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Abstract: Advanced Driver Assistance Systems (ADAS) rely on accurate road object detection, tracking, and distance 

estimation to enhance road safety. This paper presents ROD-YOLOv8, an innovative framework that leverages a 

monocular camera for these tasks within ADAS. By integrating the YOLOv8 model with transfer learning, the 

framework achieves high accuracy in road object detection. The model was retrained on the BDD100k dataset and 

further validated using COCO, KITTI, and PASCAL VOC datasets for comparison with existing models, achieving a 

mean average precision (mAP) of 0.782 and an F1 score of 0.874 on the COCO dataset. Object tracking is maintained 

through the Bot-Sort algorithm, ensuring consistent tracking of detected objects and providing continuous monitoring 

and future location prediction. Advanced camera calibration techniques enable accurate distance estimation between 

the camera and the detected objects, resulting in a mean absolute distance error of just 2.4 meters. Operating at an 
impressive 83 frames per second (FPS), ROD-YOLOv8 showcases its real-time capabilities, contributing to safer 

autonomous and assisted driving experiences. The proposed object detection model demonstrates improved 

performance compared to existing methods, particularly outperforming other methods like Mobile NET and earlier 

versions of YOLO in terms of precision, recall, and speed, measured in Frames Per Second (FPS), making it highly 

suitable for integration into ADAS applications. 
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1. Introduction  

Advanced Driver Assistance Systems (ADAS) 

has increasingly become popular in recent years, 
largely for its significant contribution to enhancing 

driver assistance and road safety [1]. ADAS includes 

a range of applications designed to increase 

situational awareness and prevent road accidents [2]. 
These applications, however, depend fundamentally 

on the capabilities of ADAS to detect, track, and 

estimate the distance of road objects. 
Deep learning has become increasingly 

prominent in developing object detection models for 

ADAS [3-5]. These algorithms enhance ADAS 

performance by improving the systems' abilities to 

detect, classify, and track objects. More specifically, 

Convolutional Neural Networks (CNNs), a 
specialized type of deep neural network, are 

considered the reason for this improvement [6]. They 

automatically and adaptively learn spatial hierarchies 
of features from input images. In fact, by processing 

images through convolutional and pooling layers, 

CNNs iteratively adjust learning weights during 

training to optimize feature extraction and recognize 
complex patterns in data [7, 8]. This capability 

enables models trained with CNN algorithms to 

leverage vast annotated datasets, thereby 
significantly enhancing the accuracy and reliability 

of object detection in ADAS. Among CNN-based 

algorithms, the You Only Look Once (YOLO) series 
stands out for real-time object detection due to its 

high detection accuracy and fast inference speeds. 

Notable models in this series include YOLOv5 [9] 
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which introduced techniques like auto-learning 
bounding box (BBox) anchors, mosaic data 

augmentation, and adaptive image resizing. YOLOv7 

[10] extended Efficient Layer Aggregation Networks, 

which allowed the model to efficiently learn complex 
representations. It was also designed with an 

emphasis on speed, making it one of the fastest and 

most accurate models for real-time object detection 
upon release. YOLOv8 [11] presented an anchor-free 

approach, reducing the need for extensive manual 

tuning of anchor boxes. YOLOv9 [12] introduced 
enhancements in multi-task learning, enabling the 

model to handle diverse detection tasks 

simultaneously while optimizing resource utilization. 

Last, YOLOv10 [13], made strides in efficiency by 
integrating Neural Architecture Search techniques to 

automatically discover optimal network architectures 

tailored for specific tasks.  
YOLOv8, although it is continually being refined, 

has shown improvements in computational efficiency 

and accuracy over its predecessors. For example, 
previous models such as YOLOv7 utilized anchor 

boxes to predict BBox and object classes directly 

from input images in a single step [10]. However, 

these models required the manual specification of 
anchor box sizes and shapes, which limited their 

adaptability across various scenarios. In contrast, 

YOLOv8 has introduced the use of free anchor boxes, 
allowing the network to learn optimal parameters 

during training [14]. This development significantly 

enhances flexibility and performance in different 

scenarios, marking a significant progression toward 
more efficient and adaptable object detection 

mechanisms for ADAS applications. 

Furthermore, the application of transfer learning 
with YOLOv8 significantly benefits the development 

of domain-specific object detection models [15]. By 

retraining pre-trained models on new, target datasets, 
this approach utilizes the pre-learned features from 

open-domain datasets, applying them to specific road 

datasets [16]. This method reduces the computational 

resources required for training and maintains or even 
enhances the model's performance. Furthermore, the 

application of transfer learning with YOLOv8 

significantly benefits the creation of domain-specific 
object detection models [16]. This technique involves 

retraining pre-existing models on fresh, target 

datasets, utilizing previously learned features from 
broader datasets, and adapting them to specialized 

road datasets. Not only does this approach reduce the 

computational resources needed for training, but it 

also sustains and enhances the model's effectiveness 
[17]. 

Besides road object detection, distance estimation 

plays a crucial role in ADAS applications. Distance 

Estimation methods fall into two categories: sensor-
based and vision-based approaches [18]. Sensor-

based methods employ a variety of technologies, 

including radar and LiDAR, to accurately measure 

distances between the vehicle and other objects. On 
the other hand, vision-based methods depend solely 

on vision sensors, primarily cameras. The latest 

method gained significant attention in recent research 
due to the widespread availability of cameras in 

various industries [18, 19]. Within vision-based 

distance estimation, there are two main approaches: 
stereo camera-based and monocular camera-based 

[20, 21]. The stereo camera-based approach aims to 

determine the depth of each pixel by aligning pairs of 

stereo images. Conversely, the monocular camera-
based approach, which uses a single camera, 

estimates distances by considering various factors, 

such as camera settings, real-scale factors, and the 
width of the vehicle's front [18]. This approach 

balances accuracy with the benefit of low-cost 

processing. Several researchers have made 
contributions to the field of monocular camera-based 

distance estimation. Ka Seng et al. [22] proposed a 

novel method for estimating distance in unregulated 

3D environments to aid in navigation towards 
specified target objects using a monocular camera. 

This approach minimizes the computational load on 

edge devices by utilizing mathematical models to 
produce reliable estimations. By incorporating 

modern object detection models, the authors’ method 

demonstrates a commendable mean absolute 

percentage error. Similarly, Seungyoo et al. [23] 
introduced a framework for estimating the distance 

between a vehicle and objects ahead using an onboard 

webcam. This method combines an object detector, 
which identifies object classes and BBox, with a 

depth estimator to generate the image's depth map, 

showcasing superior performance over many existing 
studies. Ahmed et al. [24] developed a single-view 

geometry-based algorithm for estimating the relative 

distance between road vehicles, integrating 

seamlessly with the lane and vehicle detection 
models of existing ADAS technologies. These works 

paved the way for more accessible distance 

estimation methods, promising to impact road safety 
and efficiency significantly. 

In this work, we introduce and study ROD-

YOLOv8, a lightweight model capable of detecting 
road objects, tracking the detected road objects across 

multiple frames then estimating the distance between 

a vehicle and the tracked objects using a monocular 

camera. The primary contributions of this work are 
depicted in Fig. 1. We present a framework that 

includes a road object detector, an object tracker, and 

a distance estimator. The road object detector 
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identifies objects within a video frame, providing 
essential information such as object class, BBox 

coordinates, confidence score, and scale factor. The 

object tracker then employs the Bot-Sort algorithm 

across consecutive frames to maintain 
correspondence between detected objects. Finally, 

the distance estimator uses a calibration procedure 

inspired by the HARRIS algorithm. This algorithm 
enables accurate distance estimation between the 

detected object and the monocular camera mounted 

on the moving vehicle, utilizing the pinhole camera 
model. 

The rest of this paper is organized as follows: 

Section 2 outlines the approach employed in 

developing the road object detection model. Section 
3 explains the Bot-Sort algorithm applied for object 

tracking. Section 4 elaborates on the pinhole camera 

model and HARRIS algorithm utilized for distance 
estimation. Section 5 summarizes the 

experimentation and evaluation steps, followed by a 

discussion of the obtained results. Finally, the 
conclusion wraps up this study. 

2. Road object detection  

The first step of our work involves creating the 
road object detection model. This model detects 

various road objects, namely cars, people, bikes, 

motorcycles, buses, riders, trucks, trains, traffic signs, 
and traffic lights. We retrained a pre-trained 

YOLOv8 model using the BDD100k dataset to 

enhance its performance for this specific task. 

YOLOv8 was selected for its superior balance 
between speed and accuracy, making it ideal for real-

time applications.  

Additionally, the BDD100k dataset [25], a 
comprehensive benchmark for autonomous driving, 

was leveraged to improve the model's robustness and 

adaptability in detecting a wide range of road objects 

and signs under diverse conditions. 
The subsequent subsections describe the 

following approach, including details about the 

training and validation datasets, re-training 
parameters, and the metrics used for evaluation 

purposes. 

2.1 Dataset description 

Our approach relied on the BDD100k annotated 

datasets to create the trained models. Table 1 
summarizes its statistics. This dataset originally 

included four coordinates for each BBox: 𝑥𝑚𝑖𝑛, 𝑥𝑚𝑎𝑥, 

𝑦𝑚𝑖𝑛 , 𝑦𝑚𝑎𝑥. To adapt the format to meet the 
requirements of YOLOv8, we converted the 

coordinates to its format. The new coordinates are the 

width 𝑤𝐵.𝐵𝑜𝑥 , the height ℎ𝐵.𝐵𝑜𝑥 , and the coordinates 

of the BBox 𝑥𝑐𝑒𝑛𝑡𝑒𝑟  and 𝑦𝑐𝑒𝑛𝑡𝑒𝑟 . They were 
calculated using the following equations:  

 

𝑤𝐵.𝐵𝑜𝑥 =
𝑥𝑚𝑖𝑛−𝑥𝑚𝑎𝑥

𝑤𝐼𝑚𝑔
, ℎ𝐵.𝐵𝑜𝑥 =

𝑦𝑚𝑖𝑛−𝑦𝑚𝑎𝑥

ℎ𝐼𝑚𝑔
         (1) 

 

𝑥𝑐𝑒𝑛𝑡𝑒𝑟 =
𝑥𝑚𝑖𝑛+𝑥𝑚𝑎𝑥

2∗𝑤𝐼𝑚𝑔
, 𝑦𝑐𝑒𝑛𝑡𝑒𝑟 =

𝑦𝑚𝑖𝑛+𝑦𝑚𝑎𝑥

2∗ℎ𝐼𝑚𝑔
       (2) 

 

where 𝑤𝐼𝑚𝑔 and ℎ𝐼𝑚𝑔 are the width and height of the 

input images. The decision to use the BDD100k 

dataset was justified by the fact that it only contains 

classes relevant to ADAS. This dataset helped to 
reduce the number of classes from the original 80 

classes of the YOLOv8-n pre-trained model. In 

addition, we set the training and validation datasets. 
Regarding the image size, we had to resize the 

BDD100k images from 1 280 × 720 pixels  to a 

fixed shape of 640 × 360 pixels. 

2.2 Transfer learning with YOLOv8 

The current work utilized transfer learning to 
develop an object detection model using the pre-

trained YOLOv8 architecture. As shown in Fig. 1, the 

process of creating the model included training on the 
BDD dataset. In addition, to ensure optimal 

performance suited to the dataset, hyperparameter 

tuning was carried out using Genetic Evolution and 

Mutation techniques provided by the developers of 
YOLO [26]. Similar to its predecessor, YOLOv8 

offers various model scales identified as n, s, m, l, and 

x. Each scale pertains to a network scaling factor 
intended to balance object detection precision with a 

lightweight architecture [27]. Larger scales generally 

deliver higher accuracy, while smaller scales achieve 
higher FPS [28]. 

Among these, YOLOv8s is noted for its 

lightweight and higher FPS at the expense of some 

accuracy, making it particularly well-suited for real-
time applications [28]. 

 

 

 
Figure. 1 Overview of Our Proposed Framework for 

ROD-YOLOv8: Joint Road Object Detection and 

Distance Estimation 
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Table 1. Transfer learning Datasets Statistics 

Label Name Train Size Validation Size 

Car 713 211 102 506 

Person 11 672 1 597 

Bike 100 797 7 210 

Motor 3 002 452 

Bus 91 349 130 262 

Rider 4 517 649 

Truck 186 117 26 885 

Train 239 686 34 908 

Traffic sign 136 15 

Traffic Light 29 971 4 245 

 
 

The initial stage of retraining a YOLOv8s model 

involves preparing a custom dataset tailored to create 
a domain-specific object detection model, such as 

road object detection.This custom dataset consists of 

images containing detectable objects along with their 

BBox annotations. Subsequently, the feature 
extraction process begins, during which pretraining 

involves freezing the lower layers to retain valuable 

learned features [29]. Fig. 2 illustrates the standard 
transfer learning approach used to develop the object 

detection model while fine-tuning the 

hyperparameters with genetic evolution and mutation. 

For retraining, we initiate by removing the pre-
trained models' top layers and replacing them with a 

new set of convolutional layers tailored for predicting 

the BBox coordinates and confidence scores of road 
objects. The updated weights of the final detection 

models are then fine-tuned through backpropagation, 

leveraging the target dataset [30]. To ensure the 
efficiency of transfer learning, it is important to 

verify that the main objects to detect are well-

represented in the training datasets (see Table 1). The 

principle of genetic evolution and mutation employed 
for hyperparameter tuning involves the exploration of 

an optimal set of hyperparameters by iteratively 
making random adjustments to the initial set, thus 

generating new candidates for evolution. In this 

process, we designate the mAP score as the metric for 

evaluating the model's performance. 
To address the issue of reducing the 

computational cost during training, we took measures 

to reduce the computational cost during training [11]. 
One approach was to downscale the size of the input 

images while being cautious not to lose the feature 

extraction details crucial for accurate detection and 
classification. In addition, we set 100 iterations as a 

tuning budget as it is computationally expensive. The 

initial hyperparameters used for the creation of the 

detection model were as follows: a batch size of 4, 50 
epochs, and a learning rate of 0.001. The training 

hardware setup comprised an NVIDIA GeForce RTX 

2060 GPU, supported by 12 workers, and 16GB of 
RAM. 

Fig. 3 presents the results obtained during the 

training of our detection model. In Fig. 3(a), we 
showcase some output images with their BBox from 

a training instance. Meanwhile, in Fig. 3(b), we 

display the distribution of two evaluation metrics: the 

F1 score and the confidence score. The F1 score 
serves as a measure of the model's precision and 

recall balance, while the confidence score represents 

the model's confidence level in its predictions. The 
F1 and confidence scores are calculated by YOLO 

using the following equations:  

 

F1 =
2∗(𝑃𝑟𝑒𝑐𝑖𝑠𝑜𝑛∗𝑅𝑒𝑐𝑎𝑙𝑙)

(𝑃𝑟𝑒𝑐𝑖𝑠𝑜𝑛+𝑅𝑒𝑐𝑎𝑙𝑙)
                                             (3) 

 

Confidence =
𝑠𝑢𝑚 𝑜𝑓 𝑇𝑟𝑢𝑠𝑡 (𝑂𝑏𝑗)

𝑠𝑢𝑚 𝑜𝑓 𝑇𝑟𝑢𝑠𝑡 (𝐴𝑙𝑙)
                          (4) 

 

 

 

 
Figure. 2 Process of retraining the road object detection model with hyperparameter evolution 
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(a) 

 

 
(b) 

Figure. 3 Training Results of the Object Detection Model: 

(a) Inference on Test Images During Training; (b) F1-

Confidence Curve for each Class 

The visualization of these two scores offers 
insights into the model's performance at varying 

confidence thresholds and provides a comprehensive 

overview of its detection accuracy and reliability. The 

training of our detection model gives high-density 
regions around specific confidence values for the 

different classes, affirming the model's detection high 

performance. 
Fig. 4 displays the confusion matrix generated by 

YOLO after training both detection models. This 

visualization was instrumental in evaluating the 
performance of both models, as it allowed us to 

compare the model's predictions with the true labels 

from the dataset. By analyzing the confusion matrix, 

we identified particular classes that the model had 
difficulty predicting accurately, notably the “train” 

class. To optimize our model's performance, we 

recognized the need for data augmentation 
specifically for the train labels in our training dataset. 

3. Object tracking  

Object Tracking is a pertinent task for ADAS 
applications. It aims at locating objects within video 

frames [31]. Various object-tracking algorithms have 

been developed for ADAS. These algorithms 
typically utilize a combination of sensor data, such as 

lidar or camera inputs, and mathematical models to 

detect the position of a defined object in a sequence 
of frames [1]. 

 

 
Figure. 4 Road Object Confusion Matrix for Detection 
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Figure. 5 Kalman Filter optimal state estimator 

 
One commonly used approach in these 

algorithms is the Kalman Filter (KF), which operates 

by iteratively estimating the state of a dynamic 
system from a series of noisy measurements. The 

state vector 𝑥𝑘 =

[𝑥𝑐(𝑘), 𝑦𝑐(𝑘), 𝑤(𝑘), ℎ(𝑘), 𝑥�̇�(𝑘), 𝑦�̇�(𝑘),  �̇�(𝑘), ℎ̇(𝑘)]𝑇

depicts the BBox coordinates. The KF maintains two 

main Equations; the predicted state 𝑥𝑘|𝑘−1  at the 

measurement of the timestep 𝑘  to 𝑘 − 1 , and the 

measurement update 𝑥𝑘|𝑘 that corrects the predicted 

state based on the corrected measurement 𝑦𝑘  [20]. 

The predicted state 𝑥𝑘|𝑘−1  is calculated using the 

following equation: 

 

𝑥𝑘|𝑘−1 = 𝐹𝑘𝑥𝑘_1|𝑘−1 + 𝐵𝑘𝑢𝑘 + 𝑤𝑘                   (5) 

 

where 𝐹𝑘 , 𝐵𝑘 , 𝑢𝑘  and 𝑤𝑘  denote the state 

transition matrix, control input matrix, control input, 
and process noise respectively. 

The measurement update 𝑥𝑘|𝑘  is calculated 

using: 

 

𝑥𝑘|𝑘 = 𝑥𝑘|𝑘−1 + 𝐾𝑘(𝑦𝑘 − 𝐻𝑘𝑥𝑘|𝑘−1)                 (6) 

 

where K𝑘 , 𝐻𝑘  and 𝑦𝑘  present the Kalman gain 

state, the measurement matrix, and the corrected 

measurement update at the time k respectively. 

Fig. 5 illustrates how the KF combines the 

predictions of the system dynamics with the 

measurements, estimating a joint probability 
distribution over the variables for each timeframe, 

and providing an optimal estimate of the system state 

[32]. 

The SORT algorithm and its variants, such as 
Deep-SORT and Bot-SORT, are recognized as some 

of the earliest tracking algorithms employed in 

ADAS [33]. 

They utilize the KF for frame-by-frame data 
coherence, in conjunction with the Hungarian 

algorithm, which aims to assign a set of objects to 

another set of objects while minimizing the total cost 
or distance, as depicted in the following equation:  

 

𝑀𝐼𝑁𝑐𝑜𝑠𝑡 = min
𝑃

∑ 𝐶𝑖𝑗𝑃𝑖𝑗𝑖,𝑗                                  (7) 

 

Where 𝑃 is the permutation matrix, and 𝐶𝑖j is the 

cost of assigning the 𝑖𝑡h object to the 𝑗th track. 

As depicted in Fig. 1, our approach leverages 

YOLOv8 for object detection and tracking, which 

offers the use of two tracking algorithms: Bot-Sort 
and Byte-Track. In our case, we aimed to achieve a 

balance between real-time performance for ADAS, 

accuracy, and computational resources. Following a 
comprehensive literature review, we inferred that 

Byte-Track, with its reliance on CNNs [34], demands 

significant computational resources for training and 

inference, thereby constraining its applicability in 
resource-limited environments or scenarios with 

stringent real-time requirements [27, 35, 36]. Thus, 

we opted for the Bost-Sort algorithm [37]. Bot-Sort 
operates by decentralizing decision-making 

processes 𝐷𝑀𝑃  as represented by the following 

equation: 
 

𝐷𝑀𝑃 = argmin
𝑖

∑ 𝐶𝑖𝑗𝑗                                        (8) 

 
This decentralized approach handles large 

amounts of data and adapts to changes in object 

trajectories or environmental conditions, making it 

suitable for scenarios with a high density of moving 
objects like road scenes [38]. Moreover, Bot-Sort 

implements the Camera Motion Compensation 

solution to avoid the problem of the BBox 
stabilization and rectify the KF calculations. The 

overall pipeline of the object tracking approach of our 

methodology is depicted in Fig. 6. 

 

 
Figure. 6 Bot-Sort Tracker Pipeline 
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(a) 

 

 
(b) 

Figure. 7 (a) Schematic diagram of the imaging geometry 

(b) Geometric schematic and coordinates system of the 

pine-hole model 

 

4. Distance estimation using a pinhole model  

Distance estimation is a fundamental task in 
ADAS applications. It aims to accurately determine 

the distance between a vehicle and nearby road 

objects. Various methodologies for distance 
estimation rely on a fusion of sensors typically 

integrated into vehicles. However, the use of 

monocular cameras for distance estimation has 
gained significant attention due to their inherent 

flexibility [18, 19, 23]. This methodology can employ 

optical flow, depth information extracted from 

images, and geometric principles. 
Employing a monocular camera for distance 

estimation should consider several key parameters, 

including the camera's focal length, the actual size of 
objects, and the resolution of the captured images. 

Additionally, accurate distance estimation requires 

proper camera calibration and perspective correction 

to account for camera angles and perspective 
distortions that can introduce measurement 

inaccuracies. This means converting 2D detected 

object coordinates to 3D real-world coordinates [18, 
39]. Since using a monocular camera leads to the loss 

of 3D information. To calculate the distance, we need 

to calibrate the camera to access the matrix of 
intrinsic parameters to recover this 3D information. 

4.1 Pinhole imaging model 

The pinhole imaging model is considered one of 

the commonly used methods to estimate a distance 
using a monocular camera and a simplified camera 

projection model. 

Fig. 7 provides a geometric schematic 

representation of this model's principles. This 
geometric model can be used to determine the 3D 

geometric position of a real-world road object using 

its corresponding detected road object in the image. 
While the parameters of the geometric model are the 

intrinsic parameters of the camera. The following 

equation:  

 

𝐷 =
𝑓𝑊

𝑤
                                                              (9) 

 

can be used to estimate the distance 𝐷 according 

to the pinhole imaging model. 𝑓 is the focal camera 

length, 𝑊 is the real-world width of an object, while 

𝑤 is the BBox width of the imaging plane that is 
converted to the pixel coordinate system of an image. 

Further, to estimate 𝑊, camera calibration is used to 

convert a 2D detected object to its corresponding 3D 

geometric position of an object on the surface to 
finally estimate the real-world distance [40]. 

4.2 Camera calibration and coordinates for 

distance estimation 

Our work was inspired by the work described in 
[18], where they use the HARRIS corner detector 

algorithm [41] to extract sub-pixel coordinates and 

Zhang's method [42] to calibrate the camera and 

determine the pose of the pinhole camera. The 
HARRIS algorithm begins by shifting a processing 

sub-window across an image centered on a point and 

expanding. If the change exceeds a specified 
threshold, the point is identified as a corner point. 

Calibration determines the desired number of 

corner points, ensuring balanced distribution across 

the image. To manage densely clustered points in 
certain regions, a maximum limit is set for corner 

points per area, preventing excessive low-threshold 

corner points elsewhere. In Zhang's calibration 

method, pixel coordinates  (𝑥, 𝑦) of the corner points 

on a calibration board are obtained using an image 

detection algorithm. The calibration board's 
checkerboard grid serves as the world coordinate 

system with known physical coordinates 𝑊 . By 

predefining the calibration board's coordinate system 

and grid size, it is possible to calculate the physical 
coordinates of each corner point in the world system. 

This information is then used to calibrate the camera 
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and determine its internal and external reference 
matrices [18, 19]. 

To calculate the distance, the transformation 

between camera coordinates and image coordinates is 

required. The following equation: 
 

𝑥 = 𝐾𝑥𝑐                                                           (10) 

 
shows how the coordinates of the actual 

measurement 𝑥  are calculated, where 𝑥𝑐  is the 

camera coordinates and 𝐾  is presented in the 

equation below:  
 

𝐾 = (
𝑓𝑥 0 𝑥𝑐𝑒𝑛𝑡𝑒𝑟

0 𝑓𝑦 𝑦𝑐𝑒𝑛𝑡𝑒𝑟

0 0 1

)                                   (11) 

 

In this equation, 𝐾denotes a matrix derived from 

the literature [18], with 𝑓𝑥  and 𝑓𝑦  representing the 

camera's focal length coordinates, and 𝑥𝑐𝑒𝑛𝑡𝑒𝑟  and 

𝑦𝑐𝑒𝑛𝑡𝑒𝑟  are part of the BBox coordinates of the 
detected object.  

Following previous works [18, 19], estimating 

the distance requires the conversion between camera 

coordinates and image coordinates. The following 
equation: 

 

𝑋𝑐 = [ 𝑅 | 𝑇 ]𝑋𝑤                                               (12) 
 

calculates the real-world coordinates 𝑋𝑐 =
(𝑥𝑐 , 𝑦𝑐 , 𝑧𝑐)𝑇  and the transformation of camera 

coordinates. The pose of an object, relative to the 
camera coordinate system, could be described in 

terms of the translation vector 𝑇  and the rotation 

matrix 𝑅 as described in the following equation: 
 

𝑅 =  

[
1 0 0
0 cos 𝜑 − sin 𝜑
0 sin 𝜑 cos 𝜑

] [
cos 𝜔 0 − sin 𝜔

0 1 0
sin 𝜔 0 cos 𝜔

] ×  

[
cos 𝜅 − sin 𝜅 0
sin 𝜅 cos 𝜅 0

0 0 1
]                                       (13) 

 
Our distance estimation approach comprises the 

following steps: initially, we obtain the image 

coordinates 𝑥  through Eq. (10) and a projection 
function as described in [18]. Subsequently, we 

determine 𝑋𝑐  using an unprojection function from 

image coordinates to camera coordinates. Finally, 

distance estimation is represented by the Euclidean 

distance of the 3D point 𝑋𝑐 : 

 

�̂� = ‖𝑋𝑐‖ = √𝑥𝑐² + 𝑦𝑐² + 𝑧𝑐²                          (14) 

 
Figure. 8 Inference with the ROD-YOLOv8 Framework 

 

5. Experimental results  

All experiments were conducted on systems 

running Ubuntu 20.04. The system was developed 

using the Python programming language. The first 

machine used for testing is equipped with an NVIDIA 
GeForce RTX 2060 GPU and 32GB of RAM. The 

second machine is a Jetson Xavier AGX with 16GB 

of RAM. 
To evaluate the effectiveness of ROD-YOLOv8, 

we conducted a thorough evaluation, which included 

examining the object detection model's performance, 
assessing the accuracy of distance estimation, and 

analyzing the system's FPS. Examples of inference 

using our system ROD-YOLOv8 are presented in 

Fig.8. 

5.1 Object detection 

The evaluation of the object detection system was 

conducted using precision, recall, F1 score (as 

described in Section 1.1), and the mAP as depicted 
in: 

 

𝑚𝐴𝑃 =
∑ 𝐴𝑃𝑖

𝑛
𝑖

𝑛
                                                   (15) 

 

where 𝐴𝑃𝑖  represents the average precision for 

class 𝑖 and 𝑛 is the number of classes. These metrics 
were chosen for their ability to measure the 

correctness of predictions and the model's capacity to 

detect relevant objects within the dataset. 
Specifically, the mAP provides a holistic view of 

the model's precision and recall performance across 

multiple classes, offering insight into its ability to 
identify and classify objects within the 10 chosen 

categories accurately [7]. The testing was performed 

using three additional validation datasets: COCO 

[43], KITTI [44], and PASCAL VOC [45]. 
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Table 2.  Comparison Between the Performance of Our Object Detection Model and Other Existing Models. 

Model Dataset mAP Precision Recall F1 

ROD-YOLOv8 [Ours] COCO 78.25 87.4 83.3 87.4 

YOLOv5n [26] COCO 78.7 85.2 69.0 76.2 

YOLOv5s [26] COCO 83.8 86.6 77.4 81.7 

YOLOv7-tiny [10] COCO 74.2 88.2 76.1 81.7 

ROD-YOLOv8 [Ours] PASCAL VOC 64.26 51.22 78.49 61.98 

YOLOv3 [46] PASCAL VOC 55.81 42.29 68.48 52.29 

MobileNetV1-YOLOv3 [46] PASCAL VOC 6.27 21.95 17.90 19.72 

MobileNetV2-YOLOv3 [46] PASCAL VOC 13.26 27.48 28.34 27.90 

ROD-YOLOv8 [Ours] KITTI 79.65 68.43 96.14 79.95  

YOLOv5n [47] KITTI 73.1 51 93 - 

YOLOv5s [47] KITTI 78.5 59.4 93.4 - 

YOLOv5m [47] KITTI 78.2 61.5 93.6 - 

YOLOv5l [47] KITTI 81.7 64.1 93.6 - 

 

Before testing, the class labels of these datasets were 

preprocessed and adapted to align with the label 
format of the BDD100k dataset, which was used for 

retraining the model. This preprocessing step ensured 

consistency across all datasets, allowing for a fair 
evaluation of the model's performance in diverse 

traffic scenarios. 

The evaluation results of ROD-YOLOv8, as 

shown in Table 2, demonstrate its strong performance 
and suitability for ADAS. Our model achieved a 

mAP of 78.25 and an F1 score of 87.4 on the COCO 

dataset, both of which are competitive with, and in 
some cases superior to, other state-of-the-art models 

in the literature. Notably, ROD-YOLOv8 exhibits a 

balanced performance with high precision (87.4%) 
and recall (83.3%), outperforming several models 

such as YOLOv5n and YOLOv7-tiny, particularly in 

terms of F1 score, which is crucial for applications 

requiring both accuracy and consistency. When 
compared to models tested on the COCO dataset, 

ROD-YOLOv8 offers a strong balance between 

precision and recall, achieving an overall higher F1 
score than YOLOv7-tiny and YOLOv5s. Although 

YOLOv5s has a slightly higher mAP, our model's 

improved F1 score underscores its reliability and 
robustness in real-world scenarios. These results 

affirm that ROD-YOLOv8 is a competitive and 

effective model for road object detection, with 

particular strengths in precision and overall accuracy, 
making it well-suited for integration into ADAS 

frameworks. 

In addition, ROD-YOLOv8 achieves the highest 
mAP (64.26%) and F1 Score (61.98%) on PASCAL 

VOC, indicating strong object detection capabilities 

with balanced precision and recall. On the KITTI 

dataset, ROD-YOLOv8 achieves high precision 
(68.43%) and recall (96.14%), resulting in a 

competitive F1 Score of 79.95%, closely rivaling 

YOLOv5l in mAP. These results suggest that ROD-

YOLOv8 is an effective, versatile model for object 
detection across various environments, especially 

suited for applications like autonomous driving 

where detection accuracy is essential.   

5.2 Distance estimation 

The evaluation of our distance estimation model's 

performance adhered to the criteria outlined in [48], 

utilizing two principal metrics: the Mean Absolute 

Distance Error (MAD) and the Mean Relative 
Distance Error (MRD), as defined in the following 

equations: 

 

𝑀𝐴𝐷 =
1

𝑛
∑ |𝑑𝑖 − 𝑑�̂�|

𝑛
𝑖=1                                    (16) 

 

𝑀𝑅𝐷 =
1

𝑛
∑

|𝑑𝑖−𝑑�̂�|

max(𝑑𝑖,1)
𝑛
𝑖=1                                       (17) 

 

where 𝑛 is the number of instances, and 𝑑𝑖 , 𝑑�̂� are 
respectively the real distance and the predicted 

distance for instance 𝑖 . The MAD measures the 

average absolute error between the estimated 

distances and the ground truth distances. This metric 
gives a clear indication of the average deviation of 

our distance estimates from the actual values. The 

MRD however offers a normalized perspective by 
considering the relative error concerning the ground 

truth distances, it provides insights into the 

proportional accuracy of our estimates across 
different distance ranges. 

For our system, the MAE achieved a value of 

2.412, while the MRD was constrained to a value of 

0.083. Fig. 9 illustrates the absolute and relative 
distance errors, revealing that MAD increases in a 

polynomial trend, with an exception at the 60-meter 
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Figure. 9 The absolute and relative distance error results. 

(a) Dependency of MAD Error on the object’s real 

distance. (b) Dependency of MRD Error on the object’s 
real distance 

 

 

mark, indicating a higher error margin for objects at 
a distance higher than 50 meters. The MRD, 

conversely, remained nearly constant across all 

distances, except at one meter. This anomaly can be 
attributed to the challenge posed by minor distance 

errors at close range, such as a 20 cm error at one 

meter translating to an MRD of 0.15, compounded by 

the inherent inaccuracies in measuring short 
distances. 

Further exploration into the ROD-YOLOv8's 

distance estimation performance unveiled errors 
particularly with classes like traffic signs and 

vehicles in other lanes, primarily attributed to 

deformation. Road objects in an image plan can 
undergo deformation, such as vehicles turning or 

pedestrians walking, which poses detection and 

tracking challenges for ADAS. To address these 

issues, perspective transformation, associated with 
changes in viewpoint, can be employed as an 

effective solution [1]. Although this transformation 

does not maintain parallelism, length, or angle, it 
ensures that lines remain straight, thereby offering a 

potential solution to deformation-induced errors. 

5.3 FPS and real-time application 

The final phase of our evaluation focused on 

assessing the real-time performance of the ROD-
YOLOv8 system by measuring its FPS. Our road 

object detection model alone achieved an impressive 

97 FPS on the Jetson Xavier AGX, demonstrating its 
capability for high-speed processing essential for 

real-time applications. However, when integrated 

with distance estimation, the FPS dropped to 83, 
which, although lower, still satisfies the real-time 

performance criteria crucial for ADAS applications. 

Comparatively, as shown in Table 3, the ROD-

YOLOv8 model outperforms several existing models 
such as YOLOv4 and Faster R-CNN in terms of FPS,  

 
Table 3. Comparison of FPS Performance Between ROD-YOLOv8 and Other Existing Models. 

Model FPS Hardware 

Faster R–CNN [49] 6 NVIDIA GeForce 1060 GPU 

YOLOv4 [49] 35 NVIDIA GeForce 1060 GPU 

YOLOv4 CSPDarknet-53  [49] 38 Nvidia GeForce RTX 2080 Ti 

SSD VGG-16  [49] 43 Nvidia GeForce RTX 2080 Ti 

Faster R–CNN  [49] 92 Nvidia GeForce RTX 2080 Ti 

ResNet50  [49] 25 Nvidia GeForce RTX 2080 Ti 

YOLOv2 DarkNet-19 [49] 45.5 Nvidia GeForce RTX 2080 Ti 

YOLOv5[50] 43.59 Jetson Xavier AGX 

YOLOv5[50] 23.17 Jetson Xavier Nx 

YOLOv5[50] 6.4 Jetson Nano 

YOLOv7 [35] 53 NVIDIA Tesla V100 

ROD-YOLOv8 [Ours: Detection] 97 Jetson Xavier AGX 

ROD-YOLOv8 [Ours: Detection + Distance estimation] 83 Jetson Xavier AGX 

ROD-YOLOv8 [Ours: Detection] 50 Nvidia GeForce RTX 2060  

ROD-YOLOv8 [Ours: Detection + Distance estimation] 41 Nvidia GeForce RTX 2060  
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even when using different hardware configurations. 
For instance, our model's performance on the Jetson 

Xavier AGX surpasses YOLOv4’s 35 FPS on the 

GeForce 1060 and aligns closely with the high FPS 

achieved by Faster R-CNN on more advanced 
hardware. 

These results highlight the ROD-YOLOv8’s 

potential to deliver real-time object detection and 
distance estimation, critical for enhancing the 

reliability and safety of ADAS technologies. 

Despite the challenges of integrating detection 
and distance estimation, the system maintains robust 

performance, making it a strong candidate for 

practical deployment in safety-sensitive 

environments. 

6. Conclusion  

In this paper, we presented ROD-YOLOv8, a 
framework designed to enhance road safety and 

navigation in autonomous and assisted driving 

environments. The framework integrates three key 

components: road object detection, object tracking, 
and distance estimation. The detection model 

accurately identifies and classifies road objects, 

providing essential data such as BBox coordinates 
and confidence scores. The Bot-Sort-based tracking 

model ensures consistent object identification across 

frames, crucial for predicting object movements. The 
distance estimation model, using class-specific 

calibration, reliably estimates the distance between 

objects and the vehicle-mounted monocular camera. 

ROD-YOLOv8 demonstrated strong performance, 
achieving a mAP of 78.2, an F1 score of 87.4, and an 

FPS of 97 on the Jetson Xavier AGX. 

The system's distance estimation showed a MAD 
error of 2.412, with most errors occurring for distant 

or deformed objects beyond 50 meters. In summary, 

ROD-YOLOv8 represents a significant advancement 

in road object detection and distance estimation using 
monocular cameras, offering a more accurate and 

reliable solution for ADAS technologies, thereby 

contributing to safer and more efficient driving 
experiences. 
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