛𝑠 = {
 𝑟 = 1, 𝑠 = 2 𝑎𝑛𝑑 𝑡 = 3 
𝑟 = 2, 𝑠 = 1 𝑎𝑛𝑑 𝑡 = 3
𝑟 = 3, 𝑠 = 1 𝑎𝑛𝑑 𝑡 = 2

                              (14) 

 

 

 

𝑚𝑒𝑎𝑛𝑟𝑎𝑡𝑖𝑜
𝑐 =

{
 
 

 
 

𝑚𝑒𝑎𝑛(𝑠𝑏𝑤𝑗
𝑟 )

mean(𝑠𝑏𝑤𝑗
𝑠 )+ mean(𝑠𝑏𝑤𝑗

𝑡 )

𝑐𝑜𝑚𝑏𝑖𝑛𝑎𝑡𝑖𝑜𝑛𝑠 = {
 𝑟 = 1, 𝑠 = 2 𝑎𝑛𝑑 𝑡 = 3 
𝑟 = 2, 𝑠 = 1 𝑎𝑛𝑑 𝑡 = 3
𝑟 = 3, 𝑠 = 1 𝑎𝑛𝑑 𝑡 = 2

                              (15) 

 

 
 

𝑖𝑞𝑟𝑟𝑎𝑡𝑖𝑜
𝑐 =

{
 
 

 
 

𝑖𝑞𝑟(𝑠𝑏𝑤𝑗
𝑟 )

𝑖𝑞𝑟(𝑠𝑏𝑤𝑗
𝑠 )+ iqr(𝑠𝑏𝑤𝑗

𝑡 )

𝑐𝑜𝑚𝑏𝑖𝑛𝑎𝑡𝑖𝑜𝑛𝑠 = {
 𝑟 = 1, 𝑠 = 2 𝑎𝑛𝑑 𝑡 = 3 
𝑟 = 2, 𝑠 = 1 𝑎𝑛𝑑 𝑡 = 3
𝑟 = 3, 𝑠 = 1 𝑎𝑛𝑑 𝑡 = 2

                                (16) 
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Table 1. List of notation description 

No Notation Description 

1 𝑚𝑖𝑛 minimum 

2 𝑚𝑎𝑥 maximum 

3 𝑠𝑏𝑤̅̅ ̅̅ ̅ mean 

4 𝑚𝑒𝑑 median 

5 𝑠𝑡𝑑 standard deviation 

6 𝑖𝑞𝑟 interquartil 

7 𝑠𝑏𝑤𝑗 the series of acceleration data within a sub-window 

8 j the index of each data point 

9 𝑞1 the lower quartile or first quartile 

10 𝑞3 the upper or third quartile 

11 𝑐𝑚𝑐 ̅̅ ̅̅ ̅̅  count-mean-crossing 

12 𝑠𝑚𝑐 ̅̅ ̅̅ ̅̅  sum-mean-crossing   

13 𝑐𝑝𝑘 count-peak 

14 𝑠𝑝𝑘 sum-peak 

15 𝑐𝑣𝑎 count-valley 

16 𝑠𝑣𝑎 sum-valley 

17 𝑚𝑖𝑛𝑐𝑟𝑜𝑠
𝑐  

the min-crossing for each sub-window. This notation represents the intersection between the 

minimum value (𝑚𝑖𝑛) and the acceleration values of other sub-windows. 

18 𝑚𝑎𝑥𝑟𝑎𝑡𝑖𝑜
𝑐  

the ratio between the maximum value of a sub-window and the sum of the maximum values of 
the other two sub-windows. 

19 𝑚𝑒𝑎𝑛𝑟𝑎𝑡𝑖𝑜
𝑐  

the ratio between the mean value of a sub-window and the sum of the mean values of the other 

two sub-windows 

20 𝑖𝑞𝑟𝑟𝑎𝑡𝑖𝑜
𝑐  

the ratio between the interquartile range of a sub-window and the sum of the interquartile 

ranges of the other two sub-windows 

21 
𝑠𝑏𝑤𝑗

1, 

𝑠𝑏𝑤𝑗
2, 𝑠𝑏𝑤𝑗

3 
the first sub-window, the second sub-window, and the third sub-window 

22 c the index of the sub-window combinations, with values of 1, 2, and 3. 

23 r and s 
the three sub-windows used, namely: the first sub-window, the second sub-window, and the 

third sub-window, denoted as  𝑠𝑏𝑤𝑗
1, 𝑠𝑏𝑤𝑗

2, 𝑠𝑏𝑤𝑗
3 

24 𝑓(𝑠𝑏𝑤)𝑖 the function that represents the return value 

25 𝑖 the index of the function that represents the return value 

25 𝑛 𝑛 is the length or the total number of elements in the function 𝑓(𝑠𝑏𝑤)𝑖 

27 𝐹𝑣𝑎𝑙𝑢𝑒  
the Analysis of Variance (ANOVA)  value (the ratio of the variance between groups to the 

variance within groups) 

28 𝑠𝑏𝑔
2  the variance between groups 

29 𝑠𝑤𝑔
2  the variance within groups 

30 𝐴𝑐𝑢 the mean of each group 

31 𝑢 the index of each group, u ranges from 1 to k 

32 𝐴𝑐 the overall mean of all samples 

33 𝑛𝑢 the length of each group 

34 𝑔𝑢𝑣 the sample data from each group 

35 𝑣 the index of each value within each group 

36 𝐺𝑚 refers to all sample data 

37 k the number of groups formed from all sample data 

38 K the total number of samples 

 

4. Experiments description 

4.1. Dataset description 

This study uses three datasets: SBHARPT [37, 

38], FORTH-TRACE [39], and WISDM [40]. These 

datasets are used to test and evaluate the effectiveness 
of the proposed approach. The SBHARPT dataset 

was collected using accelerometer and gyroscope 

sensors embedded in a smartphone. The smartphone 
was worn on the waist of the user at a sampling rate 

of 50 Hz. Data were collected from 30 subjects aged 

19–48    years.    Twelve    activities    were    recorded,  
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Table 2. Summary of the Architecture & Parameters for the Artificial Neural Network (ANN) 

Parameter Value 

Input Features depends on the feature combination 

Output Units depends on data 

Activation Functions ReLU (hidden layers), Softmax (output layer) 

Dropout Rate 0.1 (10%) after each dense layer 

Optimizer Adam (lr=0.00155, beta_1=0.9, beta_2=0.999, decay=0.00014) 

Loss Function Categorical Crossentropy 

Metrics Accuracy 

Epochs 100 

Validation Split 0.2 (20% of training data) 

Early Stopping Based on validation accuracy, patience=100 epochs 

Model Checkpoint Saves the best model based on validation accuracy 

 

including three static postures (standing, sitting, and 

lying), three dynamic activities (walking, walking 
downstairs, and walking upstairs), and six postural 

transitions (stand-to-sit, sit-to-stand, sit-to-lie, lie-to-

sit, stand-to-lie, and lie-to-stand).  
The FORTH-TRACE dataset was collected from 

15 subjects using an accelerometer, gyroscope, and 

magnetometer sensors with a fixed sampling 

frequency of 51.2 Hz. The subjects performed 16 
types of activities, consisting of seven basic activities 

and nine postural transition activities. Accelerometer 

and gyroscope sensors are unable to detect speaking 
activities because these sensors only capture physical 

movements [41]. Therefore, activities involving 

speaking such as walking while talking were 
excluded from the experiments. This dataset also 

includes postural transition activities that occur 

between dynamic activities, such as climbing stairs 

and walking. Previous studies have shown that such 
activities can lead to classification errors [25]. 

Consequently, the selected activities in the FORTH-

TRACE dataset were standing, sitting, walking, 
climbing stairs, standing to sitting, and sitting to 

standing. 

The WISDM dataset was recorded by the 
Wireless Sensor Data Mining Lab and serves as a 

publicly available benchmark dataset for Human 

Activity Recognition (HAR) [40]. This dataset was 

gathered by performing a series of specific daily 
activities with 36 subjects. Participants placed an 

Android phone in their front pocket and engaged in 

various activities, including sitting, jogging, climbing 
stairs, descending stairs, standing, and walking for a 

set duration. An integrated 3-axis accelerometer (x, y, 

and z) was used to measure the changes in linear 

acceleration, providing important information about 
human movement and activity patterns every 50 ms. 

4.2. Experimental setup 

The FORTH-TRACE and SBHARPT datasets 

consist of accelerometers, gyroscopes, and 
magnetometer sensors. However, in the proposed 

model, only the data were used. Therefore, the data 

were filtered to include only those from the 
accelerometer sensor. However, all the data in the 

WISDM dataset come from the accelerometer sensor, 

but some values need to be cleaned, such as those that 

could not be defined as numbers and excessively 
large values (infinity). These invalid values were 

cleaned and imputation was performed using the 

mean value of each column. The training and testing 
data were split in a ratio of 80:20, with 80% used for 

training and 20% for testing.  In this study, the Keras 

library was used for the Artificial Neural Network 
(ANN) classifier, which consists of six hidden layers 

with a decreasing number of neurons: 512, 256, 128, 

64, 32, and 16. The details of the ANN architecture 

used are shown in Table 1. For the Extreme Gradient 
Boosting (XGBoost) classifier, the Scikit-Learn 

framework was used with the function 

XGBClassifier() and the parameters 
n_estimators=100 and eval_metric='mlogloss.’ Both 

classifiers were implemented using the Python 

programming language. 

5. Result and discussion 

5.1. Forming feature combinations 

The features generated from the feature-

extraction process resulted in a dimensionality of 144. 
Based on these features, those that could significantly 

impact the machine learning model were selected 

using Analysis of Variance (ANOVA)  feature 

selection. In this study, each feature was ranked based 
on the Analysis of Variance (ANOVA)  feature 
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selection calculation. Feature combinations were 
then formed. For instance, the first feature 

combination is taken from the feature with the highest 

rank; the second combination consists of the first- and 

second-ranked features; and the third combination 
includes the first-, second-, and third-ranked features. 

In total, there were 144 feature combinations, as 

listed in Table 2. Each feature combination is then 
evaluated using Artificial Neural Network (ANN) 

and Extreme Gradient Boosting (XGBoost) 

classifiers. 

5.2. Performance of the proposed model 

Each dataset consisted of six experiments, with 

each experiment based on the window length. Three 

experiments were conducted with window sizes of 60, 

90, and 120 and three experiments with overlapping 
windows. These overlapping windows are denoted as 

60:45, 90:67, and 120:90, respectively. This notation 

represents a 25% overlap. For example, in the 
notation 60:45, number 60 indicates that the current 

window is taken from sample points 1 to 60, while 

the next window starts from sample point 45 to 

sample point 105. The overlap sizes can be denoted 

using Eqs. (26) to (28), where 𝑊𝑠𝑡𝑎𝑟𝑡 represents the 

starting sample point of a window, 𝑊𝑙𝑖−1 is the size 

of the previous window, 𝑊𝑒𝑛𝑑Wend is the ending 

sample point of the window, and 𝑘𝑤  represents the 

window sizes to be evaluated (60, 90, 120). 

 

𝑊𝑠𝑡𝑎𝑟𝑡= 𝑊𝑙𝑖−1 − (0.25 ×𝑊𝑙𝑖−1)            (26) 
 

𝑊𝑒𝑛𝑑 = 𝑊𝑠𝑡𝑎𝑟𝑡+ 𝑘𝑤                     (27) 

 

𝑊𝑙= 𝑊𝑒𝑛𝑑 − 𝑊𝑠𝑡𝑎𝑟𝑡                    (28) 

 

Fig. 3 shows the accuracy of each experiment in 

relation to the number of features. The results 
indicate that the number of features affects the 

performance of machine learning algorithms, 

Artificial Neural Network (ANN), and Extreme 
Gradient Boosting (XGBoost). Overall, the accuracy 

increased when the number of features exceeded 20. 

In the FORTH-TRACE dataset, the optimal 
performance of the Artificial Neural Network (ANN) 

and Extreme Gradient Boosting (XGBoost) 

algorithms is achieved using an overlapping window 

with a size of 120:90. For the SBHARPT dataset, the 
optimal performance for both machine-learning 

algorithms was obtained with an overlapping window 

of size 90:67. Meanwhile, for the WISDM dataset, 
the optimal performance for both machine learning 

algorithms was achieved with an overlapping 

window size of 120:90. 
Tables 4 to 6 present the optimal accuracy, 

precision, recall, and F1-score values for each dataset 

and classifier. For the FORTH-TRACE dataset, the 

accuracy, precision, recall, and F1-score for the 
Artificial Neural Network (ANN) classifier were 

94.54%, 94.5%, 94.54%, and 94.47%, respectively. 

For the SBHARPT dataset, the accuracy, precision, 
recall, and F1-score were 93.65%, 93.30%, 93.65%, 

and 93.40%, respectively. For the WISDM dataset, 

the accuracy, precision, recall, and F1-score were all 
97.64%.  For the Extreme Gradient Boosting 

(XGBoost) classifier, the accuracy, precision, recall, 

and F1-score are 93.82%, 93.85%, 93.82%, and 

93.72% for the FORTH-TRACE dataset; 93.12%, 
93.23%, 93.12%, and 93.06% for the SBHARPT 

dataset; and 96.26%, 96.22%, 96.26%, and 96.17% 

for the WISDM dataset. 
Fig. 4 shows a comparison of the number of features 

and accuracy for each experiment. For the FORTH-

TRACE dataset, the optimal performance of the 

Artificial Neural Network (ANN) was achieved with 
130 features, whereas the optimal performance of 

Extreme Gradient Boosting (XGBoost) was achieved 

with 139 features. For the SBHARPT dataset, the 
optimal performance of the Artificial Neural 

Network (ANN) was reached with 74 features, and 

for Extreme Gradient Boosting (XGBoost) with 120 
features. In the experiments using the WISDM 

dataset, the optimal performance for the Artificial 

Neural Network (ANN) was achieved with 45 

features, whereas the optimal performance for 
Extreme Gradient Boosting (XGBoost) was achieved 

with 88 features.  The smallest number of features  

 
Table 3. Examples of feature combination formation 

Feature 

index 
Feature name F value 

Feature 

ranking 

Combination of features 

(index view) 

0 w2_y_count_cross_mean 6632.79811121 1 0 

1 'w1_y_count_cross_mean 6549.3589873 2 0,1 

2 w3_y_count_cross_mean 6466.77070179 3 0,1,2 

… … … … … 

… … … … … 

143 w2_y_mean_ratio 14.97278221 144 0,1,2,…,143 
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that resulted in the highest performance was achieved 
using the WISDM dataset and Artificial Neural 

Network (ANN) with 45 features and an accuracy of 

97.64%. Across all experiments, the proposed model 

was able to improve machine learning performance, 

with the highest performance obtained using the 
WISDM dataset and Artificial Neural Network 

(ANN) algorithm. Moreover, overlapping windows 

provide better performance than non-overlapping 

windows. 
 

 
 

(a) 

 

 
 

(d) 

 

 
 

(b) 

 

 
 

(e) 

 

 
 

(c) 

 

 
 

(f) 

 

 

Figure. 3 Accuracy based on the number of features: (a) FORTH_TRACE Dataset, ANN Classifier, (b) SBHARPT 

Dataset, ANN Classifier, (c) WISDM Dataset, ANN Classifier, (d) FORTH_TRACE Dataset, XGBoost Classifier, (e) 

SBHARPT Dataset, XGBoost Classifier, and (f) WISDM Dataset, XGBoost Classifier 

 
 



Received:  September 30, 2024.     Revised: November 12, 2024.                                                                                    492 

International Journal of Intelligent Engineering and Systems, Vol.18, No.1, 2025           DOI: 10.22266/ijies2025.0229.34 

 

 
 

(a) 
 

 
 

(d) 

 

 
 

(b) 

 

 
 

(e) 

 

 
 

(c) 

 

 
 

(f) 

 

 

Figure. 4 Comparison of the number of features and accuracy for each experiment: (a) Optimal number of features 

(FORTH-TRACE), (b) Optimal number of features (SBHARPT), (c) Optimal number of features (WISDM), (d) Optimal 
accuracy (FORTH-TRACE), (e) Optimal accuracy (SBHARPT), and (f) Optimal accuracy (WISDM) 
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Table 4. Evaluation Metrics for the FORTH-TRACE Dataset 

Classifier Accuracy 

(%) 

Precision 

(%) 

Recall 

(%) 

F1-

score(%) 
The optimal 

number of 

features 

Window size 60, Overlap 0 

ANN 87.11 86.77 87.11 86.68 112 

XGBoost 86.96 87.38 86.96 86.35 107 

Window size 90, Overlap 0 

ANN 89.56 89.24 89.56 89.30 141 

XGBoost 90.48 90.40 90.48 90.11 124 

Window size 120, Overlap 0 

ANN 90.43 90.30 90.43 90.10 99 

XGBoost 90.58 90.72 90.60 90.26 84 

Window size 60, Overlap 45 

ANN 91.70 91.37 91.70 91.40 125 

XGBoost 92.68 92.78 92.68 92.48 112 

Window size 90, Overlap 67 

ANN 93.30 93.14 93.30 93.20 119 

XGBoost 92.68 92.77 92.68 92.48 112 

Window size 120, Overlap 90 

ANN 94.54 94.50 94.54 94.47 130 

XGBoost 93.82 93.85 93.82 93.72 139 

 
 

Table 5. Evaluation Metrics for the SBHARPT Dataset 

Classifier Accuracy 

(%) 

Precision 

(%) 

Recall (%) F1-

score(%) 

The 

optimal 

number of 

features 

Window size 60, Overlap 0 

ANN 90.55 90.28 90.55 90.32 50 

XGBoost 91.71 91.43 91.71 91.53 112 

Window size 90, Overlap 0 

ANN 91.00 91.39 91.00 90.70 78 

XGBoost 91.16 91.30 91.16 91.15 108 

Window size 90, Overlap 0 

ANN 92.72 92.90 92.72 92.70 76 

XGBoost 92.23 92.21 92.23 92.13 104 

Window size 60, Overlap 45 

ANN 92.17 92.20 92.17 92.13 61 

XGBoost 92.36 92.28 92.36 92.27 142 

Window size 90, Overlap 67 

ANN 93.65 93.30 93.65 93.40 74 

XGBoost 93.12 93.23 93.12 93.06 120 

Window size 120, Overlap 90 

ANN 93.28 93.24 93.28 93.21 72 

XGBoost 92.31 92.53 92.31 92.24 110 
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Table 6. Evaluation Metrics for the WISDM Dataset 

Classifier Accuracy 

(%) 

Precision 

(%) 

Recall 

(%) 

F1-

score(%) 

The optimal 

number of 

features 

Window size 60, Overlap 0 

ANN 94.82 94.73 94.82 94.76 67 

XGBoost 93.44 93.26 93.44 93.22 112 

Window size 90, Overlap 0 

ANN 95.82 95.78 95.82 95.79 70 

XGBoost 93.84 93.71 93.84 93.63 85 

Window size 90, Overlap 0 

ANN 96.74 96.70 96.74 96.71 45 

XGBoost 94.10 92.00 94.07 93.84 87 

Window size 60, Overlap 45 

ANN 97.00 97.00 97.00 97.00 69 

XGBoost 95.07 95.00 95.07 95.00 113 

Window size 90, Overlap 67 

ANN 97.43 97.42 97.43 97.43 108 

XGBoost 95.73 95.65 95.73 95.67 124 

Window size 120, Overlap 90 

ANN 97.64 97.64 97.64 97.64 45 

XGBoost 96.26 96.22 96.26 96.17 88 

 

 
Table 7. Comparison with Previous Research 

Reference Dataset Methods Accuracy 

(%) 

Precision 

(%) 

Recall 

(%) 

F1-

score 

(%) 
Baraka dan 
Mohd Noor 

[25] 

FORTH-
TRACE 

static window, 2 window, 
3 sub-window, similarity-

based 

86.65 - - - 

SBHARPT 92.71 - - - 

Baraka dan 

Mohd Noor 

[26] 

FORTH-

TRACE 

Deep similarity-based 84.96 - - - 

SBHARPT 93.35 - - - 

Shi et al. [43] WISDM Multichannel 

Convolutional Neural 

Network 

- 95.53 94.83 95.18 

Akter et al. 

[44] 

WISDM Attention-Mechanism-

Based Deep Learning 

Feature Combination 

93.89 - - - 

 Zhang et al. 

[45] 

WISDM CNN-GRU 97.18 - - 97.17 

Proposed 

Model 

FORTH-

TRACE 

Static window, 1 window, 

3 sub-window, feature 
ratio 

94.54 94.50 94.54 94.47 

SBHARPT 93.65 93.30 93.65 93.40 

WISDM 97.64 97.64 97.64 97.64 
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5.3. Comparison with previous research 

To evaluate the effectiveness of the proposed 
method, three datasets were employed: FORTH-

TRACE, SBHARPT, and WISDM, along with two 

machine-learning techniques: Artificial Neural 

Networks (ANN) and Extreme Gradient Boosting 
(XGBoost). The primary objective of this study was 

to assess the effectiveness of the proposed approach 

by comparing it with previous studies, particularly 
those utilizing the same datasets. Although previous 

studies have evaluated various datasets [43-45], only 

the performance results on the same dataset, 
specifically the WISDM, were used for comparison 

to ensure a relevant and meaningful evaluation. 

As shown in Table 7, for the FORTH-TRACE 

dataset, the proposed model achieved an accuracy 
7.89% higher than that of Baraka and Mohd Noor 

[25], and 9.58% higher than Baraka and Mohd Noor 

[26]. For the SBHARPT dataset, the proposed model 
had an accuracy 0.94% higher than Baraka and Mohd 

Noor [25] and 0.30% higher than Baraka and Mohd 

Noor [26]. For the WISDM dataset, the proposed 

model achieved precision, recall, and F1-score 
improvements of 2.11%, 2.81%, and 2.46%, 

respectively, compared to the approach used by Shi 

et al. [43]. The proposed approach also achieved 
accuracies 3.75% and 0.46% higher than those of 

Akter et al. [44] and Zhang et al. [45], respectively. 

Overall, the proposed approach was able to improve 
the accuracy, precision, recall, and F1-score 

compared with previous approaches 

6. Conclusion 

To optimize the window size, features, and 

number of features to improve the performance of 

Human Activity Recognition (HAR) models, the 
proposed model consists of a single window, three 

sub-windows, and feature ratios. Additionally, to 

identify the most influential feature combinations for 

the classification results, Analysis of Variance 
(ANOVA) feature selection and the machine learning 

algorithms Artificial Neural Network (ANN) and 

Extreme Gradient Boosting (XGBoost) were applied. 
The FORTH-TRACE, SBHARPT, and WISDM 

datasets are used to assess the effectiveness of the 

proposed model. The experimental results showed 

the highest accuracy, precision, recall, and F1-score 
of 97.64% with 45 features and an Artificial Neural 

Network (ANN) classifier. The experiments also 

demonstrated that overlapping windows significantly 
influenced the performance of the machine learning 

models. The limitation of the proposed approach is 

that it still uses a static sliding window, which 

requires an initial determination of the window size. 
Therefore, future developments could employ a 

dynamic sliding window, eliminating the need for 

predefined window sizes, particularly overlapping 

windows. 
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