
Received:  September 29, 2024.     Revised: November 12, 2024.                                                                                    499 

International Journal of Intelligent Engineering and Systems, Vol.18, No.1, 2025           DOI: 10.22266/ijies2025.0229.35 

 

 
Enhanced Deep Learning Approaches for Smart Monitoring Oil Validity in 

Power Transformer 

 

Faraqid Qasim Mohammed1*          Yassine Aydi1          Mohamed Abid2 

 
1Computer Embedded System Laboratory, National School of Engineering of Sfax, Tunisia 

2National School of Electronics and Telecommunications of Sfax, University of Sfax, Tunisia 
* Corresponding author’s Email: faraqid@bauc14.edu.iq 

 

 
Abstract: Transformers are essential and costly elements in the transmission and distribution of electrical energy. 

Consequently, electrical utility companies must prioritize the monitoring of transformer conditions. Insulating oil is a 

crucial element in transformers, serving a significant function in heat transfer and overseeing the scheduled 

performance of the transformer. The oil ageing procedure can enhance transformer conditions and improve power grid 

reliability. The ageing of oil is mostly attributed to thermal forces. Mechanical forces induce chemical deterioration of 

the oil. Consequently, the oil’s health may be verified through multiple assessments. Prior research has employed 

many methods to monitor transformers oil, including spectroscopy, color and acidity for oil, acidity measurement, 

current transformers, and dissolved gas analysis (DGA), followed by data classification utilizing machine learning and 

deep learning approaches. Nonetheless, precise fault detection in transformers continues to be a formidable challenge. 

This study presents an innovative method for transformer oil evaluation using intelligent monitoring through Fabry-

Perot fiber interferometer (FPI) for transformer oil analysis. Machine learning techniques (Random Forest and 

Gaussian NB) and deep learning methods (1D-CNN and CNN-LSTM) were used in our experimental approach to 

improving the decision-making process regarding oil health. They included data pre-processing before using the 

classification model. The algorithms showed superior performance and higher data classification accuracy than 

previous experiments. Classification accuracy, precision, recall, F1-score, and specificity for transformer oil reached 

100%. 

Keywords: Fabry perot interferometer (FPI), Oil validity, Machine learning (ML), Deep learning (DL), Convolution 

neural network (CNN). 

 

 

1. Introduction 

The primary function of power transformers is to 

convert voltage levels in power transmission lines. 

They represent a highly crucial and costly component 

inside the electrical grid [1]. Consequently, utility 

companies must priority failure avoidance and 

maintain optimal operational conditions of their 

electrical networks. Ensuring these assets remain 

optimal and efficient is a primary objective for 

numerous electric companies worldwide [2]. 
Consequently, so as to improve the reliability of the 

electrical power transmission, it has become 

absolutely necessary to improve the efficiency of the 

transformer Therefore, the transformer needs 

constant maintenance and monitoring to be reliable 

and available. Numerous statistics indicate that 

insulation degradation is the primary cause of 

transformer failure [3]. Transformer oil plays a 

crucial function in several aspects of transformer 

performance, including insulation, iron formation 

prevention, heat transfer, corrosion protection for 

metal components, and prevention of moisture 

infiltration in the transformer chamber. The 

transformer insulation system, consisting of oil and 

paper, naturally deteriorates and loses its insulating 

qualities over time due to factors such as temperature, 

heat, moisture, and air exposure [4]. Consequently, 

the infiltration of moisture leads to an acceleration in 

the formation of X-wax (Chemical deposits in 

transformer oil) and an increase in the acidity 
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characteristics of the oil. Moreover, increasing 

temperatures and thermal stress expedite the process 

of aging [5]. The acidity of oil degrades the insulating 

paper and accelerates the oxidation of transformer 

metal components. Particles resulting from the 

corrosion and oxidation of metals are mixed with oil. 

These particles diminish the insulating characteristics 

and hinder its effectiveness. A drop in the breakdown 

voltage, which in turn leads to an increase in the 

amount of partial discharge (PD), is caused by a rise 

in the amount of moisture that is absorbed by the oil 

[6]. In addition, the amount of moisture that is 

absorbed by the oil increases. There are several gases 

that are created during the process of breaking down 

insulating oil. These gases include hydrogen (H2), 

methane (CH4), ethane (C2H6), ethylene (C2H4), 

and acetylene (C2H2) [7]. The presence of these 

gasses is a sign that there are deficiencies in both 

thermal and electrical energy. Furthermore, the 

breakdown of insulation paper in the oil results in the 

production of carbon monoxide (CO) and carbon 

dioxide (COz) gases, both of which are suggestive of 

the likelihood of a thermal fault. Both of these gases 

are formed when the paper is broken down. The 

existence of these flaws in the transformer has the 

potential to significantly shorten its lifespan and put 

the dependability of the electrical grid at risk and 

threaten its reliability. Hence, it is crucial to 

continuously monitor the condition of the 

transformer by evaluating the state of the insulation 

system through transformer oil [5]. 

Several techniques exist for analysing 

transformer oil and assessing its quality, including 

using Dielectric Gas Analysis (DGA) to measure the 

aging of transformer oil [8] and the gas 

chromatography (GC) technology [9]. Furthermore, 

by the comprehensive examination of the oil’s 

characteristics, it becomes possible to assess the 

quality of the oil and ascertain its aging process [10]. 

The influence of oil aging on these variables was 

examined. One of these factors is color, commonly 

employed as an indicator of deterioration potential. 

Extending the duration of oil operation leads to 

alterations in oil color and aging of the oil. Hence, it 

is possible to conduct some analysis by considering 

the color of the oil [11]. However, these and other 

techniques are very expensive and their test results do 

not provide an accurate interpretation later. 

The analysis of transformer oil test findings is 

challenging due to the intricate structure and 

mechanisms underlying transformer degradation [5]. 

The technical analyst must be present during the 

diagnosis [12]. The correct decision-making is 

crucial since erroneous interpretation may lead to 

transformer damage, endangering workers, incurring 

substantial economic losses, and resulting in network 

shutdowns and service termination. Consequently, 

the exploration of artificial intelligence and its 

applications, which facilitate the storage of human 

experience and enable intelligent, automated 

interactions to assist novice analysts in making 

accurate conclusions, is warranted. Limited literature 

exists that examines the assessment of transformer oil 

quality using artificial intelligence. Researchers have 

examined the efficacy of artificial neural networks, 

Gaussian Naive Bayes [13], Decision Tree [8], 

Random Forest [14], LSTM [15], and other 

methodologies for evaluating transformer oil quality. 

These studies exhibit certain limitations, maybe 

resulting from either the Analysis Technology of the 

oil or the intelligence technology employed. 

In this study, fiber optic infrared (FPI) technology 

was used as a temperature sensor, a technique used to 

investigate material composition and qualitative 

assessment. This technique involves decomposing 

the electromagnetic wave into its individual 

wavelengths and then emitting it by radiation on a 

medium. The determination of the content quantity 

can be achieved by evaluating the differences in the 

cross-wave, thus determining the specific properties 

and quantities of its components. Spectroscopy 

devices consist of two main components: a light 

source and a light detector [16]. It is a cost-effective 

methodology for analysing transformer oil qualities 

that requires less time than other monitoring 

methods. To assess the validity of transformer oil, 

machine learning algorithms (Random Forest, 

Gaussian NB) and deep learning techniques (1D-

CNN, CNN-LSTM) were employed. The data 

underwent pre-processing, a crucial step that 

enhances predictive accuracy compared to the use of 

raw data, thereby distinguishing our methodology 

from prior approaches. 

The main contributions to the suggested model 

include the following: 

1. Gathering the dataset for the proposed system 

by acquiring samples of oil obtained from both aged 

and recently manufactured transformers. This 

collaboration was undertaken with the Diyala 

General Company for Electrical Industries and the 

Ministry of Electricity of Iraq. Following that, the oil 

samples underwent analysis at the Laser Institute for 

Postgraduate Studies Laboratory located at the 

University of Baghdad. 

2. In this paper, a unique technique for oil state 

classification of power transformers is presented. The 

approach makes use of (ML) RF and Gaussian NB, 

(DL) 1D-CNN, and hybrid CNN-LSTM models. This 

study presents a method that is comprised of many 

pre-processing, crucial step that enhances predictive 
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accuracy compared to the use of raw data, thereby 

distinguishing our methodology from prior 

approaches. Stages that, when combined, lead to the 

achievement of a high degree of precision in the 

evaluation of the state of transformer oil. 

The organization of this paper is as follows: A 

review of recent literature is given in Section 2, a 

proposed system architecture is presented in Section 

3, experiments and analysis are shown in Section 4, 

and the study is concluded in Section 5. 

2. Literature review 

There are only a few articles in the literature that 

address the problem of transformer oil quality 

assessment through artificial intelligence and hence 

the use of machine learning and deep learning models 

for the purpose of transformer oil quality assessment 

has been the focus of recent research.  

In 2020, D. Firouzimagham et al. [13], this study 

proposed and implemented a laboratory-based 

approach for online transformer analysis of oil using 

the spectroscopic methodology. Gaussian NB 

algorithm was implemented in the system results to 

classify the oil quality and achieve an accuracy of up 

to 92%. The drawbacks of the proposed oil analysis 

technique are that it relies on optical methods (light 

and transmission spectrum) and the spectral analysis 

device (light source and light detector); for oil 

analysis, it is very expensive to connect to each 

transformer.  

In 2021, G. Odongo et al. [8] This work 

introduced a DGA method for transformer oil 

analysis, and KosaNet, a classification system based 

on decision trees, was utilised to interpret the findings. 

The accuracy of the suggested approach for assessing 

transformer oil was 99.9%. The drawback of this 

approach is that the accuracy and dependability of the 

observed gas concentrations are crucial to the DGA 

technique of correct fault identification in 

transformers using dissolved gas analysis. Apart from 

the expensive nature of the oil analysis apparatus. 

In 2021, M. Senoussaoui  et al. [14] The 

suggested method employed laboratory analysis of 

the oil based on its color and acidity. The results were 

interpreted using the J48 decision tree and random 

forest machine learning classifiers. Random forest 

demonstrated improved accuracy and performance 

with minimal data. The k-means method was used to 

preprocess the raw data before putting it into the 

classification model. This processing improved the 

classification performance of the used algorithms, 

especially the random forest, which reached an 

accuracy of 89%. One of the drawbacks of the used 

technique is that oil parameters usually affect each 

other. As the moisture content increases, the 

electrical strength of the insulating oil decreases. 

Although the oil to be filtered is better than the oil to 

be extracted according to most parameters (color, 

viscosity, acidity, and tgδ), this is not the case 

according to the comparison of their insulating 

strengths because the water content in the oil to be 

extracted is less than that in the oil to be filtered.  In 

2022, J. Ramesh et al. [15] This study proposed an 

IoT system for real-time monitoring of transformer 

oil based on a three-phase current transformer CT 

technique and oil levels/temperature. The LSTM 

algorithm was implemented to evaluate the oil, and it 

achieved an accuracy of 67%. The drawbacks of the 

proposed approach are the cost of the equipment used 

to conduct oil tests. Moreover, the results obtained 

are not satisfactory. 

3. The proposed methodology 

The proposed system comprises three stages: 

Data Collection, Pre-processing, and Classification, 

employing Machine Learning and Deep Learning 

approaches, as seen in Fig. 1. Initially, the stage of 

Building a dataset, the stage of Data processing that 

involves several operations: clean data using remove 

null, apply unsupervised learning using Sieve 

Diagram, supervised learning using label data, 

Exploratory Data Analysis (EDA) technique, remove 

outlier. Ultimately, these data are put into (Random 

Forest and Gaussian NB) Machine Learning and (1D-

CNN and CNN-LSTM) deep learning approaches to 

categorize transformer oil as Good, Not Bad, Poor, or 

Very Poor. 

3.1 Dataset collection stage 

This stage has several steps. The following 

delineates these steps: 

 

A. Transformer Oil Samples: The transformer oil 

samples were collected from both new and old 

transformers. This was done with the Diyala General 

Company for Electrical Industries and the Iraqi 

Ministry of Electricity. Five different samples were 

collected as shown in Fig. 2. 

A refined oil lighter than the other oils is known 

as Sample 1. Sample 5 is a darker, more refined 

sample, while samples two to four are oils with a 

lower age than sample 5. 

 

B. Preparing the experimental environment: This 

environment was prepared in the Laser Institute for 

Postgraduate Studies laboratory at the University of 

Baghdad. Fig. 3 shows the experimental environment 

inside the laboratory and the experimental  
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Figure. 1 The Proposed System 

 

 

 
Figure. 2 Transformer oil samples 

 

configuration of the FPI sensor through FBG-PCF-

FBG, where the fabrication procedure was conducted 

using the Fujikura type FSM-60S fusion splicing 

machine, a small length of PCF was prepared and 

fused with a 30 cm length of SMF-28s and connected 

between two identical FBG. 

The source Broad Band Spectrum has an optical 

spectrum that spans from 1450 nm to 1650 nm. The 

integrated circuit (IC) chipset is the most critical 

component of the BBS, which generates the optical 

spectrum. Its maximal optical power is 31.2 𝑚𝑊. The 

optical signal that was emitted was supplied with the 

necessary power by the  laser diode controller (LCD). 

The emitted wavelengths and output power were 

regulated by temperature electrical control (TEC). 

The oil chamber to preserve oil samples during 

analysis. An optical spectrum analyzer (OSA) is a 

device designed to measure and show the power 

distribution of an optical source throughout a specific 

wavelength range. 

 

 
Figure. 3 Experimental setup in the lab 
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C. Testing Process:  

A sample of transformer oil is placed in the 

chamber, and the device is initiated, where samples 

are examined by introducing a small amount into the 

chamber and transmitting the spectrum from a 

broadband source to an FPI-based FBG sensor. The 

temperature of the two coils shifts the wavelength. 

This information is transmitted to a computer or 

smartphone software via a wireless connection. An 

optical spectrum analyzer (OSA) measures the 

intensity of reflected light as it passes through an oil 

sample. The data on light intensity is graphically 

displayed on the PC. As the temperature increased to 

degrees Celsius, the interference pattern of FPI 

caused the center wavelength to shift toward a longer 

wavelength (red shift). The proposed sensor achieved 

a sensitivity of approximately 18 pm/°C within the 

temperature range of 25 to 60 °C, as the wavelengths 

λB1, λB2, and λR share the same operating 

wavelength λc. In contrast, the thermal expansion 

coefficients of PCF and FBG are equivalent, which 

leads to a similar temperature sensitivity between λB 

and λR. The oil is illuminated with the entire 

broadband spectrum centred at 1549 nm.The light 

sensor detects the spectrum after it has passed 

through the oil, as the light passing through the oil 

causes changes in amplitude in certain parts of the 

initial light spectrum. Fig. 4 illustrates the light-

passing characteristics in the BBS for each oil sample. 

The oil samples of varying ages exhibit a variation in 

the spectrum traveling through them. The light 

intensity is conveyed more in No. 1 oil sample, which 

has the lowest levels of contamination, than in the 

other oils Nevertheless, oil No. 5, which contains the 

highest levels of contamination, exhibits the lowest 

level of light intensity. The oils 2 to 4 exhibit 

identical light passage as a result of their high degree 

of similarity in operation and aging. The system then 

measures these changes to display the oil’s 

characteristics, and the OSA records these changes in 

the form of a file. These changes are the database 

used in the subsequent stages that will be described 

in section 4. 

3.2 Data pre-processing stage 

Data pre-processing is an initial step that prepares 

raw data for analysis. Analytics tools may yield 

inaccurate results and mislead if the data contains 

impurities such as missing data or outliers. Hence, it 

is imperative to enhance the data quality before 

conducting any analysis. The following steps 

demonstrate the data preparation conducted for this 

study. 

 

 

 
Figure. 4 Reflection Spectrum when the light passing oil sample at different temperature 
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A. Data Cleaning:  

In many datasets, data values are not recorded for 

all attributes because some attributes do not apply to 

some cases. This causes missing values. These 

missing values negatively affect the performance of 

the classifier created using the dataset as a training 

sample. For this reason, all records were inspected, 

and null values were removed. 

 

B. Unsupervised learning (Sieve Diagram):  

Sieve diagrams are useful for visualizing the 

separation or classification of data according to 

specific conditions or thresholds in data analysis. A 

sieve diagram shows the number of data points that 

remain after each layer of filtering, giving insight into 

the structure of the data and the impact of the applied 

filters. In this study, the database was filtered using 

the following logical conditions: 

If temperature for transformer oil > o and ≤ 25   is 

labelled “Good”. 

If temperature for transformer oil > 25 and   ≤ 50   

is labelled “Not bad”. 

If temperature for transformer oil > 50 and   ≤ 75   

is labelled “Poor”. 

If temperature for transformer oil > 75 and   ≤ 100   

is labelled “Very poor”. 

In this step, the dataset was converted from 

unsupervised to supervised data. 

 

C. Supervised learning (Data labelling):  

For each class in the training dataset, the 

suggested system applied a Label encoder library in 

Python to convert the labels into a numeric form 

learning-readable form. Fig. 5 shows that each class 

will be assigned a unique code number. 

 

D. Exploratory Data Analysis (EDA):  

It involves detecting and removing outliers from 

the input dataset to enhance data comprehension and 

optimize classification model performance. Data 

outliers can be detected by checking if the data points 

are beyond the range of Eq. (1): 

 

𝑄1 − 1.5(𝑄3 − 𝑄1)& 𝑄3 + 1.5(𝑄3 − 𝑄1)  (1) 

 

 
Figure. 5 The label encoding used in classification 

systems 

 

where Q1 and Q3 represent the first and third 

quartiles of the data, respectively [17]. Determine 

quartiles (IQR) by Eq. (2). 

 

𝐼𝑄𝑅 = 𝑄3 − 𝑄1     (2) 

 

(IQR): Values that partition an array of numbers into 

quarters, specifically between the first and third 

quartiles. 

Determine lowest and upper ranges by Eqs. (3) 

and (4) 

 

𝐿𝑜𝑤𝑒𝑟 𝑟𝑎𝑛𝑔𝑒 = 𝑄1 − (1.5 ∗ 𝐼𝑄𝑅)   (3) 

 

𝑈𝑝𝑝𝑒𝑟 𝑟𝑎𝑛𝑔𝑒 = 𝑄3 + (1.5 ∗ 𝐼𝑄𝑅)   (4) 

 

Update the values in the dataset so that the new value 

is equal to the lower range if the value is less than the 

lower range. The new value is equal to the higher 

range if the value is greater than the upper range. 

 

E. Feature Normalization:  

Machine learning and deep learning-based 

classification algorithms are sensitive to variations in 

feature scales, which could impair the suggested 

system’s performance. The proposed model uses the 

“Min-Max” scaling technique to normalize the data. 

Where all values lie between 0 and 1 by applying the 

following Eq. (5) [17]. 

 

Z′ =
x−min (x)

max(x)−min (x)
     (5) 

 

Where Z′ is the normalized value, x is the original 

feature value, max(x) and min(x) are the maximum 

and minimum feature values. 

3.3 Classification model stage 

During this stage, the suggested system will 

divide the dataset into three parts: 70% for training, 

20% for validation, and 10% for testing. The testing 

set evaluates the system’s performance on unlabelled 

data, while the training set trains the model. The 

validation data set examines the model’s 

performance during the training phase. It is utilized 

to improve the model’s parameters and select the 

most efficient model. The suggested system 

employed two approaches to classify the condition of 

the transformer oil, categorizing it as either Good, 

Not bad, Poor, or Very poor. Machine learning 

algorithms and deep learning algorithms. 
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• Classification Model based on ML approaches 

• Random Forest 

RF is an ensemble approach based on many 

decision trees and bagging (also known as Bootstrap 

aggregation) techniques. Bagging demands training 

each decision tree on a part of the whole dataset. Each 

tree gets its classification, and finally, it is done using 

majority voting on the decision tree results. The 

random forest has two critical parameters: n-

estimators, which define the number of trees in the 

forest, and training data. In this work, there were 150 

trees in the forest. The random forest is constructed 

in two steps. First, the algorithm randomly chooses 

“k” features from a total of m features. Then, the test 

features and the rules of each randomly generated 

decision tree are used to predict the outcome, making 

predictions using the trained random forest method. 

After storing the projected outcome, computing the 

votes for each predicted target. Finally, the RF 

algorithm’s ultimate forecast should be the highly-

voted predicted target [18]. 

 

• Gaussian Naïve Bayes 

This classifier is predicated on the premise that 

the variables associated with the predictor are 

conditionally independent with respect to the 

category of the data sample being considered. It is 

necessary to compute both the predictor prior 

probability and the class prior probability to ascertain 

the likelihood of the predictor variable about the class. 

The posterior probability calculated to be the highest 

across all classes is utilized to classify the samples 

[18]. 

 

• Classification Model based on DL approaches  

• 1D-CNN 

Fig. 6 Shows that the proposed algorithm consists 

of five layers, showing the number and size of filters, 

the Activation function used, the number of units in 

the dense layer and, other details. 

 

• CNN-LSTM 

Fig. 7 Shows that the proposed algorithm consists 

of five layers, showing the number and size of filters, 

the Activation function used, the number of units in 

the dense layer and, other details.  

In 1D-CNN and CNN-LSTM algorithms 

compiling the model using the (CE) loss function, 

“Adam” optimizer to provide improved optimization 

for noisy data. The selected initial learning rate is 

0.001. Training the models approach with 100 epochs 

on the “training” and “validation” partitions (70% 

and 20% respectively of the dataset). Testing the 

approaches on the “testing” partition (10% remaining 

dataset) and achieving the needed results concerning 

many metrics of evaluation (“accuracy”, “precision”, 

“recall”, and “F-score”). These results will help us 

evaluate the performance of the model. 

 

 

 
Figure. 6 The architecture of the1D- CNN 

 

 

 
Figure. 7 The architecture of the CNN-LSTM 
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4. Experimental results 

4.1 Results of dataset collection 

The dataset comprises 805 records and 13 

attributes (Temperature, Centroid Wavelength, Peak 

Wavelength, Peak Level, FWHM, Peak Position, 

Offset Peak Position, Wavelength, Offset 

Wavelength, Level, Offset Level, Noise, and OSNR). 

Figs. 8 and 9 illustrates some feature with its 

frequency, with the X-axis representing the feature 

and the Y-axis denoting its frequency within the 

database. Table 1 shows three samples in the dataset. 

 

 
Figure. 8 Temperature and Frequencies with dataset 

 

 

 
Figure. 9 OSNR and Frequencies with dataset 
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Table 1. Samples of Dataset 

OSNR [dB] 3.53309035301208 3.63274908065796 0.709992229938507 

Noise [dBm] -75.0206680297852 -75.8684844970703 -76.5626983642578 

Offset Level [dB] 1.16278076171875 0.705162048339844 -2.29535675048828 

Level [dBm] -72.3006362915039 -72.7860717773438 -76.3928298950195 

Offset Wavelength [nm (air)] 0.639206213425723 0.811473802464207 28.7389434906679 

Wavelength [nm (air)] 1455.17521150117 1455.3318616663 1483.2750239796 

Offset Peak Position [nm (air)] 0.6221923828125 0.8297119140625 28.8553466796875 

Peak Position [nm (air)] 0.6221923828125 0.311279296875 0.646484375 

FWHM [pm (air)] 142.688495126549 104.057762936918 300.38168828878 

Peak Level [nW] 0.0588757664843342 0.052649340887001 0.037900960592196 

Peak Wavelength [nm (air)] 1455.22338867188 1455.32836914063 1483.35546875 

Centroid Wavelength [nm (air)] 1455.17521150117 1455.3318616663 1483.2750239796 

Temperature 20 40 60 

No. record 1 2 3 

 

 

 
Figure. 10 Detect and Remove Outliers in the dataset 

 

 
4.2 Results of dataset pre-processing 

The dataset initially had four entries with missing 

values, which resulted in a total of 805 records. After 

using the Data cleaning procedure, the total number 

of records decreased to 801. 

The dataset initially consists of 13 attributes. 

After applying the Sieve Diagram operation, one 

additional class attribute is included, resulting in 14 

attributes. The classification attribute was done with 

four samples (Good, Not Bad, Poor, and Very Poor). 

Following the addition of the attribute “class” to 

the database in the previous phase, these classes were 

encoded as 1 refers to the class labeled as “Good”, 2 

refers to the class labeled as “Not Bad”, 3 

corresponds to the class labeled as “Poor”, and 4 

refers to the class labeled as “Very Poor”. 

The proposed model utilized Exploratory Data 

Analysis (EDA) to identify and eliminate outliers in 

the dataset. The procedure for identifying and 

eliminating outliers from the dataset for features is 

shown in Fig. 10. It shows a series of plots showing 

the distribution of the feature’s outlier detection 

procedure. Two plots in the upper section show the 

data before the outliers were eliminated. Conversely, 

the data is depicted in the lower part’s charts after 

eliminating the outliers. (in the upper left corner) 

Shows the histogram distribution of the feature 

(Centroid Wavelength [nm (air)]], where the x-axis 

represents the centroid wavelength and the y-axis 

shows the frequency of the data points. We notice an 

uneven distribution with a relatively higher 

concentration at the edges, while Box plot (in the 

upper right corner) summarizes the feature’s 
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distribution by showing the median, quartiles, and 

possible outliers. The line inside the box refers the 

median, the box represents the (IQR), and the 

whiskers extend to 1.5 times the IQR. Now that the 

outliers have been removed, graphs (in the lower left 

corner) and (in the lower right corner) show that there 

is a slight decrease in the number of data points, 

especially in the tails, indicating a more balanced 

distribution of the data, which appears more central 

and less skewed. 

4.3 Results of classification system 

The proposed method for categorizing the 

conditions of transformer oil employs (ML) and (DL) 

algorithms. The outcomes of each model are 

individually displayed in the following: 

• Results Based on Machine Learning: 

The first approach to classifying transformer oil 

condition is ML based on (Random Forest and 

Gaussian NB) algorithms. Tables 2 and 3 show the 

values of accuracy, precision  ،recall, F1, and 

Specificity measures used as metrics to evaluate the 

performance of the methods implemented.  

These metrics depend on four important Factors: 

True Negatives “TN”, True Positives “TP”, False 

Negatives “FN”, and False Positives “FP” for 

training and testing to classify transformer oil 

conditions. 

Figs. 11 and 12 demonstrate the confusion 

matrices concerning testing sets in Random Forest 

and Gaussian NB algorithms. 

 
Table 2. Results of ML algorithms for Training set 

Random Forest Classifier 

Class 

Name 
"TP" "TN" "FP " "FN " “Accuracy” 

“precision

” 
“Recall” 

“F1-

score” 
“Specificity” 

Class1 195 365 0 0 1 1 1 1 1 

Class2 122 438 0 0 1 1 1 1 1 

Class3 116 444 0 0 1 1 1 1 1 

Class4 127 433 0 0 1 1 1 1 1 

Average 140 420 0 0 1 1 1 1 1 

Gaussian NB Classifier 

Class 

Name 
"TP" "TN" "FP " "FN " “Accuracy” 

“precision

” 
“Recall” 

“F1-

score” 
“Specificity” 

Class1 195 362 3 0 0.99464285 0.984848 1 0.992366 1 

Class2 121 438 0 1 0.99821428 1 0.991803 0.995885 0.991803 

Class3 115 444 0 1 0.99821428 1 0.991379 0.995671 0.991379 

Class4 126 433 0 1 0.99821428 1 0.992126 0.996047 0.992126 

Average 139.2 419.2 0.75 0.75 0.99732142 0.996212 0.993827 0.994992 0.993827 

 

 
Table 3. Results of ML algorithms for Testing set 

Random Forest Classifier 

Class 

Name 
"TP" "TN" "FP " "FN " “Accuracy” “precision” “Recall” 

“F1-

score” 
“Specificity” 

Class1 91 150 0 0 1 1 1 1 1 

Class2 45 196 0 0 1 1 1 1 1 

Class3 48 193 0 0 1 1 1 1 1 

Class4 57 184 0 0 1 1 1 1 1 

Average 60.25 180.75 0 0 1 1 1 1 1 

Gaussian NB Classifier 

Class 

Name 
"TP" "TN" "FP " "FN " “Accuracy” “precision” “Recall” 

“F1-

score” 
“Specificity” 

Class1 91 150 0 0 1 1 1 1 1 

Class2 45 196 0 0 1 1 1 1 1 

Class3 48 193 0 0 1 1 1 1 1 

Class4 57 184 0 0 1 1 1 1 1 

Average 60.25 180.75 0 0 1 1 1 1 1 
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Figure. 11 The confusion matrixes of the implemented Random Forest 

 

 

 
Figure. 12 The confusion matrixes of the implemented Gaussian NB 

 

 

• Results Based on Deep Learning: 

The second approach to classifying transformer 

oil conditions is DL based on (1D-CNN and hybrid 

CNN-LSTM) algorithms. Figs. 13 to 16 display the 

accuracy and loss of the implemented (1D-CNN) and 

(CNN-LSTM) models on the training and validation 

of the dataset for each epoch. The loss function 

descends to the down, while the accuracy goes from 

the down to the up. 

Within 1D-CNN with 100 epochs, the training 

accuracy score attains approximately 0.99, and the 

validation accuracy score reaches 1.00, as illustrated 

in Fig. 13. This implies that during the training and 

validation process, the CNN classified the data in an 

efficient and accurate manner. Fig. 14 shows that the 

validation loss is 0.00084, and the training loss value 

is around 0. 01315.shows how effectively the model 

generalises and keeps its error level low when used 

with unknown data. As shown in Fig. 15, the training 

accuracy score in CNN-LSTM with 100 epochs is 

roughly 1.00, whereas the validation accuracy score 

is 0.99. This suggests that the model accurately and 

efficiently classified the data during the training and 

validation phases.  

According to Fig. 16, the training loss value is 

approximately 0.00023, and the validation loss is  
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Figure. 13 The accuracy of the implemented 1D-CNN models on the training and validation dataset for each epoch 

 

 

 
Figure. 14 The loss of the implemented 1D-CNN models on the training and validation dataset for each epoch 

 

 

 
Figure. 15 The accuracy of the implemented CNN-LSTM models on the training and validation dataset for each epoch 
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Figure. 16 The loss of the implemented CNN-LSTM models on the training and validation dataset for each epoch 

 
 
0.01174. Demonstrates how well the model 

generalises and maintains a low error level when 

applied to unknown data. 

These curves illustrate the system’s capability to 

generalize to new data compared to the training data 

set. 

Tables 4 and 5 show the values of accuracy, 

precision  ،recall, F1, and Specificity measures used 

as metrics to evaluate the performance of the methods 

implemented depending on values: True Negatives 

“TN”, True Positives “TP”, False Negatives “FN”, 

and False Positives “FP” for training and testing 

based on 1D-CNN and CNN-LSTM algorithms 

performed on the dataset to classify transformer oil 

condition. 

Figs. 17 and 18 demonstrate the confusion matrix 

concerning the testing sets in CNN and CNN-LSTM 

algorithms. 

From the previous tables, the proposed 

classification methods achieved ideal results in 

“accuracy”, “precision”, “recall,” and “F1 score” 

measures during the training and testing phases. The 

machine learning and deep learning algorithms 

achieved ideal results of up to 100%, except for the 

Gaussian NB algorithm, which achieved (0.997, 

0.996, 0.993,0.994, and 0.993) results, respectively, 

in the accuracy measures in the training set. The 

algorithm’s performance improved to reach 100% in 

the testing process. 

 

 

 
Figure. 17 The confusion matrixes of the implemented 1D-CNN 
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Figure. 18 The confusion matrixes of the implemented CNN-LSTM 

 

 
Table 4. Results of DL algorithms for Training set 

1D-CNN 

Class 

Name 
"TP" "TN" "FP " "FN " “Accuracy” “precision” “Recall” 

“F1-

score” 

“Specificit

y” 

Class1 204 356 0 0 1 1 1 1 1 

Class2 116 444 0 0 1 1 1 1 1 

Class3 106 454 0 0 1 1 1 1 1 

Class4 134 426 0 0 1 1 1 1 1 

Average 140 420 0 0 1 1 1 1 1 

CNN-LSTM 

Class 

Name 
"TP" "TN" "FP " "FN " “Accuracy” “precision” “Recall” 

“F1-

score” 

“Specificit

y” 

Class1 195 365 0 0 1 1 1 1 1 

Class2 119 441 0 0 1 1 1 1 1 

Class3 114 446 0 0 1 1 1 1 1 

Class4 132 428 0 0 1 1 1 1 1 

Average 140 420 0 0 1 1 1 1 1 

 

 
Table 5. Results of DL algorithms for Testing set 

1D-CNN 

Class 

Name 
"TP" "TN" "FP " "FN " “Accuracy” “precision” “Recall” 

“F1-

score” 
“Specificity” 

Class1 29 52 0 0 1 1 1 1 1 

Class2 9 72 0 0 1 1 1 1 1 

Class3 18 63 0 0 1 1 1 1 1 

Class4 25 56 0 0 1 1 1 1 1 

Average 20.25 60.75 0 0 1 1 1 1 1 

CNN-LSTM 

Class 

Name 
"TP" "TN" "FP " "FN " “Accuracy” “precision” “Recall” 

“F1-

score” 
“Specificity” 

Class1 32 49 0 0 1 1 1 1 1 

Class2 18 63 0 0 1 1 1 1 1 

Class3 16 65 0 0 1 1 1 1 1 

Class4 15 66 0 0 1 1 1 1 1 

Average 20.25 60.75 0 0 1 1 1 1 1 



Received:  September 29, 2024.     Revised: November 12, 2024.                                                                                    513 

International Journal of Intelligent Engineering and Systems, Vol.18, No.1, 2025           DOI: 10.22266/ijies2025.0229.35 

 

Table 6. A comparison between the suggested approach and earlier research using transformer oil as a database 

Year Ref. Classify Method 
Monitoring technique 

(Transformer oil analysis) 
Accuracy 

2020 [13] Gaussian NB Spectroscopy technique 92% 

2021 [8] Decision tree DGA 99.9% 

2021 [14] Random Forest (RF) Oil color and acidity. 89% 

2022 [15] LSTM CT 97% 

2024 Our study RF, Gaussian NB, 1D-CNN, CNN-LSTM FPI 100% 

 

 

The machine learning and deep learning algorithms 

achieved 100% accuracy metrics in the testing set, 

which indicates the effectiveness of the proposed 

system in accurately classifying transformer oil 

conditions and implementing suitable measures for 

each condition. This ultimately prolongs the lifespan 

of transformers, reduces failures, and saves time, 

effort, and cost. Many research studies have focused 

on classifying transformer oil using different 

methods and techniques in the past years.  The 

comparison is based on qualitative measures, such as 

transformer oil laboratory analysis technique, 

classification methods and accuracy value. The 

comparison is shown in Table 6. 

Table 6 compares the efficacy of machine 

learning and deep learning algorithms from prior 

studies with the proposed approach. This comparison 

relies on the outcomes derived from each method. 

This investigation aims to identify the method for 

analysing transformer oil and the algorithm that 

yielded the most accurate classification results for 

differentiating various oil ageing processes. The FPI 

approach employed for analyzing oil qualities, 

despite its simplicity and low cost, demonstrated 

exceptional performance in oil classification methods 

using machine learning (RF and Gaussian NB) and 

deep learning (1D-CNN and CNN-LSTM) 

algorithms, achieving an accuracy value of 100%. 

Consequently, the suggested model is deemed the 

most appropriate and efficient for identifying 

transformer oil degradation and forecasting failures.  

Before their manifestation in a real-world setting, 

thereby conserving effort, time, and resources. 

5. Conclusion 

Power transformers are typically essential and 

costly in power transmission and distribution 

networks. The annual failure rate of power 

transformers, at 3% per unit, incurs substantial 

financial losses. Failures are chiefly ascribed to 

substantial insulating oil spills, leading to significant 

supply disruptions.  

The research initiative aims to create a precise 

and cost-effective model for oil safety evaluation in 

power transformers, utilising defect monitoring and 

transformer oil quality assessment via the FPI 

technique. This method is characterised by low cost 

and rapid response, analysing the oil’s properties 

based on temperature and light reflection spectrum 

through the insulating oil, with a maximum 

temperature of 70 °C. The proposed model initially 

analysed the input data, then preprocessed the raw 

data to optimise the efficacy of the proposed 

algorithms. The preprocessing involved several 

steps: cleansing data by removing null values, 

applying unsupervised learning via Sieve Diagram, 

employing supervised learning with labelled data, 

utilising Exploratory Data Analysis (EDA) 

techniques, and eliminating outliers. Ultimately, this 

data is utilised in Machine Learning techniques 

(Random Forest and Gaussian Naive Bayes) and deep 

learning methodologies (1D-CNN and CNN-LSTM) 

to classify transformer oil as Good, Not Bad, Poor, or 

Very Poor. This preprocessing had the most 

significant effect on the classification and 

identification of oil ageing. The proposed ML (RF 

and Gaussian NB) and DL (1D-CNN and CNN-

LSTM) models were assessed and attained a 

classification accuracy of 100%, surpassing other 

established approaches. Future study will concentrate 

on the strategy and execution of sophisticated, 

dependable, and secure IoT architecture utilising AI 

for the online monitoring and regulation of oil 

conditions in transformers employed in distribution. 

Conflicts of Interest 

The authors declare no conflict of interest.  

Author Contributions 

Conceptualization, Faraqid Q. Mohammed and 

Yassine AYDI; methodology, Faraqid Q. 

Mohammed; software, Faraqid Q. Mohammed; 

validation, Yassine AYDI, and Mohamed Abid; 

formal analysis, Faraqid Q. Mohammed; 



Received:  September 29, 2024.     Revised: November 12, 2024.                                                                                    514 

International Journal of Intelligent Engineering and Systems, Vol.18, No.1, 2025           DOI: 10.22266/ijies2025.0229.35 

 

investigation, Mohamed Abid; resources, Faraqid Q. 

Mohammed; data curation, Yassine AYDI; writing—

original draft preparation, Yassine AYDI and 

Mohamed Abid; writing—review and editing, 

Faraqid Q. Mohammed; visualization, Faraqid Q. 

Mohammed  and Mohamed Abid; supervision, 

Faraqid Q. Mohammed; project administration, 

Faraqid Q. Mohammed; funding acquisition, Yassine 

AYDI. 

References 

[1] A. P. Marques, C. de Jesus Ribeiro, C. H. B. 

Azevedo, J. A. L. dos Santos, F. R. de Carvalho 

Sousa, and L. da Cunha Brito, “Power 

transformer disruptions-a case study”, IEEE 

Electrical Insulation Magazine, Vol. 30, No. 2, 

pp. 17-21, 2014. 

[2] L. Cheng and T. Yu, “Dissolved gas analysis 

principle-based intelligent approaches to fault 

diagnosis and decision making for large oil-

immersed power transformers: A survey”, 

Energies, Vol. 11, No. 4, p. 913, 2018. 

[3] J. Fang, F. Yang, R. Tong, Q. Yu, and X. Dai, 

“Fault diagnosis of electric transformers based 

on infrared image processing and semi-

supervised learning”, Global  Energy 

Interconnection, Vol. 4, No. 6, pp. 596-607, 

2021. 

[4] T. V. Oommen and T. A. Prevost, “Cellulose 

insulation in oil-filled power transformers: part 

II maintaining insulation integrity and life”, 

IEEE Electrical Insulation Magazine, Vol. 22, 

No. 2, pp. 5-14, 2006. 

[5] C. Ranga and A. K. Chandel, “Influence of 

accelerated thermal ageing on the performance 

of alternative solid dielectrics for power 

transformers”, Insight: Non-Destructive Testing 

and Condition Monitoring, Vol. 61, No. 1, pp. 

20-27, 2019. 

[6] J. I. Aizpurua, V. M. Catterson, B. G. Stewart, 

S. D. J. McArthur, B. Lambert, B. Ampofo, G. 

Pereira, and J. G. Cross, “Power transformer 

dissolved gas analysis through Bayesian 

networks and hypothesis testing”, IEEE 

Transactions on Dielectrics and Electrical 

Insulation, Vol. 25, No. 2, pp. 494-506, 2018. 

[7] J. Faiz and M. Soleimani, “Assessment of 

computational intelligence and conventional 

dissolved gas analysis methods for transformer 

fault diagnosis”, IEEE Transactions on  

Dielectrics and Electrical Insulation, Vol. 25, 

No. 5, pp. 1798-1806, 2018. 

[8] G. Odongo, R. Musabe, and D. Hanyurwimfura, 

“A multinomial dga classifier for incipient fault 

detection in oil-impregnated power 

transformers”, Algorithms, Vol. 14, No. 4, p. 

128, 2021, doi: 10.3390/a14040128. 

[9] V. G. Arakelian, “The long way to the automatic 

chromatographic analysis of gases dissolved in 

insulating oil”, IEEE Electrical Insulation 

Magazine, Vol. 20, No. 6, pp. 8-25, 2004. 

[10] J. Singh, Y. R. Sood, and P. Verma, “The 

influence of service aging on transformer 

insulating oil parameters”, IEEE Transactions 

on Dielectrics and Electrical  Insulation, Vol. 

19, No. 2, pp. 421-426, 2012. 

[11] J. F. Salmerón, A. M. Hidalgo, M. Sanchez-

Miron, and E. Molina-Grima, “Measuring the 

colour of virgin olive oils in a new colour scale 

using a low-cost portable electronic device”, 

Journal of Food Engineering, Vol. 111, No. 2, 

pp. 247-254, 2012. 

[12] D. Mussina, A. Irmanova, P. K. Jamwal, and M. 

Bagheri, “Multi-modal data fusion using deep 

neural network for condition monitoring of high 

voltage insulator”, IEEE Access, Vol. 8, pp. 

184486-184496, 2020. 

[13] D. Firouzimagham, P. Aminaie, Z. Shayan, M. 

Sabouri, and M. H. Asemani, “Online 

transformer oil analysis based on spectroscopy 

technique and machine learning classifier: 

Experimental setup”, In: Proc. of the 15th 

International Conf. on Protection and 

Automation of Power Systems (IPAPS), Shiraz, 

Iran, pp. 30-36, 2020.  

[14] M. E. A. Senoussaoui, M. Brahami, and I. 

Fofana, “Transformer oil quality assessment 

using random forest with feature engineering”, 

Energies, Vol. 14, No. 7, p. 1809, 2021. 

[15] J. Ramesh, S. Shahriar, A. R. Al-Ali, A. Osman, 

and M. F. Shaaban, “Machine Learning 

Approach for Smart Distribution Transformers 

Load Monitoring and Management System”, 

Energies, Vol. 15, No. 21, p. 7981, 2022. 

[16] J. C. C. Araújo, P. S. S. dos Santos, B. Dias, J. 

M. M. M. de Almeida, and L. C. C. Coelho, 

“Low-Cost Wideband Interrogation System for 

Fiber Optic Sensors”, IEEE Sensors Journal, 

Vol. 23, No. 13, pp. 14315-14322, 2023. 

[17] C. Fan, M. Chen, X. Wang, J. Wang, and B. 

Huang, “A review on data preprocessing 

techniques toward efficient and reliable 

knowledge discovery from building operational 

data”, Frontiers in Energy Research, Vol. 9, p. 

652801, 2021. 

[18] A. Al-Hashedi, B. Al-Fuhaidi, A. M. Mohsen, 

Y. Ali, H. A. Gamal Al-Kaf, W. Al-Sorori, and 

N. Maqtary, “Ensemble Classifiers for Arabic 

Sentiment Analysis of Social Network (Twitter 



Received:  September 29, 2024.     Revised: November 12, 2024.                                                                                    515 

International Journal of Intelligent Engineering and Systems, Vol.18, No.1, 2025           DOI: 10.22266/ijies2025.0229.35 

 

Data) towards COVID‐19‐Related Conspiracy 

Theories”, Applied Computational Intelligence 

and Soft Computing, Vol. 2022, No. 1, p. 

6614730, 2022. 

 


