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Abstract: In countries like Indonesia, rice prices significantly influence economic and social dynamics. The prices are 

subject to fluctuations driven by seasonal changes, market demand, and production levels, making accurate forecasting 

crucial. This study proposes a novel forecasting approach called Multivariate Decomposition Combination (MDC) for 

forecasting rice prices in West Java. This approach deconstructs a dataset into trend, seasonal, and residual components, 

applying multiple forecasting models. The final forecasts integrate the best-performing models for each component, 

enhancing overall forecasting accuracy. This study resulted in a method combination of Seasonal Autoregressive 

Integrated Moving Average with Exogenous Variable (SARIMAX) excelling in seasonal prediction and Gated 

Recurrent Unit (GRU) proficient in handling residuals and trend prediction. The combined model performs on a 

multivariate non-linear dataset of West Java’s rice economy, achieving a Mean Squared Error (MSE) of 276,695.7, 

Mean Absolute Error (MAE) of 439.0, and Root Mean Squared Error (RMSE) of 526.0, outperforming deep learning 

individual forecasting approaches. 
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Notation list 

𝑇𝑡     = Trend component 

𝑇�̂�      = Forecasted trend component 

𝑆𝑡     = Seasonal component 

𝑆�̂�      = Forecasted seasonal component 

𝑅𝑡     = Residual component 

𝑅�̂�      = Forecasted residual component 

𝑌𝑡     = Original time series value 

𝑌�̂�      = Final forecasted value 

𝑦𝑡     = Time series value 

𝑡      = Time 

𝑦𝑖     = Actual value 

�̂�𝑖     = Predicted value 

𝑓(𝑡)   = Function of time 

𝑚     = Length of seasonality period 

𝑇      = Number of trees 

ℎ𝑡(𝑥)   = Prediction of the 𝑡-th tree for input 𝑥 

𝑙      = Loss function 

Ω      = LightGBM regularization term  

||𝑤||2  = SVR regularization term 

𝐶      = Penalty parameter 

𝑓𝑘     = 𝑘-th tree 

𝐿𝜖     = 𝜖-insensitive loss function 

𝑓(𝑥𝑖)   = Predicted values  

𝜎      = Sigmoid function 

𝑡𝑎𝑛ℎ   = Hyperbolic tangent function 

𝑊     = Weight matrices  

𝑏      = Bias vectors 

ℎ𝑡     = Hidden state at time  

𝑥𝑡     = Input at time 

𝐶𝑡     = Cell state at time 

𝑓𝑡     = Forget gate  

𝑖𝑡      = Input gate 

𝑜𝑡     = Output gate 

𝑧𝑡     = Update gate 

𝑟𝑡      = Reset gate 

ℎ�̃�     = Candidate activation  

ℎ𝑡     = New hidden state 

𝑐      = Constant  

∅𝑖     = Autoregressive (AR) coefficients 

𝜃𝑖     = Moving Average (MA) coefficient  

Φ𝑖     = Seasonal AR coefficients  
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Θ𝑖     = Seasonal MA coefficients 

∈𝑡     = Error term at time 

𝑠      = Length of the seasonal cycle 

𝑋𝑡     = Exogenous variables  

𝛽      = Coefficients for the exogenous variables 

1. Introduction 

For more than half of the world’s population, rice 

is a primary food staple that supports important 

economic and social aspects. Accurate forecasting of 

rice prices is crucial for decision-making in 

agricultural economics, impacting stakeholders 

across the supply chain, including farmers, traders, 

and policymakers [1-2]. As one of the largest rice 

producers globally [3], Indonesia experiences 

significant price fluctuations due to various factors 

such as seasonal changes, market demand, and 

production levels [2]. West Java, a central rice-

producing province [4], provides a pertinent case 

study for exploring effective forecasting 

methodologies.  

Numerous approaches can be used for price 

forecasting. Xu et al. [5] explored corn price 

forecasting using Neural Network models, with 20 

hidden neurons and two delays, achieving high 

performance. However, previous study does not 

delve deeply into the economic implications of these 

forecasts for different stakeholders in the market. 

Hoque et al. [6] investigated several machine learning 

models, such as Decision Tree, Support Vector 

Regression (SVR), and K-Nearest Neighbor (KNN), 

in multiple datasets, resulting in SVR as the lowest 

error metrics with specific hyperparameters. 

Abunofal et al. [7] compared ARIMA, SARIMA, 

SARIMAX, and multiple linear regression to forecast 

future electricity prices. SARIMAX performed the 

best due to its ability to incorporate the exogenous 

variables. The accuracy of SARIMAX model could 

potentially be further enhanced if it were hybridized 

with another method. Nunna et al. [8] compared 

ARIMA, Facebook Prophet, machine learning, and 

deep learning models to forecast U.S. Housing Price 

Index (HPI). The hybrid model of XGBoost and 

LSTM showed superior performance compared to the 

other models by integrating macroeconomic 

indicators into forecasting models. Sun et al. [9] 

developed a SARIMA-LSTM model that utilized 

keyword search data to forecast electric vehicle 

volumes in China, enhancing accuracy through linear 

and non-linear data patterns. Hybrid models work by 

taking outputs from the SARIMA model and further 

processed by the LSTM network. Jisha et al. [10] 

assembled a hybrid forecasting model combining 

ARIMA and SARIMA with LSTM or GRU to 

enhance stock price predictions by effectively 

managing linear and seasonal trends. Initial stock 

price predictions are made using ARIMA and 

SARIMA, after which residuals are processed and 

refined by LSTM or GRU networks to enhance 

overall forecast accuracy. 

Traditional forecasting methods often rely on 

univariate time series models [5, 8], considering 

historical prices to predict future trends. However, 

these models can fall short of capturing the complex, 

multifactorial influences on data [8-9]. This study 

employs a multivariate framework, incorporating 

multiple variables that can be regulated within the 

supply chain management entities. Factors such as 

rice harvest area, prices of harvested and milled dry 

grain, daily rice production, employee salaries, and 

transportation costs interplay in dynamic ways that a 

univariate approach may not adequately address.  

To address these limitations, this study proposes 

a Multivariate Decomposition Combination (MDC) 

approach. The MDC approach uses decomposition 

techniques to separate time series data into trend, 

seasonal, and residual components for rice price 

prediction. The detailed analysis allows for selecting 

the best-performing model for each component, 

thereby enhancing forecast accuracy and reliability. 

The MDC flexibility allows it to adapt to different 

datasets and conditions, incorporating various data 

sources like economic indicators.  

The findings of this study are expected to 

contribute to developing more robust and accurate 

forecasting combination models for rice prices using 

MDC. This study addresses the limitations of existing 

models and explores innovative combinations of 

statistical, ML, and DL techniques. 

This paper consists of several sections. The 

proposed system is discussed in section 2. Analysis 

of the findings is discussed in section 3. Section 4 

ends with a conclusion.  

2. Methodology 

The methodology discusses the experimental 

setup for this study, which involves a series of steps 

designed to systematically evaluate the performance 

of various forecasting models on rice price data from 

West Java. Fig. 1 shows the general proposed method 

in this study. This section provides a detailed 

explanation of each stage and the specific 

configurations used.  

2.1 Data collection 

The collected data for forecasting rice retail 

prices in West Java used in this study is available at 
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Figure. 1 Proposed method 

 

https://github.com/Danazzz/JabarSupplyChainDatas

et.git. The data range from 2021-2023, focused on 

daily records of rice production and distribution 

factors. The dataset aimed to capture influences on 

rice prices at producer and retail levels, as shown in 

Table 1. The dataset was collected from three key 

sources: BPN (Badan Pangan Nasional) provided 

data on rice production and availability, BI PIHPS 

(Bank Indonesia) offered insights into strategic food 

prices, and BPS (Badan Pusat Statistik) contributed 

macroeconomic indicators and regional agricultural 

outputs. These features were selected for their 

relevance to supply chain stakeholders, allowing 

producers, distributors, millers, and retailers to adjust 

strategies based on actionable data. 

2.2 Data pre-processing 

This step aims to clean, transform, and prepare 

the dataset to ensure high-quality input for the 

forecasting models. Detailed data pre-processing 

steps include handling missing values, data type 

conversion, normalization, data splitting, and dataset 

decomposition. 

Missing values can significantly impact the 

performance of forecasting models [11]. The dataset 

is first examined for missing values. Rows containing 

missing values are removed to ensure data integrity. 

Converting data types ensures that all values are in a 

format suitable for analysis. For the dataset, all values 

are converted to integer data types. Normalization 

scales the data to a specific range, usually between 0 

and 1, which is essential to bring all features to a 

consistent and comparable scale [12]. The Min-Max 

normalization technique is used in this study. The 

transformation ensures that all features contribute 

equally to the model’s training process. The dataset 

is split into training and testing subsets using an 80:20 

ratio. 80% of the data is used for training the models, 

and 20% is reserved for testing their performance. Let 

𝑋 be the dataset 𝑌 be the target variable (rice price).  

2.3 Data decomposition 

Dataset decomposition involves breaking down 

data into trend, seasonal, and residual components 

[13]. 

2.3.1 Trend component 

The trend component (𝑇𝑡) captures the long-term 

progression of the time series, captured by the 

equation Eq. (4), 

 

𝑇𝑡 = 𝑓(𝑡) (4) 

 

where 𝑓(𝑡) underlying shifts over time, independent 

of seasonal or irregular changes. 

2.3.2 Seasonal component 

The seasonal component (𝑆𝑡) represents 

repeating short-term cycles in the time series, 

described by Eq. (5), 

 

𝑆𝑡 = 𝑆(𝑡 + 𝑚) (5) 

 

where 𝑚  defined to capture regular fluctuations at 

consistent intervals. 

 

 

https://github.com/Danazzz/JabarSupplyChainDataset.git
https://github.com/Danazzz/JabarSupplyChainDataset.git
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Table 1. Dataset Description 
Name Description Code 

Supply data 

Harvest area 
Rice paddy field area, 
percentage (%) of rice 
harvest area 

a 

Price of 
harvested 
dry grain, 
Farmer-level 

Price of harvested dry grain 
at the farmer level. (Rp/Kg) 

b 

Price of 
harvested 
dry grain, 
Milling-level 

Price of harvested dry 
unhusked rice at the milling 
level. (Rp/Kg) 

c 

Price of dry 
milled grain, 
Milling-level 

Price of milled dry 
unhusked rice at the milling 
level. (Rp/Kg) 

d 

Milled Rice 
Price 

The average of the price of 
medium and premium 
milled rice. (Rp/Kg) 

e 

Rice 
Production 
Level 

Rice production in west 
java 2021-2023. (unit tons) f 

Macroeconomic data 

Rice Price 

The average rice price of 
lower quality rice I & II, 
medium quality rice I & II, 
super quality rice I & II at 
traditional market level. 
(Rp/Kg) 

g 

Provincial 
Minimum 
Wage 

Regional Minimum Wage 
in West Java from 2021-
2023 (Represents labor 
cost) 

h 

Solar Fuel 
Price 

Solar price from 2021-2023 
(Representing distributor 
entities) 

i 

Demand data 

Rice 
Consumption 
Level 

The level of rice 
consumption in West Java 
2021-2023. (unit tons) 

j 

2.3.3 Residual component 

The residual component (𝑅𝑡)  captures random 

variations in a time series once trend and seasonal 

components are removed, as shown in Eq. (6), 

 

𝑅𝑡 = 𝑌𝑡 − 𝑇𝑡 − 𝑆𝑡 (6) 

 

where 𝑌𝑡 captures the entirety of the data’s variations 

at that specific point. This includes irregular 

fluctuations that are not explained by the trend or 

seasonal components identified in the model. 

2.4 Multivariate Decomposition Combination 

Method (MDC)  

The proposed method mainly used Seasonal and 

Trend decomposition using Loess (STL) 

decomposition to estimate future value in 

multivariate data. STL uses Locally Weighted 

Scatterplot Smoothing (LOESS) to estimate the trend 

and seasonal components [14-16]. This method 

involves an inner loop for seasonal and trend 

smoothing and an outer loop to extract residual series 

[14]. Eq. (7) represents the STL decomposition. 

 

𝑌𝑡 = 𝑇𝑡 − 𝑆𝑡 − 𝑅𝑡 (7) 

 

The separation allows for tailored modeling and 

forecasting of each component. After decomposition, 

each component is modeled and forecasted separately 

using forecasting methods. Eq. (8) illustrates the final 

forecast obtained by combining the forecasts of each 

component. Fig. 2 illustrates the MDC flow. 

 

𝑌�̂� = 𝑇�̂� + 𝑆�̂� + 𝑅�̂� (8) 

2.5 Forecasting methods 

This study employs various statistical, machine 

learning (ML), and deep learning (DL) models to 

predict rice prices. Each model is selected based on 

its unique capabilities to handle different aspects of 

time series data. The following sections provide an 

in-depth explanation of each forecasting method.  

2.5.1 Random Forest (RF) 

Random Forest is a machine learning method that 

constructs multiple decision trees to make predictions. 

 

Figure. 2 MDC method 
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Random Forest excels at handling complex, non-

linear relationships among features in multivariate 

datasets but struggles with temporal dependencies 

critical in time series forecasting [15]. For regression 

tasks, the predicted value is the average output of the 

trees, represented by Eq. (9). 

 

�̂� =
1

𝑇
∑ ℎ𝑡(𝑥)

𝑇

𝑡=1
 (9) 

2.5.2 Light Gradient Boosting Machine (LightGBM) 

This method is a gradient-boosting framework 

that improves XGBoost by requiring less memory 

and supporting parallel computing. Like Random 

Forest, this decision tree-based learning algorithm is 

excellent for capturing non-linear relationships and 

interactions between variables but does not 

inherently account for the order of data, which is 

crucial in time series analysis [16]. Eq. (10) depicts 

the objective function for LightGBM. 

 

ℒ =∑ 𝑙(𝑦𝑖 , 𝑦�̂�) +∑ Ω(𝑓𝑘)
𝐾

𝑘=1

𝑛

𝑖=1
 (10) 

 

2.5.3 Support Vector Regression (SVR) 

SVR is a type of supervised learning developed 

from SVM used primarily for regression tasks. This 

method is adept at managing high-dimensional space 

and can model complex, non-linear relationships 

efficiently through the use of different kernel 

functions [17], and the method lacks native support 

for multivariate time series data. This method aims to 

find a function that minimally deviates from observed 

values by a predefined margin. Eq. (11) presents the 

objective function of SVR. 

 

𝑚𝑖𝑛
1

2
||𝑤||2 + 𝐶∑ 𝐿𝜖(𝑦𝑖, 𝑓(𝑥𝑖))

𝑛

𝑖=1
 (11) 

 

𝐿𝜖(𝑦𝑖, 𝑓(𝑥𝑖))  is the 𝜖 -insensitive loss function. 

The 𝜖-insensitive loss function is defined in Eq. (12), 

 

𝐿𝜖(𝑦𝑖 , 𝑓(𝑥𝑖)) = max(0, |𝑦𝑖 − 𝑓(𝑥𝑖)|

− 𝜖) 
(12) 

 

where 𝜖  is the margin within which no penalty is 

assigned. 

2.5.4 Long Short-Term Memory (LSTM) 

LSTM is a type of Recurrent Neural Network 

designed for sequence prediction, utilizing memory 

cells to retain information over extended periods. 

This deep learning method is particularly effective in 

capturing the long-term dependencies in multivariate 

non-linear datasets, enabling more accurate 

prediction of complex, time-dependent patterns [18]. 

While LSTM excels in handling sequences, LSTM 

can overfit smaller or noisier datasets, especially 

when the relationships between variables are highly 

complex [19]. The key components of an LSTM cell 

include: 

a) Forget Gate: Decides what information to discard 

from the cell state, as shown in Eq. (12). 

 

𝑓𝑡 = 𝜎(𝑊𝑓 ∙ [ℎ𝑡−1, 𝑥𝑡] + 𝑏𝑓) (12) 

 

b) Input Gate: Determines the updates to the cell 

state, illustrated in Eq. (13). 

 
𝑖𝑡 = 𝜎(𝑊𝑖 ∙ [ℎ𝑡−1, 𝑥𝑡] + 𝑏𝑖) 
𝐶�̃� = tanh(𝑊𝐶 ∙ [ℎ𝑡−1, 𝑥𝑡] + 𝑏𝐶) 

(13) 

 

c) Cell State Update: Modifies the cell state with 

new inputs, as per Eq. (14). 

 

𝐶𝑡 = 𝑓𝑡 ∙ 𝐶𝑡−1 + 𝑖𝑡 ∙ 𝐶�̃� (14) 

 

d) Output Gate: Controls the output from the cell 

state, represented in Eq. (15). 

 

𝑜𝑡 = 𝜎(𝑊𝑜 ∙ [ℎ𝑡−1, 𝑥𝑡] + 𝑏𝑜) 
ℎ𝑡 = 𝑜𝑡 ∙ tanh(𝐶𝑡) 

(15) 

2.5.5 Gated Recurrent Unit (GRU) 

GRU is a streamlined version of RNN, like LSTM, 

but with fewer gates. This method might perform 

comparably or sometimes even better than LSTM on 

tasks with shorter sequences or where the training 

data is limited due to a more straightforward and 

more efficient structure [20]. The GRU architecture 

includes: 

a) Update Gate: Merges the functions of forget and 

input gates, shown in Eq. (16). 

 

𝑧𝑡 = 𝜎(𝑊𝑧 ∙ [ℎ𝑡−1, 𝑥𝑡] + 𝑏𝑧) (16) 

 

b) Reset Gate: Determines how much past 

information to discard, as per Eq. (17). 

 

𝑟𝑡 = 𝜎(𝑊𝑟 ∙ [ℎ𝑡−1, 𝑥𝑡] + 𝑏𝑟) (17) 

 

The new memory content and the final output are 

computed as Eq. (18). 

 

(ℎ𝑡)̃ = tanh(𝑊 ∙ [𝑟𝑡 ∙ ℎ𝑡−1, 𝑥𝑡] + 𝑏) (18) 
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ℎ𝑡 = (1 − 𝑧𝑡) ∗ ℎ𝑡−1 + 𝑧𝑡 ∙ ℎ�̃� 

2.5.6 AutoRegressive Integrated Moving Average 

(ARIMA) 

ARIMA is a statistical model for analyzing and 

forecasting time series data. This statistical technique 

struggles with multivariate, non-linear datasets due to 

linear assumptions and univariate design. However, 

ARIMA can still provide effective short-term 

forecasts in stable scenarios with consistent, linear 

relationships [21]. ARIMA combines autoregression 

(AR), differencing for stationarity (I), and moving 

average (MA) components. The model is described 

by three parameters: 𝑝  for the number of lag 

observations, 𝑑 for the degree of differencing, and 𝑞 

for the number of lagged forecast errors. The ARIMA 

equation is as Eq. (19). 

𝑦𝑡 = 𝑐 + ∅1𝑦𝑡−1 + ∅2𝑦𝑡−2 +⋯+ ∅𝑝𝑦𝑡−𝑝
+ 𝜃1∈𝑡−1 + 𝜃2∈𝑡−2 +⋯
+ 𝜃𝑞∈𝑡−𝑞 +∈𝑡 

(19) 

2.5.7 Seasonal Auto-Regressive Integrated Moving 

Average (SARIMAX) 

𝑦𝑡 = 𝑐 + ∅1𝑦𝑡−1 + ∅2𝑦𝑡−2 +⋯
+ ∅𝑝𝑦𝑡−𝑝 + 𝜃1∈𝑡−1
+ 𝜃2∈𝑡−2 +⋯+ 𝜃𝑞∈𝑡−𝑞
+Φ1𝑌𝑡−𝑠 +Φ2𝑌𝑡−2𝑠
+⋯+Φ𝑃𝑌𝑡−𝑃𝑠
+ Θ1𝜀𝑡−𝑠 + Θ2𝜀𝑡−2𝑠
+⋯+ Θ𝑄𝜀𝑡−𝑄𝑠 + 𝛽𝑋𝑡
+∈𝑡 

(20) 

SARIMAX extends the ARIMA model by 

incorporating seasonal effects and exogenous 

variables, making it suitable for time series data with 

seasonal patterns and external factors [22]. The 

SARIMAX model is defined as Eq. (20). 

2.6 Hyperparameter tuning 

This step uses several hyperparameter tuning 

techniques to find the optimal parameters: 

GridSearchCV, Adam Optimizer, and Auto-ARIMA. 

The GridSearchCV systematically searches through a 

predefined parameter grid using cross-validation, 

evaluates each combination, and identifies the best 

parameters based on the outcomes. 

The Adam Optimizer is a first-order gradient-

based optimization algorithm for deep learning 

models, utilizing adaptive estimates of lower-order 

moments and key parameters like learning rate, 𝛽1, 

𝛽2 , and 𝜖  to optimize performance. The Auto-

ARIMA automatically selects the optimal ARIMA 

model using AIC/BIC criteria by testing various AR, 

MA, and differencing parameter combinations. 

SARIMAX extends this by tuning seasonal 

parameters and incorporating exogenous variables. 

2.7 Evaluation 

The models are evaluated on testing data using 

Mean Squared Error (MSE) as Eq. (24), Root Mean 

Squared Error (RMSE) as Eq. (25), and Mean 

Absolute Error (MAE) as Eq. (26), 

 

𝑀𝑆𝐸 =
1

𝑛
∑ (𝑦𝑖 − 𝑦�̂�)

2
𝑛

𝑖=1
 (24) 

𝑅𝑀𝑆𝐸 = √𝑀𝑆𝐸 (25) 

𝑀𝐴𝐸 =
1

𝑛
∑ |𝑦𝑖 − 𝑦�̂�|

𝑛

𝑖=1
 (26) 

 

where 𝑛 is the number of observations. 

 

 
Figure. 3 Dataset Visualization 

3. Result and Discussion 

This section explained the experimental results 

and analyzed the performance result of each model 

using decomposition and non-decomposition, as well 

as the MDC result. 

3.1 Dataset analysis 

The dataset used in this study consists of 678 

rows and 10 columns. Fig. 3 displays a dataset with 

multiple and complex time series, each representing 

different variables within the rice commodity’s 

supply chain management in West Java. Each colored 

line represents a variable or a set of related metrics, 

illustrating trends from May 2021 to January 2024. 

Some variables shown here are based on assumptions 

(the flat lines), which are common when actual data 

are hard to obtain or estimate. These include 
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Figure. 4 Rice Price Decomposition 

 

 

estimated rice consumption levels or projected 

production outputs. 

Characteristics of rice prices in West Java, shown 

in Fig. 4, display decomposition with four graphs. 

The “Original” graph shows the raw data, which 

exhibits an increasing trend over time with some 

notable spikes. The “Trend” graph reveals a 

noticeable acceleration in the upward trend of rice 

prices around mid-2023. The “Seasonal” plot 

displays clear and consistent patterns, which repeat 

annually. Finally, the “Residuals” graph, which is 

mostly stable with a few spikes, shows the deviations 

from the modeled trend and seasonality, capturing the 

unpredicted or random fluctuations in the dataset. 

3.2 Model performance comparison 

Table 2 showcases the performance metrics of 

various forecasting models applied to the dataset, 

which has been decomposed into seasonal, trend, and 

residual components. The models have been 

evaluated based on three error metrics: Root Mean 

Square Error (RMSE), Mean Absolute Error (MAE), 

and Mean Squared Error (MSE). 

SARIMAX performs exceptionally well in 

handling the seasonal component of the data. Table 2 

shows the lowest RMSE, MAE, and MSE with other 

models. The SARIMAX effectively captures the 

seasonal fluctuations in rice prices.  

Deep learning models demonstrate strong 

performance across trend and residual components. 

GRU shows powerful results in the trend 

decomposition, suggesting its ability to capture long-

term dependencies and trends in the dataset. Random 

Forest and GBM (Gradient Boosting Machine) show 

higher error rates across all components, indicating 

that these machine learning models may struggle with 

the non-linear and complex nature of the time series 

data. The GRU outperforms other models by 

considering the total error across all decomposed 

components. The GRU is better at capturing both the 

nonlinearities and complex patterns in the complete 

dataset.  

The models without the MDC method exhibit 

higher error metrics than those using the MDC 

method, as shown in Table 3. Decomposing the data 

into trend, seasonal, and residual components 

generally results in better model performance by 

simplifying the patterns each model needs to capture. 

The analysis revealed that the trend metrics were high 

across all models, mainly because the training dataset 

did not include the significant price increase observed 

in mid-2023. This price spike, which did not follow 

previous patterns, led to the inability of the model to 

predict similar trends in the test data. 

3.3 Multivariate decomposition combination 

performance 

The best performance model on each 

decomposed component is integrated into optimizing 

rice price forecasting. Seasonal components 

produced the best performance using the SARIMAX 

model because it can handle seasonal variations. The 

selected GRU model on Trend component because of 

its ability to capture and forecast the trend effectively. 

The residual component uses GRU as the selected 

model because of the ability to learn the residuals 

with random fluctuations not accounted for by the 

trend or seasonal. 

The specific capabilities of SARIMAX and GRU to 

address different aspects of the time series 

decomposition explain the varied performance across 

the seasonal, trend, and residual components of the 

rice price dataset. While SARIMAX effectively 

handles the seasonal patterns due to its structural 

advantages, GRU excels in managing the residuals 

and remaining variability due to its gating 

mechanisms and adaptability. Combining these 

models based on their strengths improves accuracy 

and robustness in forecasting complex time series 

data like rice prices. 

This methodological approach, known as model 

stacking or ensemble learning, leverages the 

strengths of different models to improve the overall 

forecasting accuracy. Each model deals with a 

specific aspect of the data’s structure, allowing for a 

more nuanced and comprehensive approach to 

forecasting. The final combined model, SARIMAX-

GRU, compared by performance with statistical, 

machine learning, and deep learning methods without 

MDC, is seen in Table 3. The final combined results 

demonstrate a significant improvement in error 
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Table 3. Model Comparison Performance MDC-SARIMAX-GRU and Without MDC Method 

Error 

Metrics 

Statistical Machine Learning Deep Learning SARIMAX-

GRU SARIMAX ARIMA SVR RF GBM LSTM GRU 

RMSE 800.2 1171.1 1982.4 1176.8 1111.0 683.2 653.7 470.6 

MAE 650.6 970.0 1720.0 958.9 903.2 557.0 530.6 388.1 

MSE 640399.9 1371699.2 3930195.9 1384875.0 1234342.7 466792.7 427425.4 221468.2 

 
Table 2. Model Performance Comparison using MDC Method 

Decomposition 
Error 

Metrics 

Statistical Machine Learning Deep Learning 

SARIMAX ARIMA SVR RF GBM LSTM GRU 

Seasonal RMSE 48.1 52.8 55.4 64.1 54.5 51.4 51.2 

MAE 28.9 29.4 30.7 41.3 30.4 30.1 30.4 

MSE 2318.4 2797.2 3076.4 4118.4 2978.0 2644.3 2626.8 

Trend RMSE 611.6 782.5 1892.4 2086.7 1163.4 529.2 522.3 

MAE 494.0 649.3 1649.7 1987.6 969.7 438.9 432.4 

MSE 374082.6 612329.4 3581408.7 4354342.3 1353591.2 280097.9 272860.0 

Residual RMSE 82.4 81.8 76.9 81.1 79.6 67.5 66.2 

MAE 47.6 46.6 46.7 47.2 46.4 38.1 37.1 

MSE 6801.9 6695.5 5924.3 6580.6 6339.5 4568.2 4387.8 

Total RMSE 615.2 790.9 1896.8 2108.1 1165.0 532.4 525.5 

MAE 502.4 647.0 1648.0 2004.7 967.4 446.0 440.0 

MSE 378562.7 625619.2 3598018.9 4444374.7 1357398.9 283542.2 276177.1 

 

 

metrics, showcasing the efficacy of this hybrid 

modeling approach. This combination reduces the 

forecast error and enhances the model’s robustness 

by integrating diverse modeling strengths. 

4. Conclusion 

The staple commodity price forecasting, such as 

rice, needs accurate results because of the 

complexities in agricultural forecasting. This study 

proposed that the Multivariate Decomposition 

Combination (MDC) can leverage the unique 

strengths of different model combinations to enhance 

predictive accuracy. The combination of SARIMAX 

and GRU using the MDC method has outperformed 

the overall result, showing a 470.6 RMSE score 

compared to the best total decomposition and non-

decomposition score with GRU. Another challenge 

of this study was trend prediction, particularly during 

the significant price spike in mid-2023, which did not 

exist in the training data. Making some models 

resulted in deficient performance due to its inability 

to extrapolate. 

Future research should enhance the dataset with 

recent and real-time data, including significant price 

spikes not previously captured, to improve model 

responsiveness to market changes. Exploring hybrid 

modeling techniques that combine statistical, 

machine learning, and deep learning approaches 

could further refine predictive accuracy. 
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