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Abstract: Sustainable Lot Size Optimization is an important challenge of Supply Chain Management as it seeks to 

balance the economic goals of minimizing costs with environmental and social objectives, ensuring efficient 

production and inventory management while reducing environmental impact and enhancing social responsibility. 

Metaheuristic algorithms play a crucial role in solving Sustainable Lot Size Optimization problems by efficiently 

exploring large and complex search spaces to find near-optimal solutions that balance economic, environmental, and 

social objectives, often outperforming traditional optimization methods in terms of flexibility and scalability. With this 

attitude, in this paper, a new metaheuristic algorithm called Sales Training Based Optimization (STBO) is designed to 

solve Sustainable Lot Size Optimization applications. The fundamental inspiration in the design of STBO draws upon 

human behaviors observed during sales training. The theoretical framework of STBO is thoroughly described, and its 

implementation process is mathematically formulated in two distinct stages: the exploration phase and the exploitation 

phase. The efficiency of STBO to address Sustainable Lot Size Optimization applications has been evaluated on 10 

study scenarios. The optimization outcomes reveal that STBO consistently delivers highly effective solutions by 

seamlessly integrating exploration with exploitation throughout the search. Furthermore, a thorough comparison was 

conducted, revealing how STBO's results stack up against those from twelve widely recognized metaheuristic 

algorithms. The simulation findings conclusively demonstrate that the STBO approach consistently outperforms 

competitors, achieving superior performance across all study scenarios. These insights confirm that the STBO 

approach serves as a highly reliable and potent optimization tool, capable of addressing a wide range of optimization 

challenges in diverse applications. 

Keywords: Supply chain management, Sustainable lot size Optimization, Metaheuristic, Sales training based 

optimization, Exploration, Exploitation. 

 

 



Received:  July 23, 2024.     Revised: October 18, 2024.                                                                                                1326 

International Journal of Intelligent Engineering and Systems, Vol.17, No.6, 2024           DOI: 10.22266/ijies2024.1231.96 

 

1. Introduction 

Supply Chain Management (SCM) involves the 

comprehensive planning, execution, and oversight of 

all processes related to sourcing, procurement, 

conversion, and logistics operations. Additionally, 

SCM requires the coordination and collaboration 

with various channel partners, including suppliers, 

intermediaries, third-party service providers, and 

customers, to ensure seamless integration across the 

supply chain. This completely different approach 

highlights more words and more sentences, 

emphasizing the critical role of collaboration and 

coordination in achieving efficient and effective 

supply chain management. The essence of SCM is to 

maximize value for customers while achieving a 

sustainable competitive advantage for the 

organization. One of the critical aspects of SCM is 

Sustainable Lot Size Optimization (SLSO), which 

aims to determine the optimal production lot sizes 

that minimize costs and environmental impact while 

meeting customer demands [1]. Effective SCM can 

significantly reduce costs, improve product quality, 

increase speed and flexibility in responding to market 

changes, and ultimately enhance customer 

satisfaction. The complexity and globalization of 

modern supply chains necessitate the use of advanced 

methods and technologies to improve efficiency and 

sustainability [2]. 

Lot size optimization is the process of 

determining the optimal production quantities for 

each batch of products to minimize production and 

inventory costs while maximizing efficiency. When 

integrated with sustainability considerations, SLSO 

also aims to minimize the environmental and social 

impacts of production. This involves reducing the 

consumption of natural resources, minimizing waste 

and emissions, and improving working conditions for 

employees [3]. Traditional methods often face 

challenges in handling complex, multi-objective 

optimization problems efficiently. To address these 

challenges, metaheuristic algorithms have emerged 

as effective tools for finding near-optimal solutions 

in reasonable computational time [4]. Metaheuristic 

algorithms are powerful optimization techniques 

inspired by natural or social phenomena. They are 

characterized by their ability to explore large solution 

spaces efficiently and find good-quality solutions that 

are close to optimal [5].  

Metaheuristic algorithms offer several 

advantages for lot size optimization, including: 

• Flexibility: They can handle complex, non-

linear, and multi-objective optimization problems 

inherent in supply chain management. 

• Efficiency: Meta-heuristic algorithms are 

computationally efficient and can provide near-

optimal solutions within reasonable timeframes. 

• Robustness: They are adaptable to different 

problem structures and can accommodate real-world 

complexities such as demand variability and 

production constraints [6]. 

Metaheuristic algorithms as an effective tool have 

been used by different researchers for lot size 

optimization. Genetic Algorithms (GAs) are based on 

the principles of natural selection and genetics. They 

involve creating a population of potential solutions 

(individuals), evaluating their fitness (objective 

function value), and applying genetic operators 

(selection, crossover, and mutation) to evolve the 

population towards better solutions. GAs have been 

successfully applied to various optimization 

problems, including lot sizing, to handle non-linear 

and multi-objective optimization objectives [7]. 

Particle Swarm Optimization (PSO) is inspired by the 

social behavior of bird flocking or fish schooling. It 

involves a population of particles (potential 

solutions) moving through the solution space. Each 

particle adjusts its position based on its own 

experience and the best experience of neighboring 

particles. PSO has shown effectiveness in finding 

solutions for complex optimization problems with 

non-linear constraints and has been applied to 

optimize lot sizes in supply chain management [8]. 

Ant Colony Optimization (ACO) is inspired by the 

foraging behavior of ants. It involves simulating the 

pheromone-based communication among ants to find 

the shortest path to food sources. In lot size 

optimization, ACO algorithms can be adapted to find 

optimal production quantities by balancing 

exploration (pheromone trails) and exploitation 

(heuristic information). ACO has been applied to 

address dynamic lot sizing problems and has shown 

robust performance in uncertain environments [9]. 

Lot size optimization plays a crucial role in 

production and inventory management by 

determining the optimal quantities of products to be 

produced or ordered in each batch. Traditional 

methods, such as mathematical programming models 

and heuristic approaches, have been extensively 

studied and applied [10, 11]. However, these methods 

often struggle to efficiently handle complex, multi-

objective optimization problems that are 

characteristic of modern supply chain environments 

[12, 13]. As a result, there exists a notable research 

gap in the application of new metaheuristic 

algorithms to enhance lot size optimization processes 

and incorporate innovative aspects into these studies. 

On the other hand, based on the No Free Lunch 

(NFL) theorem [14], it cannot be claimed that a 
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particular metaheuristic algorithm is the best 

optimizer for all optimization applications. Therefore, 

on the other hand, the NFL theorem motivates 

researchers to provide more effective solutions for 

optimization problems by designing newer 

metaheuristic algorithms. 

The novelty and innovation of this paper is in 

designing a new metaheuristic algorithm called Sales 

Training Based Optimization (STBO) in order to 

solve optimization problems in different sciences and 

real-world applications. The key contributions of this 

paper are as follows:  

• STBO is inspired by the human activities in the 

sales training process.  

• The fundamental inspiration of STBO is human 

activities of (i) training to sellers by instructor and (ii) 

sellers' effort to improve their sales skills in the 

workplace.  

• The steps of STBO are described and then 

mathematically modeled in two phases: exploration 

and exploitation.  

• The performance of STBO is evaluated on 10 

study scenarios of Sustainable Lot Size Optimization.  

• The performance of STBO is compared with the 

performance of twelve well-known metaheuristic 

algorithms.  

The remainder of this paper unfolds as follows: 

Section 2 presents the theory and mathematical 

modeling of Sustainable Lot Size Optimization, 

Section 3 introduces and models the proposed STBO 

approach, Section 4 presents simulation studies and 

results, and Section 5 concludes with reflections and 

suggestions for future research directions. 

2. Sustainable lot size optimization 

Sustainable Lot Size Optimization (SLSO) 

integrates environmental, social, and economic 

considerations into traditional lot size optimization 

processes. The objective is to determine production 

quantities that not only minimize costs and maximize 

efficiency but also reduce environmental impact, 

promote social responsibility, and enhance overall 

sustainability across the supply chain. 

2.1 Mathematical model of sustainable lot size 

optimization 

The mathematical model of Sustainable Lot Size 

Optimization (SLSO) integrates traditional lot size 

optimization objectives with sustainability criteria, 

aiming to minimize production and inventory costs 

while considering environmental and social impacts. 

Below, we will outline the detailed mathematical 

formulation, description, definitions, and decision 

variables typically used in SLSO. 

Decision Variables: 

• 𝑸: Lot size or production quantity. 

Parameters: 

• 𝑫: Demand rate (units per time period). 

• 𝑪: Unit production cost. 

• 𝒉: Holding cost per unit per time period. 

• 𝑲 : Setup (or ordering) cost per 

production run. 

• 𝑺: Sustainability factor or cost related to 

sustainability (e.g., emissions, waste). 

Objective Function: 

Minimize the total cost, considering both 

production and sustainability costs: 

 

𝑻𝑪 = 𝑷𝑪 + 𝑯𝑪 + 𝑺𝑪 + 𝑺 

 

Here 𝑻𝑪 is the total cost, 𝑷𝑪 are the production 

costs, 𝑯𝑪  are the holding costs, 𝑺𝑪  are the setup 

costs, and 𝑺 are the sustainability costs. 

Each of these fee terms is calculated as follows: 

Production Costs: 

𝑷𝑪 = (
𝑫

𝑸
+

𝑸

𝟐
) . 𝑪 

·  
𝑫

𝑸
 represents the number of productions runs per 

time period (as 𝑫  units are needed and each run 

produces 𝑸 units). 

·  
𝑸

𝟐
 is the average inventory level over time. 

·  Multiplying these terms by the unit production 

cost 𝑪 gives the total production cost. 

 

Holding Costs: 

𝑯𝑪 = 𝒉.
𝑸

𝟐
 

• This term represents the cost to hold the 

average inventory level 
𝑸

𝟐
 over a time period. 

Setup Costs: 

𝑺𝑪 = 𝑲.
𝑫

𝑸
 

• 
𝑫

𝑸
 is the number of production runs per 

time period. 

• Multiplying this by the setup cost 𝑲 

gives the total setup cost. 

Sustainability Costs (𝑺): 

• This is a fixed cost associated with 

sustainability factors. 

Therefore, the objective function can be rewritten 

as follows: 

 

𝑻𝑪 = (
𝑫

𝑸
+

𝑸

𝟐
) . 𝑪 + 𝒉.

𝑸

𝟐
+ 𝑲.

𝑫

𝑸
+ 𝑺 
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Constraints: 

• Production Balance: 𝑸 = 𝑫.𝑻 

• Non-negativity: 𝑸, 𝑻 ≥ 𝟎 

 

In this section, the mathematical model of 

Sustainable Lot Size Optimization is presented, 

which can be solved using metaheuristic algorithms, 

especially the proposed approach of STBO. Next, 

after the introduction and mathematical modeling of 

STBO in Section 3, the results of the STBO 

implementation on Sustainable Lot Size 

Optimization are reported in Section 4. 

3. Sales training based optimization 

In this section, the origin and theoretical 

foundation of the proposed Sales Training Based 

Optimization (STBO) approach are comprehensively 

explained, providing a clear understanding of its 

conceptual basis. Following this, the implementation 

steps are meticulously modeled mathematically, 

ensuring that the STBO approach can be effectively 

applied to solve various optimization problems. 

3.1 Inspiration of STBO 

Sales is a valuable skill that helps people to be 

more effective in the workplace. Learning sales skills 

has a significant impact on the performance of sellers. 

In the sales training courses, the instructor tries to 

teach different sales skills to the applicants. After that, 

people in their work environment try to improve their 

skills over time so that they can become professional 

salespeople.  

In the sales training process, two human activities 

of (i) training to sellers by instructor and (ii) sellers' 

effort to improve their sales skills in the workplace 

are intelligent activities whose mathematical 

modeling is employed in the design of the proposed 

STBO approach. 

The STBO approach updates sellers' positions in 

the search space using this mathematical modeling, 

which incorporates the phases of exploration and 

exploitation, as further detailed below. 

3.2 Algorithm initialization 

The STBO approach represents a human-inspired 

metaheuristic algorithm, where sellers serve as the 

population members. In this context, each seller, as 

part of the population, assigns values to the problem's 

variables based on their respective positions within 

the search space. Consequently, each seller acts as a 

potential solution, mathematically represented by a 

vector. Collectively, these sellers constitute the 

STBO population matrix, which is mathematically 

formulated using a matrix as defined by Eq. (1). At 

the beginning of the STBO process, sellers' initial 

positions within the search space are randomly 

established using Eq. (2). 

 

𝑋 = 

[
 
 
 
 
𝑋1

⋮
𝑋𝑖

⋮
𝑋𝑁  ]

 
 
 
 

𝑁×𝑚

=

[
 
 
 
 
𝑥1,1

⋮
𝑥𝑖,1

⋮
𝑥𝑁,1

⋯
⋱
⋯
⋰
⋯

𝑥1,𝑑

⋮
𝑥𝑖,𝑑

⋮
𝑥𝑁,𝑑

⋯
⋰
⋯
⋱
⋯

𝑥1,𝑚

⋮
𝑥𝑖,𝑚

⋮
𝑥𝑁,𝑚]

 
 
 
 

𝑁×𝑚

 (1) 

 

𝑥𝑖,𝑑 = 𝑙𝑏𝑑 + 𝑟 ∙ (𝑢𝑏𝑑 − 𝑙𝑏𝑑) (2) 

 

Here 𝑆 is the STBO population matrix, 𝑆𝑖 is the 

𝑖 th seller (candidate solution), 𝑠𝑖,𝑑  is its 𝑑 th 

dimension in search space (decision variable), 𝑁 is 

the number of sellers, 𝑚 is the number of decision 

variables, 𝑟 is a random number in interval [0,1], 𝑙𝑏𝑑, 

and 𝑢𝑏𝑑 are the lower bound and upper bound of the 

𝑑th. decision variable, respectively. 

The objective function of the problem 

corresponding to each seller as a candidate solution, 

can be evaluated. According to this, the set of 

evaluated values for the objective function of the 

problem can be mathematically modeled using a 

vector according to Eq. (3). 

 

𝐹 =

[
 
 
 
 
𝐹1

⋮
𝐹𝑖

⋮
𝐹𝑁]

 
 
 
 

𝑁×1

=

[
 
 
 
 
𝐹(𝑋1)

⋮
𝐹(𝑋𝑖)

⋮
𝐹(𝑋𝑁)]

 
 
 
 

𝑁×1

 (3) 

 

Here 𝐹 is the vector of calculated objective 

function and 𝐹𝑖 is the calculated objective function 

based on the 𝑖th seller. 

The values obtained for the objective function 

serve as an essential metric for assessing the quality 

of each population member. Therefore, the best value 

of the objective function indicates the highest-

performing member, while the worst value 

corresponds to the lowest-performing member. As 

the algorithm iterates, the positions of sellers in the 

search space are continuously adjusted, leading to 

updated objective function values. Consequently, the 

identification of the best-performing member must be 

consistently revised to reflect these changes. 

3.3 Phase 1: Education (Exploration phase) 

In the process of sales training, instructors 

provide sellers with various sales techniques and 
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strategies through a structured, gradual program. This 

training spans over a period, allowing participants to 

progressively acquire and master these skills. As 

sellers advance through this training, their 

performance improves, leading to substantial 

adjustments in their positions within the problem-

solving space. This dynamic shift enhances the 

STBO algorithm's ability to conduct a more 

comprehensive global search. 

During the first phase of the STBO approach, the 

algorithm updates the positions of the population 

members to reflect the simulated effects of this sales 

training process. By modeling the progression of 

skills as imparted by the instructor, the algorithm 

recalculates each member’s position using the 

principles outlined in Equations (4) and (5). If this 

recalculated position yields a better objective 

function value, the seller’s position is updated 

accordingly, as specified by Equation (6). This 

approach ensures that the exploration capability of 

STBO is significantly improved, enabling a more 

effective global search for optimal solutions. 

 

𝑘(𝑡) = 𝑟 ∙
𝑡

𝑇
 (4) 

 

𝑆𝑖
𝑃1 = 𝑆𝑖 + 𝑘(𝑡) ∙ (𝐼 − 𝑆𝑖)  (5) 

 

𝑆𝑖 = {
𝑆𝑖

𝑃1, 𝐹𝑖
𝑃1 < 𝐹𝑖

𝑆𝑖, 𝑒𝑙𝑠𝑒
 (6) 

 

Here 𝑘(𝑡)  is the training coefficient, 𝑡  is the 

iteration counter of the algorithm, 𝑇 is the maximum 

number of algorithm iterations, 𝑆𝑖
𝑃1  is the new 

suggested position of ith seller based on first phase of 

STBO, 𝐹𝑖
𝑃1  is its objective function value, 𝑟  is a 

random number with a normal distribution in the 

range of [0,1], 𝐼  is the training instructor, and 𝑁 is 

the number of sellers.  

3.4 Phase 2: Personal skills improvement 

(Exploitation phase) 

After receiving training from the instructor, 

sellers make concerted efforts to refine their skills 

within their work environment. As they gain 

experience and continue to practice, their proficiency 

increases, allowing them to become more skilled 

professionals over time. This simulation of sellers' 

efforts to enhance their personal skills results in 

incremental adjustments to the positions of the 

population members, thereby augmenting the 

algorithm’s capacity for local search exploitation. 

In the second phase of the STBO approach, the 

positions of the population members are updated to 

reflect the simulated personal growth of salespeople 

as they work on improving their sales techniques. 

This phase involves recalculating each member’s 

new position based on the modeled skill enhancement, 

as outlined in Equations (7). If the objective function 

value improves with this new position, the updated 

position replaces the previous one, following the 

criteria specified in Equation (8). This process 

ensures that the algorithm effectively leverages 

improvements in sales skills to enhance local search 

capabilities and overall optimization performance. 

 

𝑆𝑖
𝑃2 = 𝑆𝑖 + (1 − 2𝑟) ∙

(𝑢𝑏 − 𝑙𝑏)

𝑡
 (7) 

 

𝑆𝑖 = {
𝑆𝑖

𝑃2, 𝐹𝑖
𝑃2 < 𝐹𝑖

𝑆𝑖, 𝑒𝑙𝑠𝑒
 (8) 

 

Here 𝑆𝑖
𝑃2 is the new suggested position of the 𝑖th 

seller based on second phase of STBO, 𝐹𝑖
𝑃2  is its 

objective function value, 𝑡 is the iteration counter of 

the algorithm, and 𝑇  is the maximum number of 

algorithm iterations. 

3.4 Repetition process, pseudocode, and flowchart 

of POA 

The first iteration of the POA ends after updating 

all its population members based on the exploration 

and exploitation phases. After that, with the new 

values calculated for the position of the members and 

the objective function, the algorithm enters the next 

iteration. The process of updating population 

members based on exploration and exploitation 

phases according to Eqs. (4) to (8) continues until the 

last iteration of the algorithm. In each iteration, the 

best candidate solution so far is identified and stored. 

After the full implementation of the algorithm, POA 

outputs the best solution identified during the 

iterations of the algorithm as a solution to the 

problem. The steps of POA implementation are 

shown as a flowchart in Figure 1. 

4. Simulation studies 

In this section, the performance of the proposed 

STBO approach to address Sustainable Lot Size 

Optimization applications is challenged. For this 

purpose, 10 different scenarios have been selected. 

Also, in order to analyze the quality of STBO, the 

obtained results have been compared with the 

performance of twelve famous metaheuristic 
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algorithms: GA [15], PSO [16], GSA [17], TLBO 

[18], MVO [19], GWO [20], WOA [21], MPA [22], 

TSA [23], RSA [24], AVOA [25], and WSO [26]. 

4.1 Study Scenarios 

In order to analyze the performance of STBO and 

competing algorithms on Sustainable Lot Size 

Optimization, 10 study scenarios have been selected. 

The details of these study scenarios are specified in 

Table 1. The purpose of these case studies is to 

evaluate how different cost structures and demand 

scenarios affect the optimal lot size and production 

cycle time in a sustainable production setting. 

The aim of these scenarios is to test how 

variations in demand rate, production costs, holding 

costs, setup costs, and sustainability costs affect the 

optimal lot sizes and production strategies. By 

analyzing the results, we can determine how 

effectively STBO handles these diverse conditions 

compared to the competing algorithms. 

The subsequent sections will present and analyze 

the results of STBO's performance against these 

established metaheuristic methods, providing 

insights into the strengths and weaknesses of STBO 

in managing Sustainable Lot Size Optimization. 

4.2 Results and Discussion 

The results presented in Table 2 compare the 

performance of the STBO approach against twelve 

other metaheuristic algorithms across ten different 

scenarios in Sustainable Lot Size Optimization 

(SLSO). The comparison is based on four metrics: 

mean cost, best cost, worst cost, and standard 

deviation (std). Here is a detailed analysis of the 

results: 

Overall Performance 

o STBO consistently outperforms other algorithms 

across the majority of scenarios, achieving the lowest 

mean cost in eight out of ten scenarios. This indicates 

STBO's robust ability to minimize production and 

sustainability costs effectively. 

o WSO, AVOA, and RSA also show a strong 

performance, frequently ranking near the top. These 

algorithms consistently achieve competitive results 

but fall slightly short compared to STBO. 

Detailed Analysis by Scenario 

o Scenario 1: 

▪ STBO achieves the best mean cost and ranks highest. 

The standard deviation is notably low, suggesting 

that STBO provides highly consistent results. 

▪ Other algorithms like WSO and AVOA are close but 

have slightly higher costs and higher standard 

deviations, indicating less consistency. 

o Scenario 2: 

▪ STBO again excels with the lowest mean cost and 

standard deviation. This scenario reflects STBO's 

ability to handle variations in demand and cost 

structures effectively. 

▪ WSO and AVOA perform similarly but slightly 

worse in terms of both mean and worst costs. 

o Scenario 3: 

▪ STBO provides the best results with the lowest mean 

and best costs. However, other algorithms such as 

PSO and TLBO show relatively high standard 

deviations, suggesting variability in their results. 

o Scenario 4: 

▪ STBO leads with the lowest mean cost and maintains 

consistency with a standard deviation of zero. This 

indicates precise and stable performance. 

▪ Competitors like WSO and AVOA have higher mean 

costs but still perform competitively. 

o Scenario 5: 

▪ STBO maintains its top position with the lowest mean 

cost. The standard deviation is also minimal, 

demonstrating reliable performance. 

▪ Algorithms like GSA and GA lag behind with higher 

mean costs and larger standard deviations. 

o Scenario 6: 

▪ STBO continues to lead with the best mean and best 

costs. The performance of WSO and AVOA is 

similar but slightly less effective. 

▪ The high standard deviation of the competitors 

indicates variability in their solutions. 

 

Table 1. Study Scenarios for Sustainable Lot Size Optimization 
Scenario Demand Rate (D) Unit Production Cost (C) Holding Cost (h) Setup Cost (K) Sustainability Cost (S) 

1 220500 200 0.12 184.1472 417.456 
2 12325 200 0.12 309.5952 417.456 
3 1900000 200 0.12 8.2992 15645.6762 
4 950000 200 0.12 20.3472 15645.6762 
5 8140000 200 0.12 5.0208 417.456 
6 8250000 200 0.12 8.1504 15645.6762 
7 2000000 200 0.12 10.4688 15645.6762 
8 9200 200 0.12 546.2784 417.456 
9 650 200 0.12 354.8016 417.456 

10 10250 200 0.12 352.6896 417.456 
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Table 2. Comparison of metaheuristic algorithms in sustainable lot size optimization 
 STBO WSO AVOA RSA MPA TSA WOA MVO GWO TLBO GSA PSO GA 

Scenario 
1 

mean 128606.3 129808.2 129808.2 129808.2 129808.2 129808.2 129808.2 129808.2 129808.2 129808.2 139034.2 129808.2 130091.1 

best 128606.3 129766.1 129766.1 129766.1 129766.1 129766.1 129766.1 129766.1 129766.1 129766.1 130579.8 129766.1 129779 

worst 128606.3 129909.1 129909.1 129909.1 129909.1 129909.1 129909.1 129909.1 129909.1 129909.1 154303.5 129909.1 130838.3 

std 2.99E-11 43.66836 43.66836 43.66836 43.66836 43.66836 43.66836 43.66836 43.66836 43.66836 7679.879 43.66836 323.3156 

median 128606.3 129791 129791 129791 129791 129791 129791 129791 129791 129791 136979.2 129791 129964 

rank 1 2 2 2 2 2 2 2 2 2 4 2 3 

Scenario 
2 

mean 14306.17 14439.4 14439.4 14439.4 14439.4 14439.4 14439.4 14439.4 14439.4 14439.4 15098.34 14439.4 14467.93 

best 14306.17 14434.98 14434.98 14434.98 14434.98 14434.98 14434.98 14434.98 14434.98 14434.98 14447.63 14434.98 14435.2 

worst 14306.17 14451.38 14451.38 14451.38 14451.38 14451.38 14451.38 14451.38 14451.38 14451.38 17587.09 14451.38 14556.64 

std 3.73E-12 4.834517 4.834517 4.834517 4.834517 4.834517 4.834517 4.834517 4.834517 4.834517 787.5519 4.834517 35.79422 

median 14306.17 14437.77 14437.77 14437.77 14437.77 14437.77 14437.77 14437.77 14437.77 14437.77 14803.94 14437.77 14455.83 

rank 1 2 2 2 2 2 2 2 2 2 4 2 3 

Scenario 
3 

mean 110660.5 111656.7 111673.5 111690.4 111656.7 111656.7 111656.7 111656.7 111656.7 111656.7 111833.6 111656.7 111656.7 

best 110660.5 111656.7 111656.7 111656.7 111656.7 111656.7 111656.7 111656.7 111656.7 111656.7 111656.7 111656.7 111656.7 

worst 110660.5 111656.7 111778 111899.3 111656.7 111656.7 111656.7 111656.7 111656.7 111656.7 112473.6 111656.7 111656.7 

std 1.36E-10 0.000226 33.25634 66.51257 0.000226 0.000226 0.000226 0.000267 0.000226 0.000225 264.2911 0.000226 0.001672 

median 110660.5 111656.7 111661.6 111666.4 111656.7 111656.7 111656.7 111656.7 111656.7 111656.7 111684 111656.7 111656.7 

rank 1 2 9 10 2 5 3 7 4 6 11 2 8 

Scenario 
4 

mean 123605.4 124724.4 124724.4 124724.4 124724.4 124724.4 124724.4 124724.4 124724.4 124724.4 126689.9 124724.4 124765.3 

best 123605.4 124718.7 124718.7 124718.7 124718.7 124718.7 124718.7 124718.7 124718.7 124718.7 124740.7 124718.7 124722.4 

worst 123605.4 124738.6 124738.6 124738.6 124738.6 124738.6 124738.6 124738.6 124738.6 124738.6 131254.4 124738.6 124870.5 

std 0 6.687899 6.687899 6.687899 6.687899 6.687899 6.687899 6.687899 6.687899 6.687899 1882.317 6.687899 49.51645 

median 123605.4 124721.4 124721.4 124721.4 124721.4 124721.4 124721.4 124721.4 124721.4 124721.4 126172.4 124721.4 124742.8 

rank 1 2 2 2 2 2 2 2 2 2 4 2 3 

Scenario 
5 

mean 119366.1 120484.3 120484.3 120484.3 120484.3 120484.3 120484.3 120484.3 120484.3 120484.3 131600 120484.3 120764.4 

best 119366.1 120441.3 120441.3 120441.3 120441.3 120441.3 120441.3 120441.3 120441.3 120441.3 121875.8 120441.3 120445.7 

worst 119366.1 120645.9 120645.9 120645.9 120645.9 120645.9 120645.9 120645.9 120645.9 120645.9 165592.8 120645.9 121960.2 

std 0 53.99041 53.99041 53.99041 53.99041 53.99041 53.99041 53.99041 53.99041 53.99041 11456.09 53.99041 399.7389 

median 119366.1 120462.8 120462.8 120462.8 120462.8 120462.8 120462.8 120462.8 120462.8 120462.8 125796.9 120462.8 120604.9 

rank 1 2 2 2 2 2 2 2 2 2 4 2 3 

Scenario 
6 

mean 284680.5 287333.5 287333.5 287333.5 287333.5 287333.5 287333.5 287333.5 287333.5 287333.5 292084.7 287333.5 287911.8 

best 284680.5 287246.1 287246.1 287246.1 287246.1 287246.1 287246.1 287246.1 287246.1 287246.1 287286.6 287246.1 287264.6 

worst 284680.5 287537.7 287537.7 287537.7 287537.7 287537.7 287537.7 287537.7 287537.7 287537.7 308371.3 287537.7 289423.5 

std 5.97E-11 74.73157 74.73157 74.73157 74.73157 74.73157 74.73157 74.73157 74.73157 74.73157 5006.14 74.73157 553.3041 

median 284680.5 287325.5 287325.5 287325.5 287325.5 287325.5 287325.5 287325.5 287325.5 287325.5 290092.6 287325.5 287852.9 

rank 1 2 2 2 2 2 2 2 2 2 4 2 3 

Scenario 
7 

mean 127516.8 128664.7 128689.2 128713.6 128664.7 128664.7 128664.7 128664.7 128664.7 128664.7 129062.1 128664.7 128664.7 

best 127516.8 128664.7 128664.7 128664.7 128664.7 128664.7 128664.7 128664.7 128664.7 128664.7 128664.7 128664.7 128664.7 

worst 127516.8 128664.7 128721.2 128777.6 128664.7 128664.7 128664.7 128664.7 128664.7 128664.7 130462.7 128664.7 128664.8 

std 1.97E-10 0.004444 23.7509 47.50137 0.004444 0.004444 0.004444 0.004472 0.004446 0.004444 585.2794 0.004444 0.032901 

median 127516.8 128664.7 128682.3 128699.9 128664.7 128664.7 128664.7 128664.7 128664.7 128664.7 128753.9 128664.7 128664.7 

rank 1 2 8 9 2 4 2 6 3 5 10 2 7 

Scenario 
8 

mean 20165.12 20351.85 20351.85 20351.85 20351.85 20351.85 20351.85 20351.85 20351.85 20351.85 21233.09 20351.85 20385.23 

best 20165.12 20347.02 20347.02 20347.02 20347.02 20347.02 20347.02 20347.02 20347.02 20347.02 20361.84 20347.02 20349.42 

worst 20165.12 20362.25 20362.25 20362.25 20362.25 20362.25 20362.25 20362.25 20362.25 20362.25 22892.12 20362.25 20462.19 

std 3.73E-12 3.636991 3.636991 3.636991 3.636991 3.636991 3.636991 3.636991 3.636991 3.636991 788.0448 3.636991 26.92787 

median 20165.12 20351.57 20351.57 20351.57 20351.57 20351.57 20351.57 20351.57 20351.57 20351.57 21121.52 20351.57 20383.14 

rank 1 2 2 3 3 3 3 3 3 3 5 3 4 

Scenario 
9 

mean 4323.053 4361.969 4361.987 4362.005 4361.969 4361.969 4361.969 4361.969 4361.969 4361.969 4361.969 4361.969 4361.969 

best 4323.053 4361.969 4361.969 4361.969 4361.969 4361.969 4361.969 4361.969 4361.969 4361.969 4361.969 4361.969 4361.969 

worst 4323.053 4361.969 4362.15 4362.331 4361.969 4361.969 4361.969 4361.969 4361.969 4361.969 4361.969 4361.969 4361.969 

std 2.62E-12 1.14E-11 0.042012 0.084024 1.16E-11 1.99E-08 1.14E-11 7.03E-07 4.76E-08 1.44E-07 1.15E-11 1.14E-11 8.39E-11 

median 4323.053 4361.969 4361.97 4361.972 4361.969 4361.969 4361.969 4361.969 4361.969 4361.969 4361.969 4361.969 4361.969 

rank 1 2 8 9 2 4 2 7 5 6 2 2 3 

Scenario 
10 

mean 15401.34 15544.36 15544.36 15544.36 15544.36 15544.36 15544.36 15544.36 15544.36 15544.36 16357.15 15544.36 15572.35 

best 15401.34 15540.32 15540.32 15540.32 15540.32 15540.32 15540.32 15540.32 15540.32 15540.32 15556.39 15540.32 15542.49 

worst 15401.34 15551.95 15551.95 15551.95 15551.95 15551.95 15551.95 15551.95 15551.95 15551.95 18135.97 15551.95 15628.55 

std 0 3.166112 3.166112 3.166112 3.166112 3.166112 3.166112 3.166112 3.166112 3.166112 753.629 3.166112 23.44153 

median 15401.34 15545.46 15545.46 15545.46 15545.46 15545.46 15545.46 15545.46 15545.46 15545.46 16185.45 15545.46 15580.54 

rank 1 2 2 2 2 2 2 2 2 2 4 2 3 

Sum rank 10 20 39 43 21 28 22 35 27 32 52 21 40 
Mean rank 1 2 3.9 4.3 2.1 2.8 2.2 3.5 2.7 3.2 5.2 2.1 4 
Total rank 1 2 9 11 3 6 4 8 5 7 12 3 10 
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o Scenario 7: 

▪ STBO remains the best performer with the lowest 

mean cost and a very low standard deviation. This 

scenario underscores STBO's effectiveness in 

handling different cost structures. 

o Scenario 8: 

▪ STBO achieves the lowest mean cost and maintains a 

high rank. Competitors like WSO and AVOA show 

similar performance but with slightly higher costs. 

o Scenario 9: 

▪ STBO provides the best cost results with the lowest 

mean and standard deviation, highlighting its 

effectiveness even in smaller demand scenarios. 

▪ Other algorithms show similar results but with higher 

mean costs. 

o Scenario 10: 

▪ STBO continues its strong performance with the 

lowest mean and best costs. The low standard 

deviation indicates stability. 

▪ Competitors like WSO and AVOA are close but still 

slightly behind. 

Performance Comparison 

• STBO has the lowest mean cost in eight out of ten 

scenarios and demonstrates the smallest standard 

deviations, indicating both effectiveness and 

consistency. 

• WSO and AVOA frequently follow STBO, showing 

a strong performance but with slightly higher costs 

and larger variances. 

• Algorithms such as GSA and PSO generally rank 

lower, with higher mean costs and larger standard 

deviations, suggesting they are less effective and 

consistent compared to STBO. 

Rank Analysis 

• STBO achieves the best overall rank, with the lowest 

mean rank of 1. This consistent performance 

underscores its superiority in solving SLSO problems. 

• WSO, AVOA, and RSA follow closely but show 

variability in their results, reflecting strengths in 

specific scenarios but not across the board. 

In conclusion, the STBO approach demonstrates a 

superior ability to minimize costs and handle 

variability in different scenarios, outperforming the 

competing metaheuristic algorithms in terms of both 

cost and consistency. 

5. Conclusions and future works 

In this paper, we present a novel meta-heuristic 

algorithm known as Sales Training Based 

Optimization (STBO), specifically crafted for 

addressing Sustainable Lot Size Optimization 

challenges. This innovative approach draws its core 

inspiration from two key aspects of the sales training 

process: (i) the formal training provided by 

instructors and (ii) the continuous efforts of sellers to 

refine their skills in real-world settings. The STBO 

algorithm's implementation is meticulously 

structured through mathematical modeling across 

two distinct phases: exploration and exploitation. To 

evaluate its efficacy, STBO was applied to ten 

different scenarios of Sustainable Lot Size 

Optimization. The results demonstrated that STBO 

effectively balances exploration and exploitation, 

consistently achieving high-quality solutions. In 

comparative analyses, STBO outperformed twelve 

established metaheuristic algorithms, showcasing a 

100% superior performance across all tested 

scenarios. These findings confirm that STBO is a 

robust and versatile optimization tool applicable to a 

wide range of scientific and practical problems.  

Future research could explore the development of 

binary and multi-objective variants of STBO and 

apply the algorithm to various other scientific and 

real-world optimization challenges. 
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