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Abstract: Intrusion detection is a crucial aspect of maintaining the security of computer network devices. With the 

advancement of Internet of Things (IoT) technology, the need for intrusion detection has become even more critical 

due to the many IoT devices that remain inadequately protected due to resource constraints. Although various intrusion 

detection methods have been developed, many of them have not been optimized to address the resource limitations of 

IoT devices, such as limited computational capacity and low power consumption. Furthermore, existing feature 

selection methods often overlook the potential of combining various selection techniques to enhance accuracy and 

efficiency. This research introduces a novel intrusion detection framework that integrates multiple feature selection 

algorithms—Pearson Correlation, Spearman Correlation, and Mutual Information—during the pre-processing phase, 

aiming to reduce data complexity and improve classification accuracy. Unlike prior approaches that apply single-
method feature selection, our method combines these techniques to capture both linear and non-linear dependencies, 

ensuring that only the most relevant features are retained. When evaluated on the UNSW-NB15 dataset, the proposed 

Deep Feedforward Neural Network (DFNN) classifier achieved an accuracy of 89.23%, outperforming other models 

in terms of accuracy and training efficiency. These improvements make the model better suited for real-world IoT 

environments with computational limitations. 
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1. Introduction 

The Internet of Things (IoT) has connected 

various devices and is widely used across multiple 
sectors. However, the growing number of IoT users 

and services presents significant security challenges. 

Security vulnerabilities in IoT systems can jeopardize 
applications and services, necessitating further 

research to ensure the confidentiality, integrity, and 

availability of data are maintained [1]. One of the 
solutions to address threats to computer networks and 

information systems is an intrusion detection system. 

Intrusion detection enables quicker identification and 

response to potential threats, allowing for early 
actions that can safeguard an institution's valuable 

assets. Intrusion detection systems are designed to 

detect suspicious behavior or patterns in network 

traffic and system activities. This detection is crucial 

for identifying potential threats to the existing 
systems. The most important factors in combating 

attacks are early detection and the segregation of 

network traffic [2]. The development of intrusion 

detection systems is then carried out with a focus on 
achieving accurate classification and minimizing 

false alarms [3]. 

Researchers have developed various methods to 
enhance the effectiveness of network intrusion 

detection systems. One such method is the use of 

artificial intelligence, which allows the system to 
recognize intrusions more accurately. The 

application of Deep Neural Networks (DNN) in 

intrusion detection systems has shown promising 

results [4][5]. DNNs can learn from patterns in large 
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datasets, which enables them to improve accuracy 
and reduce the number of false alarms. DNNs are 

highly effective in dynamic networks that frequently 

undergo changes due to their ability to continuously 

learn and adapt. 
The capability of the developed model in 

detecting intrusions in artificial intelligence largely 

depends on the pre-processing stage. At this stage, 
input features are used as data inputs for the model to 

learn patterns associated with attacks. Feature 

selection becomes crucial in enhancing the efficiency 
and effectiveness of the intrusion detection model [6]. 

The purpose of feature selection is to identify and 

select the most relevant and informative features to 

be used as inputs when training the detection model. 
This helps reduce data dimensionality, thereby 

lowering model complexity and speeding up the 

training process. In the context of intrusion detection, 
speed and accuracy are of utmost importance [7]. 

With feature selection, the effective features will 

provide faster and more accurate insights into 
suspicious activities.  

This research aims to reduce data dimensionality 

by applying a feature selection method that combines 

Pearson Correlation, Spearman Correlation, and 
Mutual Information. Meanwhile, the intelligent 

technique for classifying attacks in this study uses a 

Deep Feedforward Neural Networks (DFNN) 
classifier. The DFNN is a type of DNN in which 

information flows forward from the input layer to the 

output layer without any feedback loops. The 

proposed method in this research contributes to three 
key areas: 

• Propose an intrusion detection method for IoT 

networks based on DFNN, with a focus on 

accuracy and lightweight, fast computational 
processes. 

• Introduce a combination of Pearson Correlation, 

Spearman Correlation, and Mutual Information 

algorithms to select features closely related to 
the labels and reduce the complexity of 

unnecessary features. 

• Evaluate the proposed method using a public 

dataset, which has been widely referenced in 

intrusion detection research. 
The remainder of this article is structured as 

follows. Section 2 presents research related to feature 

selection methods and the use of DFNN as a classifier. 
Section 3 describes the proposed method for intrusion 

detection using DFNN and feature selection in this 

study. Section 4 presents the analysis and outcomes 
of the methods implemented in the tests. Section 5 

provides conclusions based on the test results. 

2. Literature review 

Research on intrusion detection to address 

network security challenges has advanced rapidly. 

One approach that continues to be refined is the 
application of DFNN to distinguish between attack 

and non-attack scenarios [2]. Efforts to enhance 

DFNN performance focus on improving the quality 
of datasets used as model input. Feature selection in 

the dataset is conducted through various methods to 

retain informative features and discard less useful 

ones. Broadly, there are three main approaches for 
selecting features to be used as classifier input, 

enabling the model to learn more effectively and 

accurately: the filter-based approach, the wrapper-
based approach, and the embedded approach. 

Studies employing filter-based methods select the 

optimal features by measuring the statistical 
relationship between features and class labels, 

without involving any specific model in the selection 

process. Among the relevant studies, [8] proposes the 

FS-DL method, which combines feature selection 
and deep learning to enhance network intrusion 

detection. Feature selection in this study utilizes 

standard deviation and association rule mining 
techniques. This method is designed to identify and 

select key features that contribute to improving 

accuracy, reducing redundancy, and lowering 
computational load. FS-DL minimizes the number of 

features used and adopts a simple neural network 

structure. Experimental results from the NSL-KDD 

and UNSW-NB15 datasets indicate enhanced 
detection performance with a reduced number of 

features. FS-DL has been successfully implemented 

in a Software-Defined Networking (SDN) 
environment, showcasing its adaptability to various 

settings. However, despite FS-DL's strong 

performance in binary classification, its accuracy in 

multi-class classification remains low. The study 
conducted by [7] addresses feature selection in 

Intrusion Detection Systems (IDS) based on DNN 

with the aim of enhancing accurate classification and 
reducing the number of false alarms. The datasets 

utilized in this research are NSL-KDD, UNSW_NB-

15, and CIC-IDS-2017. The research methodology 
includes the use of standard deviation, mean, and 

median to identify the most relevant features. The 

selected features were then applied to the DNN for 

intrusion detection and classification. The model's 
effectiveness was assessed using metrics including 

accuracy, precision, recall, F-score, and false positive 

rate. The results indicate that statistical approaches in 
feature selection can effectively enhance intrusion 

detection. While the study highlights the advantages 

of the feature selection process, it also emphasizes the 
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need for further evaluation of the algorithms used on 
more diverse datasets. The work by [9] presents an 

advanced feed-forward neural network (FFDNN) 

model that incorporates a filter-based feature 

selection technique to tackle the increasing security 
challenges in cloud computing. The FFDNN 

classifier is provided with feature inputs that have 

undergone selection using the Extra Tree Classifier, 
with the aim of improving both accuracy and 

efficiency in intrusion detection systems. The 

FFDNN model reached its peak accuracy of 99.53% 
on the NSL-KDD dataset, 94.45% on the UNSW-

NB15 dataset, and 99.80% on the CIC-IDS 2017 

dataset. A notable drawback of this research is the 

high computational burden when applied in real-time 
scenarios due to the complexity of deep learning and 

extensive data processing involved in feature 

selection. 
The second approach utilized for feature selection 

is the wrapper method. This technique selects 

features by directly evaluating the model's 
performance for each combination of features, 

thereby choosing features based on their impact on 

the model's accuracy. The investigation by [10] 

applied the Wrapper-Based Feature Extraction Unit 
(WFEU) using Extra Trees classification to enhance 

the detection capabilities of Feed-Forward Deep 

Neural Networks (FFDNN). This study aimed to 
address the limitations of wireless intrusion detection 

systems. Efficient and accurate intrusion detection in 

wireless networks is crucial for network security in 

the era of the Internet of Things (IoT). Testing on the 
UNSW-NB15 dataset, WFEU produced an optimal 

feature vector with 22 attributes, achieving an overall 

accuracy of 87.10% for binary classification and 
77.16% for multi-class classification. Meanwhile, on 

the AWID dataset, the feature vector reduced to 26 

attributes yielded an overall accuracy of 99.66% for 
binary classification and 99.77% for multi-class 

classification. The presence of numerous features 

during the training process can result in prolonged 

processing times and substantial computational 
demands. Thus, dimension reduction is essential in 

the preprocessing phase to manage these challenges 

effectively. The study [11] combines Principal 
Component Analysis (PCA) and Grey Wolf 

Optimization (GWO) for feature engineering as input 

to a Deep Neural Network (DNN) classifier. PCA is 
used to reduce data dimensions by simplifying the 

feature space without sacrificing essential 

information. Conversely, GWO, inspired by the 

hunting behavior of grey wolves within their social 
hierarchy, is employed to enhance feature selection. 

The results of this study demonstrate a 15% increase 

in classification accuracy and a 32% reduction in 

training time compared to various machine learning 
methods, such as K-Nearest Neighbor (KNN), Naive 

Bayes, Random Forest (RF), SVM, and DNN without 

PCA-GWO. The exploration conducted by [12] aims 

to enhance intrusion detection in Wi-Fi networks by 
proposing Ensemble Binary Detection Models 

(EBDM). EBDM converts multi-class detection into 

binary detection models by utilizing a Binary Model 
(BM) dedicated to each target class. This approach 

integrates Feature Selection (FS), Stack Auto 

Encoder (SAE), and Random Sampling (RS) 
methods to improve detection performance, while 

also introducing Ensemble FS (EFS) and Ensemble 

DB to enhance detection accuracy. EFS consists of 

three Decision Trees (DT) for feature ranking and 
two for feature selection. Feature selection is 

performed using Support Vector Machine and 

Logistic Regression (LR). The integration of 
Squeeze-and-Excitation blocks with a DNN was also 

implemented to enhance DNN performance. 

Experimental results demonstrate that EBDM can 
more accurately detect three types of wireless attacks 

compared to previous approaches, particularly on the 

AWID dataset. For four-class detection, EBDM 

achieved an accuracy of 99.625% and an F1 Score of 
99.250%. The best detection results in Binary Models 

(BMs) showed accuracy ranging from 98.665% to 

99.998% and F1 Scores ranging from 80.462% to 
99.961%, with the number of selected features (NSF) 

ranging from 12 to 63. The study [6] discusses the 

selection of Dimension Reduction (DR) methods 

using Linear Discriminant Analysis (LDA), t-
Distributed Stochastic Neighbor Embedding (t-SNE), 

and Principal Component Analysis (PCA), with a 

DNN as the classifier. The results indicate that the 
LDA method has a faster training time compared to 

PCA, while t-SNE has the longest training time. 

However, t-SNE demonstrates better accuracy than 
the other methods. Among the three Feature Selection 

(FS) methods employed—filter, wrapper, and 

embedded—the wrapper method achieved higher 

accuracy, although it also incurs higher 
computational costs. 

The third approach employed for feature 

selection is the embedded method. In this approach, 
feature selection occurs during the model training 

process, prioritizing the most relevant features based 

on their weights or contributions to the classification 
outcome. The embedded method for selecting the 

best features to improve system detection 

performance was implemented in [13]. This study 

evaluates the combination of several regularization 
techniques, L1 regularization (Lasso), L2 

regularization (Ridge), elastic net, and dropout, in 

terms of their impact on DNN-based IDS 
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performance. Experiments were conducted using the 
CIC-IDS-2017, UNSW_NB-15, and NSL-KDD 

datasets. Hyperparameter optimization using 

GridSearchCV was also employed to determine the 

dropout probability values. The results indicate that 
dropout is more effective compared to L1, L2, and 

elastic net regularization, and that combining dropout 

with other regularization techniques yields better 
results. Deep learning was utilized by [14] for feature 

selection to be used as input for the DNN classifier. 

The proposed deep learning model is a Deep 
Autoencoder (DAE). Hyperparameter optimization 

was also performed through a combination of grid 

search and random search to improve model 

performance. The performance of the proposed 
model was assessed using the NSL-KDD and CSE-

CIC-ID2018 datasets. The results obtained show 

better performance compared to other models. 
However, the significant time and computational 

resources required still pose a challenge in this 

research. In [15], the feature selection method 
utilized is the Greedy Recursive Feature Elimination 

with Cross-Validation (GRFECV) algorithm. This 

method is an enhancement of the popular Recursive 

Feature Elimination with Cross-Validation (RFECV) 
algorithm, incorporating a 'greedy' approach to select 

an optimal subset of features. GRFECV is designed 

to address the limitations of RFECV by more 
comprehensively considering the importance of each 

feature through cross-validation, enabling more 

efficient and effective feature selection to improve 

detection accuracy. The testing results indicate that 
GRFECV outperforms RFECV and other algorithms. 

However, the method has notable drawbacks, 

including substantial computational requirements 
when processing large datasets with many features. 

Additionally, the algorithm is highly dependent on 

the model used, as features deemed important in one 
model may be less significant in another. 

Among the three approaches examined, the filter-

based method exhibits the lowest power consumption, 

as it does not require model involvement during the 
feature selection process [16]. Subsequent studies 

have implemented the filter-based approach utilizing 

only a single statistical method. The Pearson 
correlation method was employed in the study [17] to 

select features with high correlation to the target 

feature, aiming to enhance the performance of 
machine learning models. In this research, around 40 

features were chosen from a total of 77 features in the 

CICIDS 2017 dataset using Pearson correlation. The 

results demonstrated an improvement in both the 
efficiency and overall performance of the system. IoT 

networks are vulnerable to cyber attacks due to the 

large number of connected devices with limited 

computational power and storage capacity. The study 
in [18] highlights the need for effective intrusion 

detection systems for Internet of Things (IoT) 

networks. The proposed method involves filter-based 

feature selection using Pearson correlation to 
eliminate less relevant features and the use of 

Generative Adversarial Networks (GANs) to address 

class imbalance issues in the UNSW-NB15 dataset. 
The classifier used in this study is a DNN. The results 

indicate that the proposed model successfully 

improved intrusion detection accuracy from 84% to 
91% with the assistance of synthetic data generated 

by GANs. A drawback of using a single statistical 

method, such as Pearson correlation, lies in its limited 

ability to detect only linear relationships, leaving 
non-linear relationships unidentifiable. 

Based on the literature discussed in this section, 

there is an opportunity to enhance the capabilities of 
filter-based methods, which have demonstrated high 

accuracy alongside low power consumption. The 

integration of multiple filtering techniques has the 
potential to improve intrusion detection accuracy 

while maintaining energy efficiency. Previous 

studies have not integrated multiple statistical 

methods concurrently, even though this approach 
could harness the strengths of each method, 

especially for capturing both linear and non-linear 

relationships simultaneously. Therefore, this research 
aims to combine Pearson Correlation, Spearman 

Correlation, and Mutual Information to develop an 

effective and lightweight Intrusion Detection System 

(IDS) suitable for practical application in an IoT 
environment. 

3. Experimental methodology 

The experimental methodology consists of 

several stages. The first stage involves optimizing the 

dataset by removing zero-valued data, then 

standardizing the values and encoding the data that is 
still in numeric form. The second stage is selecting 

the features to be included in the classifier. The third 

stage involves training the model using the dataset to 
obtain the best intrusion detection model. Finally, the 

fourth stage is to evaluate the model’s performance 

metrics by testing it on the dataset. The schematic of 
the proposed approach is as shown in Figure 1. 

3.1 Proposed feature selection technique for 

intrusion detection and classification 

Statistical feature selection methods, such as 
Pearson correlation, Spearman correlation, and 

Mutual Information, are extensively applied in 

machine learning due to their efficiency in 
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Figure 1. Schematic of the proposed approach 

 

identifying relevant features. These techniques have 

consistently demonstrated strong performance in 

isolating features that contribute meaningfully to 
classification tasks, garnering positive evaluations in 

various applications. By quantifying relationships 

between variables, these methods assist in refining 

feature sets, enhancing model interpretability, and 
optimizing classification accuracy. 

Pearson's correlation coefficient can be used to 

evaluate the similarity between two features and to 
determine how it affects the parameter for 

accelerating convergence [19]. Pearson's correlation 

algorithm is a statistical method utilized to assess the 

intensity and orientation of a linear relationship 
between two quantitative variables. Pearson's 

correlation value ranges from -1 to +1, and its 

correlation coefficient is denoted by 𝑟. A value of -1 
indicates a perfect negative correlation, meaning 

there is a perfectly linear negative relationship 

between two variables. A value of +1 indicates a 

perfect positive correlation, meaning there is a 
perfectly linear positive relationship between two 

variables. A value of 0 indicates the absence of any 

linear relationship between the two variables, 

meaning that changes in one variable do not result in 

predictable changes in the other. The value of 𝑟 is 

formulated as follows Eq. (1). 

 

𝑟 =
∑(𝑥𝑖 − 𝑥)(𝑦𝑖 − 𝑦)

√∑(𝑥𝑖 − 𝑥)2 ∑(𝑦𝑖−𝑦)2
 (1) 

 

where 𝑥𝑖 and 𝑦𝑖 represent the individual values of the 

two measured variables, 𝑥  is the average of the 𝑥 

variable, and 𝑦 is the average of the 𝑦 variable.  
Spearman correlation, commonly referred to as 

Spearman's rank correlation coefficient or 

Spearman's rho, is a method for evaluating the 
relationship between two variables when the data is 

expressed in ranked form [20, 21]. This method 

assesses the monotonic relationship between the 

variables, indicating that as one variable rises, the 
other variable tends to consistently increase or 

decrease as well. The formula used to determine the 

value of the Spearman correlation coefficient is Eq. 
(2). 

 

𝜌 = 1 −
6 ∑ 𝑑𝑖

2

𝑛(𝑛2 − 1)
 (2) 

 

where 𝜌 is the Spearman correlation coefficient, 𝑑𝑖 is 

the difference in the ranks of each observation pair, 

and 𝑛 is the number of entries. A Spearman's rank 

correlation coefficient value of +1 indicates a perfect 
positive monotonic relationship, meaning that as one 

variable increases, the other variable also increases. 

Conversely, a value of -1 signifies a perfect negative 
monotonic relationship, where an increase in one 

variable corresponds to a decrease in the other. A 

value of 0 signifies that there is no monotonic 

relationship between the two variables involved. 
The Mutual Information (MI) algorithm is a 

statistical method used to evaluate the extent to which 

two random variables share information. The value of 
mutual information indicates the level of dependence 

between the two variables; a greater value signifies a 

stronger dependence [22]. Unlike the Pearson 
correlation, which is limited to linear relationships, 

MI is capable of capturing both linear and non-linear 

relationships between variables. The formula used to 

determine the relationship between variables in MI is 
given in Eq. (3) or Eq. (4). 

 



Received:  September 29, 2024.     Revised: November 21, 2024.                                                                                    629 

International Journal of Intelligent Engineering and Systems, Vol.18, No.1, 2025           DOI: 10.22266/ijies2025.0229.44 

 

𝐼(𝑋; 𝑌) = 𝐻(𝑋) − 𝐻( 𝑋 ∣ 𝑌 ) (3) 

or  

𝐼(𝑋; 𝑌) = 𝐻(𝑋) + 𝐻(𝑌) − 𝐻(𝑋, 𝑌) (4) 

 

where 𝐻(𝑋) is the entropy of the X variable, 𝐻(𝑌) is 

the entropy of the variable Y, 𝐻(𝑋, 𝑌)  is the 

combined entropy of X and Y, and 𝐻( 𝑋 ∣ 𝑌 ) 

represent the conditional entropy of X given Y. 
Based on the studies previously discussed, this 

research integrates the Pearson correlation, Spearman 

correlation, and Mutual Information methods by 

selecting the best features from each approach. This 
integration aims to leverage the strengths of each 

method while compensating for their individual 

weaknesses, thereby developing a more robust 
feature selection technique. Algorithm 1 outlines the 

steps from the initial dataset processing, feature 

selection based on the proposed method, 
classification, and ultimately the generation of the 

confusion matrix. 

3.2 Preprocessing dataset  

The dataset utilized in this research is publicly 
accessible and provided in CSV format. The dataset 

was read and stored in a variable before undergoing a 

cleaning process to remove duplicate entries and 
missing values. Encoding was then performed to 

convert categorical values into a format that can be 

processed by machine learning algorithms. In this 

research, One-Hot Encoding was used to convert 
categorical features into a numerical format. Along 

with converting certain features to numeric values, 

the labels were also encoded using One-Hot 
Encoding. 

Data normalization is essential to standardize the 

characteristics of the data within a specific range, 
such as transforming all values to fall within the 0 to 

1 range. This transformation significantly aids in 

accelerating convergence and enhances the 

comparability of features. In this research, Standard 
Scaler was applied to normalize the dataset. 

3.3 Feature selection 

Feature selection in this study was conducted in 
two forms, commonly referred to as feature 

engineering: selecting a subset of features based on 

specific criteria and reducing the number of features. 
The aim of feature selection is to ensure that only the 

most contributive features are included in the training 

process, without sacrificing essential information. 

Feature selection was performed using the Pearson, 

Spearman, and Mutual Information algorithms. The 
features identified by these three algorithms were 

then combined into a single set, with duplicate 

features removed beforehand. 

Data splitting was conducted by dividing the 
dataset into separate parts for training, validation, and 

testing purposes. This division aims to ensure that the 

model developed can generalize effectively to unseen 
data. In this study, the data was split with 75% 

allocated for training and 25% for validation. Both 

the training and validation sets were drawn from the 
training dataset. For testing purposes, a new dataset, 

different from the training dataset, was used. 

The Deep Feedforward Neural Network (DFNN) 

is constructed from a combination of feedforward 
neural networks (FNN) without feedback 

connections. The key components of a DFNN include 

the input layer, one or more hidden layers, and output 
layer. Each layer comprises multiple neurons, fully 

connected to the neurons in the subsequent layer [23]. 

The input layer serves as the entry point for initial 
data into the network. The hidden layers, situated 

between the input and output layers, may contain 

numerous neurons, making the network "deep". Each 

neuron in the hidden layers processes the output from 
the previous layer, applies an activation function, and 

then passes the result to the next layer in a process 

known as feedforward. The final layer, or output 
layer, produces the network’s prediction based on the 

processed input data. The detailed architecture and 

configuration used in this study are presented in 

Table 2. 
 

Algorithm 1. The proposed method PCSCMI 

Input:  

    - Dataset 𝐷 = {𝑑1, 𝑑2, … , 𝑑𝑛}, where 𝑛 is the 

number of data instances. 
Output:  

    - Confusion Matrix (Accuracy, Precision, Recall, 

F1 Score) 
 

Step 1: Dataset Optimization 

1. Remove duplicate data: 

    𝐷′ = 𝑓unique(𝐷) 

2. Handle missing values: 

    𝐷′′ = 𝑓null(𝐷′) 
3. Standardize numerical features: 

    - Let  𝐷num
′′  be the subset of numerical features in 

𝐷′′. Apply standardization: 

𝐷std =
𝐷num

′′ − μ

σ
 

      where μ is the mean and σ is the standard 
deviation of each numerical feature. 

4. One-Hot Encoding for categorical features 
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    - Let 𝐷cat represent the categorical features subset. 
Apply One-Hot Encoding: 

𝐷encoded = OHE(𝐷cat) 
Step 2: Feature Selection 

1. Calculate Pearson correlation using Eq. (1) 

    - Add features to set 𝐶𝑝 if Pearson correlation 

coefficient > 0.3 
2. Calculate Spearman correlation using Eq. (2) 

    - Add features to set 𝐶𝑠 if Spearman correlation 

coefficient > 0.3 
3. Calculate Mutual Information using Eq. (3) 

    - Add features to set 𝐶𝑚 if Mutual Information 

value > 0.3 
4. Combine feature sets 

    - Merge sets 𝐶𝑝, 𝐶𝑠, and 𝐶𝑚 into feature sets:  

𝐶𝑝𝑠𝑚 =  𝐶𝑝 ∪ 𝐶𝑠 ∪ 𝐶𝑚 

5. Remove redundant features: 

    - Eliminate redundant features from 𝐶𝑝𝑠𝑚 based 

on high correlation. 
6. Combine One-Hot Encoded categorical features: 

    - Combine set 𝐶𝑝𝑠𝑚 with categorical features to 

form the final feature set 

𝐷final = 𝐶psm ∪ 𝐷encoded 

 

Step 3: Classification using DFNN 
1. Split the dataset: 

    - Devide 𝐷final into 75% training data 𝐷train and 

25% validation data 𝐷val 

2. Define DFNN model architecture 
    - Construct a DFNN with three hidden layers 

(ReLU activation) and an output layer (sigmoid 

activation): 

 ℎ𝑖 = ReLU(𝑊𝑖 ⋅ 𝐷final + 𝑏𝑖) 
 for 𝑖 = 1, 2, 3 and: 

 𝑦 = σ(𝑊out ⋅ ℎ3 + 𝑏out)  

3. Compile the model 
    - Configure the model with binary cross-entropy 

loss function and Adam optimizer 

Step 4: Train the DFNN Model 
1. Train the model: 

    - Train the model on 𝐷train for a specified number 

of epochs. 
Step 5: Evaluate the DFNN Model 

1. Test the model: 

    - Evaluate the model on 𝐷val to assess its 

performance 
Step 6: Calculate Confusion Matrix and Evaluation 

Metrics 

1. Predict on testing data: 
    - Use the model to make predictions on the testing 

dataset 

2. Calculate the confusion matrix: 

    - Compute the confusion matrix based on the 
prediction results 

3. Calculate evaluation metrics: 
    - Compute accuracy, recall, precision, and F1-

Score from the confusion matrix 

Return: 

    - Confusion Matrix with metrics 

 

Table 1. Features used in the training process. 

No. Feature No. Feature 

1 ct_dst_sport_ltm 14 proto 

2 ct_dst_src_ltm 15 rate 

3 ct_src_dport_ltm 16 sbytes 

4 ct_state_ttl 17 service 

5 dbytes 18 sload 

6 dload 19 sloss 

7 dloss 20 smean 

8 dmean 21 spkts 

9 dpkts 22 state 

10 dtcpb 23 stcpb 

11 dttl 24 sttl 

12 dur 25 swin 

13 dwin   

 

Table 2. DFNN architecture and configuration. 

Criteria  Values 

Model  Sequential 

Number of hidden layers 3 

Size of input  UNSW_NB15: 

25 

Number of neurons in 
hidden layers  

50,100,50 

Activation function used in 

the hidden layer 

ReLU 

Activation function utilized 
in the output layer 

Sigmoid 

Learning rates 0.01 

Optimizer Adam 

Batch-size 128 

Epochs 20 

3.4 Dataset overview 

UNSW NB-15 stands for University of New 

South Wales (UNSW) Network Behavior - 15. The 
UNSW_NB-15 dataset was developed to address the 

limitations of its predecessors, KDD Cup 1999 and 

NSL_KDD. This dataset offers more realistic and 

relevant resources for research in network intrusion 
detection, aiming to reflect more diverse and 

contemporary network conditions. Created by the 

University of New South Wales, the dataset consists 
of 2 million instances and 49 features that describe 

various aspects of network traffic. It includes nine 

labels: Normal, Generic, Analysis, Exploits, DoS, 
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Fuzzers, Reconnaissance, Shellcode, Backdoor, and 
Worms [24]. The training dataset comprises 44 

features. The dataset utilized in this study is presented 

in a compact format, specifically named 

UNSW_NB15_training-set.csv for the training data 
and UNSW_NB15_testing-set.csv for the testing data. 

These files contain the necessary information for 

evaluating the performance of the proposed model 
[25]. 

3.5 Evaluation metrics 

The metrics used to evaluate intrusion detection 
models include accuracy, recall, precision, and F1 

score. Among these, recall and accuracy are the most 

utilized evaluation metrics in various studies [26]. 

Evaluation metrics are derived from the data in the 
confusion matrix produced during the model 

evaluation phase. The confusion matrix categorizes 

data into four categories: true positive (TP), true 
negative (TN), false positive (FP), and false negative 

(FN). TP refers to instances where the model 

correctly classifies an attack as an attack. TN refers 
to instances where the model correctly classifies 

normal traffic as normal. FP occurs when the model 

incorrectly classifies normal traffic as an attack, 

while FN occurs when the model incorrectly 
classifies an attack as normal traffic. 

Accuracy is characterized as the fraction of 

instances that were predicted correctly in relation to 
the overall number of instances within the test dataset. 

A higher accuracy value indicates that the machine 

learning model is performing better. Accuracy serves 

as a useful metric when the training dataset contains 
balanced class distributions [27]. In intrusion 

detection, accuracy provides an overall view of how 

effectively the model distinguishes between normal 
and suspicious traffic. Thus, accuracy can serve as an 

initial indicator of model performance. However, in 

the context of imbalanced data, using accuracy alone 
can lead to bias or incorrect assessments of the 

model's effectiveness. Therefore, additional 

indicators are necessary to develop a reliable 

intrusion detection model. Accuracy is defined 
according to Eq. (5). 

 

𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =  
𝑇𝑃 + 𝑇𝑁

𝑇𝑃 + 𝑇𝑁 + 𝐹𝑃 + 𝐹𝑁
 (5) 

 
Precision is defined as the proportion of 

accurately predicted attacks relative to the total 

instances identified as attacks. A higher precision 
value indicates that the model's performance is better, 

as it means that a larger proportion of predicted 

attacks are indeed true attacks. This metric is 

essential in evaluating the model's reliability in 
accurately identifying attack instances while 

minimizing false positives. The formulation for 

precision is given in Eq. (6). 

 

 𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =  
𝑇𝑃

𝑇𝑃 + 𝐹𝑃
 (6) 

 

A high precision value is particularly 

advantageous in minimizing false alarms, as it 
reflects the model's capability to correctly identify 

true intrusions while reducing the occurrence of false 

positives. This means the model is effective in 
distinguishing between legitimate security threats 

and benign activities, which is critical for maintaining 

the reliability of intrusion detection systems and 

ensuring that resources are not wasted on 
investigating non-existent threats. 

True Positive Rate (TPR), also known as Recall, 

is characterized as the proportion of accurately 
predicted attacks compared to the total number of 

actual attacks. A higher Recall value indicates that 

the machine learning model is more effective, as it 
means the model correctly identifies a larger 

proportion of actual attacks. Recall is calculated as 

shown in Eq. (7). 

 

 𝑅𝑒𝑐𝑎𝑙𝑙 =  
𝑇𝑃

𝑇𝑃 + 𝐹𝑁
 (7) 

 

The F1-Score, often called the F1-measure, is the 

harmonic mean of both precision and recall. A higher 
F1-Score signifies that the machine learning model 

performs better, as it reflects a balance between 

precision and recall, combining both metrics into a 
single measure of model performance. The formula 

for the F1-Score is provided in Eq. (8). 

 

𝐹1 − 𝑆𝑐𝑜𝑟𝑒 = 2 ×  
𝑝𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 × 𝑟𝑒𝑐𝑎𝑙𝑙

𝑝𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 + 𝑟𝑒𝑐𝑎𝑙𝑙
 (8) 

4. Result and discussion 

The proposed model was implemented using 
Python on Google Colab. For training and evaluating 

the proposed model, the UNSW-NB15 dataset was 

utilized. The dataset comprises 257,673 rows, 
divided into 175,341 for training and 82,332 for 

testing. The feature selection process resulted in 22 

selected features out of 44 evaluated features. Three 

categorical features were chosen after applying one-
hot encoding. Thus, 25 features were included in the 

next phase, which is the classification process. The 

details of the features involved in this process can be 
found in Table 1. The training process yielded 
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evaluation metrics, including accuracy and loss, as 
shown in Table 3. The classifier achieved an accuracy 

of 93.92%, indicating that the feature selection 

method employed was effective in enhancing the 

model's performance. Fig. 2 illustrates the accuracy 
graphs for both training and validation phases. The 

training accuracy graph shows a gradual increase in 

training accuracy over the initial epochs, which is 
typical as the model learns from the data. After a few 

epochs, the training accuracy appears to stabilize with 

minimal fluctuations, indicating that the model has 
achieved relatively high performance. The accuracy 

then plateaus with no significant improvement, 

reaching a peak of approximately 0.941 in the final 

epoch, suggesting that the model has learned 
sufficiently. The validation accuracy graph also 

shows an initial increase but does not follow the 

smooth trajectory of the training accuracy, exhibiting 
greater fluctuations. 

This suggests that the model might be 

experiencing some variation in the validation data. 
Such fluctuations may indicate a slight degree of 

overfitting, where the model has learned too much 

from the training data and struggles to generalize well 

to new data. Despite this, the validation accuracy 
generally tracks the training accuracy, indicating that 

the model has successfully learned relevant patterns 

in the validation data. In the final epoch, the 
validation accuracy approaches 0.940, closely 

aligning with the training accuracy. Overall, the 

graph illustrates that both validation and training 

accuracies remain consistent, indicating stability in 
the model's performance across different phases of 

evaluation. 

Fig. 3 displays the training and validation loss 
curves. The training loss is notably high at the first 

epoch, with a value of 0.140, but decreases 

significantly as the number of epochs increases. After 
the initial epochs, the rate of decrease in training loss 

slows down and stabilizes with minor fluctuations 

between epochs. The loss then remains relatively 

constant, reaching 0.115 by the final epoch. This 
decline indicates that the model improves over time 

and exhibits minimal prediction errors during 

training. In contrast to the training loss, the validation 
loss starts at a slightly lower value of 0.130 and 

decreases progressively as epochs advance. The 

fluctuations in validation loss are more pronounced 
compared to training loss, suggesting that the model 

may encounter variations in the validation data. The 

validation loss converges to a value of 0.120 by the 

end of the training, which is close to the training loss 
value. 

 
 

 
Figure 2. Training and validation accuracy 

 

Table 3. Results of Training and Validation Evaluation 

Classification 
Feature 

Selection 

Accuracy 

(%) 
Loss Precision Recall 

F1 

Score 

Training 

Time(s) 

DFNN PCSCMI 93.92 0.12 95.32 95.77 95.55 143       
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Figure. 3 Loss Training and validation 

 

Table 4. Test Evaluation Results 

Method 
Feature 

Selection 
Accuracy (%) Loss 

DFNN PCSCMI 89.23 0.22 

 

 

 
Figure. 4 Confusion matrix 

 

 

The confusion matrix displayed in Figure. 4 

illustrates the model’s performance in classifying the 
test data into four categories. The model successfully 

classified 28,603 samples as TP, indicating these 

samples were correctly predicted as positive and truly 

belong to the positive class. A total of 12,567 samples 
were classified as TN, representing correctly 

classified negative samples. Additionally, there were 

1,404 FP cases, where negative samples were 
incorrectly classified as positive, and 1,262 FN cases, 

where positive samples were incorrectly classified as 

negative. 

Table 4 presents the results of the experiments 
conducted on the dataset. The table indicates that the 

accuracy achieved using the proposed feature 

selection method is 89.23%.  This indicates that the 

method is effective in selecting relevant features, 
contributing to a significant improvement in 

classification performance. Table 3 indicates that the 

execution time of the model is 143 seconds. As 
explained by [7], there is a direct relationship 

between energy consumption and execution time 

longer execution times correspond to higher energy 

consumption. Thus, the relatively short execution 
time of the proposed approach suggests that it 

requires less energy. In conclusion, the proposed 

method is not only efficient in terms of time but also 
more energy-efficient compared to other methods 

that may have longer execution times. Our proposed 

method was also tested using various combinations to 
observe the differences in outcomes for each 

configuration. The results indicate that the 

combination of all three methods generally 

outperforms the others, as shown in Figure. 5.  

Fig. 6 provides an overview of studies conducted 

between 2020 and 2024, comparing the proposed 

method (PCSCMI) with prior studies [10], [18], [8], 
and [7]], which use Extra Tree, Pearson Correlation, 

Standard Deviation, and Statistical Selection 

techniques. The references correspond to those in the 
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bibliography for easy identification. [10] reported an 
accuracy of 87.1% when using feature selection with 

the Extra Tree (ET) algorithm. The ET algorithm 

successfully selected 22 attributes as optimal features 

from the UNSW-NB15 dataset. When all features in 
the dataset (42 features) were used, an accuracy of 

87.48% was achieved. Thus, there was a 0.38% 
decrease in accuracy associated with the feature 

optimization performed by ET. The use of ET for 

feature selection proved to be an efficient approach 

in this study, as it was able to maintain high accuracy 
with reduced complexity. 

 

 
Figure. 5 Combined comparison of statistical methods with proposed methods 

 

 
Figure. 6 Comparison of research results with previous research 

 

 

However, the study also noted that the 

computational power required for training, validation, 
and testing the model was significant. Research by 

[18] applied Pearson correlation to eliminate 

irrelevant features from the dataset. Testing 

conducted on the original dataset before performing 
data balancing yielded an accuracy of 84%. This 

accuracy is considered sufficient for detecting the 

presence of attacks or normal traffic, though further 
improvement to the Pearson correlation method 

could still be explored.  

On the other hand, [8] employed standard 

deviation and Association Rule Mining methods for 
feature selection to reduce feature complexity. They 

used six features in their classifier and achieved an 

accuracy of 87.99%. Compared to other methods, this 

study utilized the fewest features while maintaining 
high accuracy. However, one drawback of this 

method is the potential loss of important data. By 

removing features with low standard deviation, the 
approach may discard features that, while not 

individually significant, could be crucial collectively 

in a broader context. Furthermore, some removed 

Extra Trees

[10]

Pearson

Correlation

[18]

Deviation

Standard

 [8]

Statistical

[7]

PCSCMI

(proposed)

Accuracy 87.1 84.4 87.99 89.03 89.23

Accuracy
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features might hold valuable information about more 
complex or rare attacks, potentially leading to 

reduced sensitivity of the model to specific types of 

attacks, especially those less represented in the 

dataset. 
In a subsequent study, [7] achieved an improved 

accuracy of 89.03% by using a combination of 

statistical methods such as standard deviation, mean, 
and median for feature selection. This combination 

was used to assess feature relevance and importance, 

with features exhibiting high deviation and 
significant mean-median differences deemed more 

important for learning. However, statistical methods 

are highly dependent on sample size and data 

distribution. In cases of small sample sizes or non-
normal distributions, the results of feature selection 

may be biased or unrepresentative. For instance, 

features that seem important in a small sample may 
not hold the same significance in a larger population. 

Another limitation of these statistical methods is their 

tendency to overlook non-linear interactions between 
features. These techniques assume that features can 

be evaluated independently based on statistical 

properties alone, whereas non-linear interactions can 

often provide significant predictive value that simple 
statistical analysis might miss. 

Our study, PCSCMI, achieved the highest 

accuracy of 89.23%, indicating significant potential 
improvements in the proposed model. This research 

integrates the strengths of Pearson correlation, 

Spearman correlation, and Mutual Information 

methods. Pearson correlation is employed to identify 
linear relationships between features and the 

specified labels. Features that exhibit a high 

correlation with the labels are selected for inclusion 
in training, as features with high correlation are 

considered to have a stronger relationship in 

predicting the desired outcome. The Spearman rho 
method is used to detect monotonic relationships 

between features and the target label. Unlike Pearson 

correlation, which only detects linear relationships, 

Spearman rho can identify non-linear relationships. 
One of the advantages of Spearman correlation is its 

robustness against outliers. In the context of intrusion 

detection, where data can sometimes be extreme, 
Spearman correlation proves more reliable in 

evaluating such data. This capability of Spearman rho 

compensates for the limitations of Pearson 
correlation. Finally, while Mutual Information can be 

used for linear data, it excels in measuring non-linear 

relationships between features and the target label. 

Additionally, MI helps avoid redundant features or 
those that do not provide new information. The 

advantages offered by the combination of these three 

methods contribute to the superior results of this 

study compared to other previously mentioned 
methods. 

5. Conclusion 

The strategy proposed in this study intends to 
boost the performance of intrusion detection systems 

in Internet of Things (IoT) networks by merging 

feature selection methods with a Deep Feedforward 
Neural Network (DFNN). Effective feature selection 

is essential for reducing data complexity and 

enhancing computational efficiency in IoT 

environments. The method combines Pearson 
Correlation, Spearman Correlation, and Mutual 

Information to select the most relevant features from 

large datasets. Only the important features are used in 
model training, which not only improves intrusion 

detection accuracy but also reduces complexity, 

allowing the model to operate faster and more 
efficiently. 

Experimental results show that the proposed 

method significantly enhances intrusion detection 

accuracy, achieving a rate of 89.23% on the UNSW-
NB15 dataset. Furthermore, removing irrelevant 

features reduces training time and increases 

processing efficiency, making this approach more 
suitable for IoT devices with limited computational 

power. Although the results are promising, the study 

acknowledges some limitations. One key limitation is 
the use of a single dataset for testing, which may 

restrict the generalizability of the results to other IoT 

environments. Further work is needed to test the 

model on diverse datasets and more complex attack 
scenarios to ensure the approach's broad applicability. 

Overall, this study makes a significant contribution to 

optimizing network intrusion detection, both in terms 
of accuracy improvement and computational 

efficiency. In the future, this research could be 

expanded by exploring DFNN parameter 

optimization and addressing challenges related to 
real-time implementation. Additionally, further 

evaluation across multiple standard datasets, such as 

NSL-KDD, will be conducted to enhance the 
generalizability and robustness of the proposed 

method in diverse data environments. 
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