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Abstract: Manual annotation of large-scale point cloud datasets is laborious due to their irregular structure. While 

cross-modal contrastive learning methods such as CrossPoint and CrossNet have progressed in utilizing multimodal 

data for self-supervised learning, they still suffer from instability during training caused by the static weighting of 

intra-modal (IM) and cross-modal (CM) losses. These static weights fail to account for the varying convergence rates 

of different modalities. We propose AdaCrossNet, a novel self-supervised learning framework for point cloud 

understanding that utilizes a dynamic weight adjustment mechanism for IM and CM contrastive learning. AdaCrossNet 

learns representations by simultaneously enhancing the alignment between 3-D point clouds and their associated 2D-

rendered images within a common latent space. Our dynamic weight adjustment mechanism adaptively balances the 

contributions of IM and CM losses during training, guided by the convergence behavior of each modality. To ensure 

stability in the training process, we employ an exponentially weighted moving average (EWMA) to smooth the weight 

updates. We experimented with benchmark datasets, ModelNet40, ShapeNetPart, and ScanObjectNN. The results 

demonstrate that AdaCrossNet achieves superiority over other methods, with 91.4% accuracy on the ModelNet40 

classification task. While on the segmentation task, AdaCrossNet achieved the mIoU score of 85.1% on the 

ShapeNetPart segmentation task. Additionally, AdaCrossNet, when combined with the DGCNN backbone, showed 

significant improvements in the ScanObjectNN dataset with 82.1% accuracy. Our method boosts training efficiency 

while increasing the generalizability of the learned representations across downstream tasks. 

Keywords: Adaptive weighting, Contrastive learning, Deep learning, Point cloud understanding, Self-Supervised 

learning. 

 

 

1. Introduction  

3D vision, essential in applications like 

autonomous driving, mixed reality, and robots, has 

garnered significant attention for its capacity to 

comprehend the human environment. Consequently, 

study has been abundant in 3D vision issues, 

including object categorization [1-3], detection [4], 

and segmentation [2, 5], with point clouds emerging 

as the predominant approach for 3D data 

representation in recent years. Nonetheless, the 

efficacy of deep learning fundamentally depends on 

extensive annotated datasets. Despite the progress in 

3D sensing technologies (e.g., LIDAR) enabling 

significant gathering of 3D point cloud samples, the 

inconsistent structure of point clouds renders the 

manual annotation of large-scale 3D point cloud 

datasets labor-intensive. Self-supervised learning 

(SSL) is a leading method for tackling this problem 

and has demonstrated efficacy in the 2D domain [6-

8].  

As their SSL success in images [7-9] and videos 

[10, 11], we have seen that multimodal contexts have 

been presented for a variety of vision tasks, including 

object identification [12] and few-shot picture 
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classifications [13]. CrossPoint [14] first illustrates 

self-supervised on point cloud which combined with 

images using pretrained contrastive learning (CL). 

This is the initial step in self-supervised CL for 

visualization in three dimensions. CrossPoint can 

establish suitable initial weights for downstream 

tasks by understanding the correlation between IM 

point clouds and CM point clouds and images. 

Because there have been significant advancements in 

both the utilization of data and the architecture of 

networks, this motivates us to investigate cross-

modality more.  

Despite significant advancements in cross-modal 

contrastive learning for point cloud data, a key 

challenge remains in balancing IM and CM learning 

objectives. Existing methods employ static weighting 

mechanisms that fail to account for varying 

convergence rates across different modalities, 

leading to instability during training [15, 16].  

 

 
Table 1. List of notations 

Symbol Description 

x𝑖
𝑡1 , 𝑥𝑖

𝑡2 Input paired point cloud data 

𝑦𝑖
𝑟𝑔𝑏

, 𝑦𝑖
𝑔𝑟

 Embeddings from cross-modal images 

𝐿𝑠𝑖𝑚   Loss similarity 

𝐿𝐼𝑀 Loss for intra-modal 

𝐿𝐶𝑀 Loss for cross-modal 

𝛼, 𝛽 Coefficients for controlling the given 

weights 

𝐏𝑖 3-D point clouds at 𝑖 

𝑧 Latent space representation 

𝑁 The number of point cloud 

𝐏𝑖 Transformed point cloud 

𝑓𝜃𝑝
 Shared weight network 

𝑔Φ𝑟𝑔𝑏
, 𝑔Φ𝑔𝑟

 MLP projection functions for RGB and 

Grayscale 

𝐈𝑖
𝑟𝑔𝑏

, 𝐈𝑖
𝑔𝑟

 Input related image of point cloud for 

RGB and Grayscale 

𝑓Φ𝑟𝑔𝑏
, 𝑓Φ𝑔𝑟

 MLP network for each RGB and 

Grayscale 

𝑓𝜃𝑝
, 𝑓𝜃𝑙

 Feature extractor for point cloud and 

image, respectively 

𝜏 Parameter of temperature in 𝐿𝑠𝑖𝑚 

𝑠(⋅) Function for cosine similarity 

𝑦𝑖
𝑟𝑔𝑏

, 𝑦𝑖
𝑔𝑟

 Color feature and grayscale feature 

𝜆𝐶𝑀 , 𝜆𝐼𝑀 Dynamic weights for CM and IM, 

respectively 

Δ𝐿𝐶𝑀 , Δ𝐿𝐼𝑀 Change rate of CM and IM 

𝐿𝐴𝐶𝑀  Adaptive cross-modal loss function 

 

The instability results from weights that change too 

rapidly might cause learning oscillations. 

Additionally, the interaction between the IM and CM 

losses adds complexity and leads to an overemphasis 

on one modality [17]. To address this, we propose a 

smoothing technique using exponentially weighted 

moving averages (EWMA) and weight constraints 

for each IM and CM loss adopted from [14, 18]. 

Our contributions are summarized as follows: 

• We present a novel dynamic weight adjustment 

technique for IM and CM CL, which allows for a 

weight change according to each modality’s 

convergence. 

• We propose a smoothing technique for loss terms 

based on EWMA, which is expected to control 

the jump of the loss terms when the weights are 

changed noticeably. 

• We present a model that adjusts the amounts of 

contributions of the losses to the overall loss as 

per the degree of convergence in each modality. 

• The method presented facilitates better 3D 

cognition by embedding point cloud and image 

features into a common latent space, which 

allows for modeling geometry and appearance. 

The remainder of the article is structured as 

follows: Section II summarizes the related works. In 

Section III, we provide the foundational approaches 

and the comprehensive explanation of our proposed 

work. Section IV, Experiments, presents and 

compares our method across multiple benchmarks 

with other techniques. Section V is the discussion. 

Section VI is the conclusion. 

2. Related work  

2.1 Supervised learning on point clouds 

Point cloud data, recognized for its precision and 

depth, is essential in several practical applications, 

particularly computer vision. Nonetheless, the 

domain has obstacles, notably the lack of 

connectivity information between points, which 

hinders procedures such as surface reconstruction, 

topological analysis, and geometry [19, 20].  

Significant improvements such as PointNet [1] 

enabled the direct processing of raw point clouds, 

effectively capturing global properties while 

encountering difficulties with local structures. 

PointNet++ [2] tackled this obstacle with hierarchical 

learning to capture both local and global features, 

although encountering difficulties with thick point 

clouds. Alternative graph-based methodologies, such 

as Dynamic Graph CNN (DGCNN) [3] and 
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Figure. 1 The diagram illustrates a dual-modality framework combining point cloud and image data. In the Point Cloud 

Modality (top section), two transformed versions of a point cloud (𝑃𝑖
𝑡1and 𝑃𝑖

𝑡2) undergo feature extraction using a shared-

weight network (𝑓𝜃𝑝
 ), followed by projection into a lower-dimensional space (𝑔𝜙𝑝

 ). This results in features 𝑥𝑖
𝑡1 and 𝑥𝑖

𝑡2, 

which are compared using intra-modal correspondence loss. In the Image Modality (bottom section), both RGB and 

grayscale images (𝑰𝑖
𝑟𝑔𝑏

 and 𝑰𝑖
𝑔𝑟

 ) pass through separate networks (𝑓𝜙𝑟𝑔𝑏
 and 𝑓𝜙𝑔𝑟

) and projection functions (𝑔𝜙𝑟𝑔𝑏
 and 

𝑔𝜙𝑔𝑟
). The resulting embeddings (𝑦𝑖

𝑟𝑔𝑏
 and 𝑦𝑖

𝑔𝑟
) are compared cross-modally with point cloud features using an 

Adaptive Cross-Modal Correspondence Loss to align features loss from different modalities, enhancing the robustness 

representations across modalities. 

 

superpoint graph approaches [21], utilize the 

interrelations among adjacent points to encapsulate 

intricate geometric configurations. CurveNet [22]  

introduced a novel curve aggregation to enhance 

point cloud analysis capturing semantic relationship 

of those points. However, CurveNet is sensitive to the 

selection of curve length and quantity. Moreover, 

multiscale learning methodologies [23, 24] have 

proven their importance in point cloud processing, 

enhancing the capacity to acquire and utilize 

information across many scales for superior task 

efficacy.  

2.2 Unsupervised learning on point clouds 

The 3D-GAN approach in [25] effectively 

generates 3D objects using adversarial networks but 

suffers from artifacts like fragmented or incomplete 

shapes. SO-GAN [26] introduces self-organizing 

maps for point cloud analysis, offering fast training. 

However, it struggles with scalability for large-scale 

point clouds due to the complexity of the self-

organizing map construction. FoldingNet [27] 

achieves impressive point cloud reconstruction by 

folding a 2D grid into a 3D shape. However, its 

reliance on a fixed 2D grid structure limits flexibility 

in handling irregular point cloud geometries. 

Achlioptas et al. [28] propose an autoencoder-based 

for point cloud learning, but the GAN-based 

approach poses instability during training. Finally, 

Zhang [29] presents a graph-based network for 

unsupervised point cloud learning, which performs 

well on classification tasks but faces challenges in 

capturing fine-grained local features. Next year, an 

unsupervised repeated learning was shown in [30] by 

reconstructing a partial point cloud obtained from 

occlusions. However, the generalization is limited 

due to its reliance on indoor-specific pre-training data. 

2.3 Self-Supervised learning on point clouds 

SSL is more effectively established in the 2D 

world [9], leading most current 3D SSL techniques to 

pursue direct migration without adequately 

leveraging the distinct characteristics of 3D and 2D 

data. JigSaw3D [31], while adopting the concept of 

component rearrangement from 2D JigSaw tasks, 

needs a more complex task design. For Rotation3D 
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[32], the arbitrary rearrangement of 3-D components 

fails to capture the complex geometric relationships 

that exist in point clouds. 

Motivated by the efficacy of self-supervised CL 

in image comprehension, several studies [33-35] 

have examined this framework for point cloud 

analysis. STRL [34], an extension of BYOL [8] for 

3D point clouds, explores representations in an 

unsupervised manner by gaining benefit of the 

interactions among networks. In contrast to current 

studies utilizing CL, we provide a supplementary CM 

contrastive aim that captures multi-dimensional 

correspondence. 

2.4 Intra-Modal learning on point clouds 

CL has arisen as a formidable method for SSL, 

especially within the two-dimensional domain, as 

evidenced by numerous studies in computer vision 

and text-related tasks [9, 36]. An essential element of 

CL is utilizing an ideal contrastive loss function that 

proficiently allows the model to differentiate between 

positive and negative data. PointContrast [30] 

implements CL at the point level by creating two 

distinct augmented representations of the same point 

cloud and ensuring consistency among comparable 

points. 

2.5 Cross-Modal learning on point clouds 

Cross-modal retrieval (CMR) pertains to extract 

relevant information across many modalities, 

including text and visuals and has attracted 

considerable attention in recent years [37, 38]. CMR 

has shown a significant amount of interest in cross-

modal learning (CML). At the early stages, CML for 

point cloud processing leverages the integration of 

point clouds with different data representations such 

as voxels [35], RGB images [15], and geometric 

image features [18]. These methods aimed to enhance 

point cloud understanding by utilizing additional data 

from other modalities. Our approach is closely related 

to the works of CrossPoint [14] and CrossNet [18], 

which implemented CL to exploit the relationships 

between 2D and 3D modalities.  

3. Proposed work  

In traditional contrastive learning frameworks [14, 

18] the weights for IM and CM losses are manually 

set and fixed throughout the training process. 

However, this static weighting may not be optimal as 

different modalities (3D point clouds and images) 

exhibit different convergence behaviors. We propose 

a dynamic weight adjustment mechanism, called 

AdaCrossNet which can be seen in Fig. 1, where the 

contribution of each loss term is updated during 

training based on the convergence state of each 

modality, allowing the model to allocate more 

emphasis on the harder-to-learn modality at different 

stages of the training process. All notations here are 

presented in Table 1. 

3.1 Preliminaries 

ssessing is required. To tackle this issue, SSL can 

achieve incredible results with no required labeled 

dataset [39], [40]. Furthermore, since human visual 

perception can perceive 3D from 2D images, multi-

modality is better than singular modality. 

Suppose we are given a dataset, 𝐷 =

{(𝐏𝑖, 𝐈𝑟𝑔𝑏 , 𝐈𝑔𝑟)}
𝑖=1

|𝐷|
, where 𝐏𝑖 ∈ ℝ𝑁×3 represents the 

3D point cloud with N points, each with 3D 

coordinates, 𝐼𝑟𝑔𝑏 ∈ ℝ𝐻×𝑊×3  is the rendered RGB 

image of the corresponding point cloud 𝐏𝑖, and 𝐈𝑔𝑟 ∈

ℝ𝐻×𝑊  is one-channeled image. The image 𝐈𝑟𝑔𝑏  is 

obtained by rendering the 3D point cloud 𝐏𝑖 from a 

random camera view-point. The objective is to train 

a point cloud feature extractor 𝑓𝜃𝑝
(·) and an image 

feature extractor 𝑓𝜃𝑙
(·) in a self-supervised manner. 

This feature training is transferred to downstream 

tasks such as 3D classification and segmentation. For 

both modalities, we apply multi-layer perceptron 

(MLP) projection 𝑔𝜙𝑝
 (·)  and 𝑔𝜙𝑙

(·)  to map the 

extracted features to a shared latent space for 

contrastive learning. 

Directly evaluate the colored point cloud 

representation is hard because of its unstructured 

nature and high dimensionality. Thus, to tackle this 

issue, the 3D point cloud is represented in RGB and 

grayscale. We called this feature representation 

extractor with 𝑓𝜃𝑝
 for 3D point cloud, 𝑓𝜃𝑟𝑔𝑏

 for RGB 

images, and 𝑓𝜃𝑔𝑟
 for the grayscale images. We 

employed two famous point cloud extraction 

methods, PointNet and DGCNN and ResNet as 2D 

image extractor. 

3.2 Intra-Modal learning 

The successor works of contrastive learning (CL) 

for point cloud and images [7, 14, 41] gained 

attention to others [18,  42]. CL is an approach in deep 

learning specially designed for tasks where labeled 

data are scarce. The purpose of CL is to learn an 

embedding space between corresponding data points 

by contrasting pairs of positive and negative samples. 

The term intra modal is come from the pairing point 

clouds obtained from two random augmentation 

using translation, rotation, scaling, and jittering. 
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Given a point cloud input 𝐏𝑖, we have two augmented 

versions, 𝐏𝑖
t1 and 𝐏𝑖

𝑡2  

Given two aligned views of a point cloud or 3D 

object, labeled 𝑣1 and 𝑣2. The views are linked by a 

point index mapping M, which designates 

corresponding points in each view. The procedure 

initiates with the application of a feature extractor 𝑓𝜃𝑝
 

to the altered point clouds 𝐏𝑖
𝑡1  and 𝐏𝑖

𝑡2 , therefore 

mapping them into an embedding space. The MLP 

𝑔𝜙𝑝
(⋅)  maps these features onto ℝ𝑑 , 𝑑 = 256 , 

yielding 𝑥𝑖
𝑡1  and 𝑥𝑖

𝑡2 , respectively. 𝑥
𝑖

𝑡𝑗
 is derived 

from the equation 𝑥
𝑖

𝑡𝑗 = 𝑔𝜙𝑝
(𝑓𝜃𝑝

(𝑃
𝑖

𝑡𝑗)) . The 

objective is to enhance the similarity between the 

corresponding projection vectors 𝑥
𝑖

𝑡𝑗
 while reducing 

their resemblance to projections from disparate point 

clouds. 

We adapt NT-Xent loss function from [7] to 

evaluate and separate the positive and negative 

feature vectors. The intra-modal loss function 𝐿𝐼𝑀 is 

defined as: 

 

𝐿𝐼𝑀 =  
1

2𝑁
∑ [𝐼𝑠𝑖𝑚(𝑥𝑖

𝑡1 , 𝑥𝑖
𝑡2) + 𝐼𝑠𝑖𝑚(𝑥𝑖

𝑡2 , 𝑥𝑖
𝑡1)]𝑁

𝑖=1             (1) 

 

where 𝑁  is the batch size, 𝑥𝑖
𝑡1  and 𝑥𝑖

𝑡2  are the 

feature vectors from MLP projection 𝑃𝑖
𝑡1  and 𝑃𝑖

𝑡2 , 

and 𝐼𝑠𝑖𝑚 is defined as: 

 

𝐿𝑠𝑖𝑚(𝑥𝑖
𝑡1 , 𝑥𝑖

𝑡2) =  

− log
𝑒

𝑠(𝑥
𝑖
𝑡1,𝑥

𝑖
𝑡2)/𝜏

∑ 1[𝑘≠1]𝑒
𝑠(𝑥

𝑖
𝑡1,[𝑥

𝑘
𝑡1,𝑥

𝑘
𝑡2])/𝜏𝑁

𝑖=1   

                           (2) 

 

where 𝜏 is the parameter of temperature, 𝑠(⋅) is 

the function to calculate similarity using cosine. 

 

3.3 Cross-Modal learning 

Learning spatial-awareness from image modality 

can improve the learning capability. CrossPoint [14] 

utilized the joint operation between point cloud and 

image correspondence. But, it lacks of other image 

properties such as contour and edge. CrossNet 

tackled this issue by exploring the properties using 

RGB and grayscale image features. The interaction of 

properties between point cloud and both RGB and 

grayscale image is called Cross Modal (CM). To 

capture the average score of projected features, we 

calculate 𝑥𝑖 with: 

 

𝑥𝑖 =
𝑥𝑡1+𝑥𝑡2

2
                                                              (3) 

 

By using ResNet as image projection head, we 

can embed the RGB image 𝑰𝑟𝑔𝑏 and grayscale image 

𝑰𝑔𝑟 into the feature domain. Given 𝑔𝜙𝑟𝑔𝑏
 and 𝑔𝜙𝑔𝑟

 as 

image projection head for RGB and grayscale images, 

respectively, we have the color feature 𝑦𝑖
𝑟𝑔𝑏

 with: 

 

𝑦𝑖
𝑟𝑔𝑏

= 𝑔𝜙𝑟𝑔𝑏
(𝑓𝜃𝑟𝑔𝑏

(𝐈𝑖
𝑟𝑔𝑏

) )                                   (4) 

 

 

and the grayscale features 𝑦𝑖
𝑔𝑟

 with: 

 

𝑦𝑖
𝑔𝑟

= 𝑔𝜙𝑔𝑟
(𝑓𝜃𝑔𝑟

(𝐈𝑖
𝑔𝑟

) )                                       (5) 

 

where 𝑔𝜙𝑟𝑔𝑏
 and 𝑔𝜙𝑔𝑟

 are average pooling. 

Since both point clouds and images share mutual 

embedding, joint learning objective, 𝐿𝐶𝑀 , is 

implemented. The purpose of 𝐿𝐶𝑀  is to find the 

similarity between 𝑦𝑖
𝑟𝑔𝑏

, 𝑦𝑖
𝑔𝑟

, and 𝑥𝑖 in the invariant 

domain. Due to the correspondence of  𝑦𝑖
𝑟𝑔𝑏

 and 𝑦𝑖
𝑔𝑟

 

to the same point cloud, we can enhance the model’s 

ability to learn meaningful feature representations to 

effectively distinguish similar and dissimilar for 

samples that difficult to distinguish. This condition 

makes the model learn better at differentiating subtle 

differences between data points. To find the loss of 

colored RGB 𝐿𝐶𝑀𝑟𝑔𝑏
, we can calculate with:  

 

𝐿𝐶𝑀𝑟𝑔𝑏
= 

1

2𝑁
∑ [𝐶𝑠𝑖𝑚(𝑥𝑖, 𝑦𝑖

𝑟𝑔𝑏
) + 𝐶𝑠𝑖𝑚(𝑦𝑖

𝑟𝑔𝑏
, 𝑥𝑖)]𝑁

𝑖=1          (6) 

 

where  

 

𝐶𝑠𝑖𝑚(𝑥𝑖, 𝑦𝑖) = − log
𝑒𝑠(𝑥𝑖,𝑦𝑖)/𝜏

∑ 1[𝑘≠1]𝑒𝑠(𝑥𝑖,[𝑥𝑘,𝑦𝑘])/𝜏𝑁
𝑘=1   

     (7) 

 

where 𝜏 is the parameter of temperature, 𝑠(·) is 

the function to calculate similarity using cosine as in 

Eq. (2). The function of 𝐿𝐶𝑀𝑔𝑟
 can be obtained as in 

Eq. (6) with: 

 

𝐿𝐶𝑀𝑔𝑟
=  

1

2𝑁
∑ [𝐶𝑠𝑖𝑚(𝑥𝑖, 𝑦𝑖

𝑔𝑟
) + 𝐶𝑠𝑖𝑚(𝑦𝑖

𝑔𝑟
, 𝑥𝑖)]𝑁

𝑖=1             (8) 

 

Therefore, the joint loss function is calculated 

with: 

 

𝐿𝐶𝑀 = 𝐿𝐶𝑀𝑟𝑔𝑏
+ 𝐿𝐶𝑀𝑔𝑟

                                      (9) 
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Table 2. SVM Classification Results of AdaCrossNet 

compared to other methods using ModelNet40 dataset 

Model Accuracy (%) 

3D-GAN [25] 83.3 

SO-GAN [26] 87.3 

LatentGAN [28] 85.7 

FoldingNet [27] 88.4 

ClusterNet [29] 86.8 

PointNet+STRL [34] 88.3 

PointNet+OcCo [30] 88.7 

PointNet+Rotation [32] 88.6 

PointNet+CrossPoint [14] 89.1 

PointNet+CrossNet [18] 81.4 

DGCNN+STRL [34] 90.4 

DGCNN+OcCo [30] 89.2 

DGCNN+CrossPoint [14] 88.9 

DGCNN+CrossNet [18] 90 

DGCNN+AdaCrossNet 91.4 

 

 

3.4 Adaptive cross-modal learning 

Dynamic weight adjustment for IM and CM 

losses comes with its own set of challenges in terms 

of convergence criterion definition, training stability, 

and balancing modalities. The rate of convergence for 

modalities can be different, so it is hard not to bias 

one modality over the other. Smoothing the weight 

updates, using relative loss reduction measures, and 

incremental updating of weights, facilitating stable 

training and successful employment of both 

modalities. 

Inspired by [43, 44], we introduce two dynamic 

weights 𝜆𝐶𝑀  and 𝜆𝐼𝑀  which adjust the relative 

importance of 𝐿𝐶𝑀  in Eq. (9) and 𝐿𝐼𝑀  in Eq. (1). 

These weights evolve depending on how well each 

modality is converging. To track convergence, we 

need to calculate the rage of change from each loss 

during training. Given ∆𝐿𝐼𝑀 and ∆𝐿𝐶𝑀 are the rate of 

change of IM and CM losses, respectively, which 

represent how quickly the losses decrease. Thus, we 

have: 

 

Δ𝐿𝐼𝑀(𝑡) = 𝐿𝐼𝑀(𝑡) − 𝐿𝐼𝑀(𝑡 − 1)                          (10) 

 

and  

 

Δ𝐿𝐶𝑀(𝑡) = 𝐿𝐶𝑀(𝑡) − 𝐿𝐶𝑀(𝑡 − 1)                       (11) 

 

where 𝑡 is the current epoch value. To avoid noisy 

updates, we introduce the smoothing weight by using 

exponentially weighted moving average. Thus, we 

have: 

 

𝜆𝐼𝑀(𝑡) = 𝛽𝜆𝐼𝑀(𝑡 − 1) + 

(1 − 𝛽)
1

1 + 𝑒−𝛼Δ𝐿𝐼𝑀
𝜆𝐼𝑀(𝑡) = 

𝛽𝜆𝐼𝑀(𝑡 − 1) + (1 − 𝛽)
1

1+𝑒−𝛼Δ𝐿𝐼𝑀
                    (12) 

 

and 

 

𝜆𝐶𝑀(𝑡) = 

𝛽𝜆𝐶𝑀(𝑡 − 1) + (1 − 𝛽)
1

1+𝑒−𝛼Δ𝐿𝐶𝑀
                 (13) 

 

where 𝛼  and 𝛽 are the coefficient that control how 

much weight is given to past values of 𝜆. Finally, our 

final total loss function is: 

 

𝐿𝐴𝐶𝑀 = 𝜆𝐼𝑀𝐿𝐼𝑀 + 𝜆𝐶𝑀𝐿𝐶𝑀                               (14) 

 

4. Experiments and results  

4.1 Dataset 

Here, we employ the ShapeNet [45] dataset, 

comprising roughly 43k point clouds across 13 item 

categories and its corresponding generated images, 

which is utilized for pretraining, as in [1]. The ima ge 

data are configured as RGB and grayscale images and 

then transformed to tensor. We arbitrarily pick a 

single image from the available images for each point 

cloud in a random viewpoint. Following CrossPoint 

and CrossNet, we represent each point cloud with 

2048 points containing XYZ coordinates and resize 

the image to 224 × 224. 

In addition, we apply various augmentations to 

the images, such as random jittering, flipping, 

cropping, and normalization. Our trials were carried 

out on a computer that featured a graphics processing 

unit (GPU) NVIDIA GeForce RTX 4090 24 GB and 

a central processing unit (CPU) Intel Core i7-12700K 

3.6 GHz. Python version 3.9, PyTorch version 1.9.0, 

CUDA 12 as the GPU driver, and Ubuntu 22.04.  

We compare with [1] and [3], two of the most 

established point cloud approaches, and use 

ResNet50 [46] as our image feature extractor to 

enable this fair comparison. The projection head is 

formed by using a two-layer MLP of (layer one is 512, 

and the other is 256) for generating the final 256-

dimensional feature vectors that are projected to ℝ𝑑 . 

We pretrain our model for 100 epochs and use a 

weight decay of 1 × 10−4 , which is initialized at 

learning rate 1 ×  10−3. We use the cosine annealing 

to adjust the learning rate to reduce it gradually. After 

pre-training, we discard the spare module such as 

𝑓𝜃𝑟𝑔𝑏
 and 𝑓𝜃𝑔𝑟

 and two projection heads like 𝑔𝜙𝑝
, 

𝑔𝜙𝑟𝑔𝑏
, and 𝑔𝜙𝑔𝑟

. The point cloud feature extractor 
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𝑓𝜃𝑝
 is aggregated into functions of downstream tasks 

and could be used as a fine-tuned one. 

4.2 Point cloud object classification 

We assess the transferability of AdaCrossNet on 

two prevalent downstream tasks in point cloud 

representation learning: 3D object shape recognition 

and partial segmentation. We choose a dataset for 

validation for each downstream task: We conduct an 

experiment for 3D object categorization using dataset 

ModelNet40 [47] and ScanObjectNN [48]. 

ModelNet40 is a 3D CAD-based point cloud model 

containing 40 classes. For the such task, the dataset is 

split into train and test, containing roughly 10k/2.5k 

items. ScanObjectNN is a practical dataset 

comprising point clouds characterized by occlusion 

and noise, encompassing 15 categories and having 

2,3k training objects and 0.5k test objects. The 

second classification task employed the 

ShapeNetPart [49] dataset for part segmentation. This 

dataset comprises 14k training items and 2.8k test 

objects over 16 categories, each divided into 2 to 6 

pieces, resulting in 50 parts. 

4.2.1. Linear evaluation for object classification 

First, we set up a straightforward linear Support 

Vector Machine (SVM) designed to classify with the 

pretrained feature extractor SSL point cloud. We then 

train the classifier on the training splits of both the 

ModelNet40 and ScanObjectNN datasets. We sample 

1024 points for each object in the dataset, which will 

be used during the training and testing of the 

classification task. To make the learning and 

computations as efficient as possible, we will train 

with a batch size of 128. Finally, the robustness and 

generalization of our proposed AdaCrossNet 

architecture are evaluated on different backbone 

networks. All these are set up together, allowing us to 

evaluate performance when generalizing to unseen 

data and benefit from the improved feature extraction 

we get with pre-trained point cloud models. The 

comparison of the SVM classification results of 

AdaCrossNet with other models on the ModelNet40 

dataset is shown in Table 2. Our model is the highest-

performing, which achieved an accuracy of 91.4%, 

while RotNet and DGCNN+STRL yielded 90.4%. 

Even when used with the DGCNN, our method 

dramatically improved accuracy compared to the 

existing methods. Conversely, 3D-GAN and SO-

GAN exhibit suboptimal performance, achieving 

83.3% and 87.3%, respectively. In current designs, 

experimental results indicate that CrossNet and 

AdaCrossNet generally outperform simpler models, 

such as DGCNN. Furthermore, models such as 

PointNet+CrossNet and DGCNN+CrossPoint 

demonstrate robust performance; nonetheless, 

DGCNNbased methodologies generally surpass their 

PointNet counterparts. DGCNN+CrossNet achieves 

90%, while PointNet+CrossNet attains 89.1%, 

demonstrating that DGCNN is a more effective 

architecture when combined with crossmodal 

techniques. These results highlight the importance of 

selecting the suitable backbone architecture and 

learning methodology combination to improve point 

cloud classification effectiveness. 

4.2.2. Fine-Tuning on object classification 

We evaluated AdaCrossNet using other 

supervised methods to support the classification from 

SVM. After we pre-trained DGCNN with 

AdaCrossNet, we get the represented selfsupervised 

model. As initialization, the weights from the model 

are used for the backbone in DGCNN. We tested the 

fine-tuned model with the dataset ModelNet40 and 

ScanObjectNN. For the ModelNet40 dataset, our 

model, AdaCrossNet, became a top-notch with the 

enhanced score by +0.6% compared to CrossNet, as 

seen in Table 3. While in the ScanObjectNN, 

AdaCrossNet stands on top with 82.1% as in Table 

4. This improvement more substantial than prior 

methods and demonstrates competitive performance 

against state-of-the-art approaches. 
 

Table 3. Fine-Tuning Classification Results of 

AdaCrossNet compared to other methods using 

ModelNet40 dataset 

Task Method Acc (%) 

Supervised 

Learning 

PointNet [1] 84.1 

PointNet++ [2] 90.7 

CurveNet [22] 91.9 

DGCNN [3] 85.8 

Self-

Supervised 

Learning 

DGCNN+JigSaw3D [31] 92.4 

DGCNN+STRL [34] 90.9 

DGCNN+CrossNet [18] 92.5 

DGCNN+AdaCrossNet 93.1 

 

Table 4. Fine-Tuning Classification Results of 

AdaCrossNet compared to other methods using 

ScanObjectNN dataset 

Task Method Accuracy 

(%) 

Supervised 

Learning 

PointNet[1] 69.9 

PointNet++ [2] 77.9 

CurveNet [22] 79.8 

DGCNN [3] 78.6 

Self-

Supervised 

Learning 

DGCNN+STRL [34] 77.9 

DGCNN+CrossNet[18] 79 

DGCNN+AdaCrossNet 82.1 
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Table 5. Fine-Tuning Part Segmentation Results of AdaCrossNet compared to other methods using ShapeNetPart dataset 

Models 
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PointNet [1] 83.6 83.4 72.4 62.1 76.2 89.8 69.1 90.8 85.6 81.2 94.9 62.3 92.4 82.3 48.4 70.8 82.0 

PointNet++ [2]  83.8 81.5 78.2 80.2 73.3 89.8 72.9 89.2 85.3 82.8 95.2 55.4 94.1 77.4 56.0 70.8 82.2 

DGCNN [3] 83 80.2 66.8 82.1 75.1 89.8 69.4 89.9 86.5 80.9 95.1 44.4 92.4 75.8 48.7 71.4 81.8 

CrossNet [18] 83.1 80.6 78.5 78.6 74.6 90.0 71.5 89.7 87.1 82.4 95.3 52.1 90.4 77.3 49.5 72.7 81.0 

AdaCrossNet 85.1 82.7 75.3 80.8 78.0 90.8 77.4 91.6 87.8 85.0 95.8 60.9 93.5 81.5 54.5 75.3 82.6 

 

4.3 Point cloud object part segmentation 

Here, we evaluate our model with other methods for 

object part segmentation using the ShapeNetPart dataset 

[49]. The models compared are PointNet, PointNet++, 

DGCNN, and CrossNet. 

Table 5 illustrates the average Intersection over Union 

(mIoU) of various models on point cloud segmentation 

using the ShapeNet dataset. Here, each model is evaluated 

using a distinct approach to segmentation. AdaCrossNet 

distinguishes itself among the models with the greatest 

mIoU of 85.1 and outperforms others, including CrossNet, 

with a mIoU of 83.1. Additional significant 

achievements encompass PointNet++ and DGCNN, 

achieving mIoUs of 83.8 and 83, respectively. 

AdaCrossNet enforces IM CM correspondence to 

collect detailed part-level attributes effectively, 

which is crucial for part segmentation.  

We further performed a qualitative analysis of 

PointNet++, CrossNet, and our proposed model 

AdaCrossNet. Fig. 2 depicts overlayed segmentation 

errors in heatmap form with regions of red color 

depicting the difference between the predicted and 

actual labels, calculated from the absolute differences. 

The grey dots represent regions with low 

segmentation errors, while the red dots indicate high-

error regions. Across all objects, AdaCrossNet 

achieves superior segmentation accuracy with fewer 

red dots compared to the other models. PointNet++ 

struggles with errors in the wings and body. For 

earphone objects, both PointNet++ and CrossNet 

scattered errors in part segmentation. PointNet++ 

exhibits dense errors on the front and back of car 

objects, while CrossNet has fewer dense errors. 

AdaCrossNet shows the fewest errors across the car’s 

body in this object. These qualitative results 

demonstrate that AdaCrossNet outperforms existing 

methods. 

 

 
Figure. 2 Comparison of our proposed work AdaCrossNet (right) with PointNet++ (left), and CrossNet (middle) using 

dataset ShapeNetPart. The first row is the airplane model, the second row is the earphone model, and the third row is the 

car model viewed from top 
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Figure. 3 Self-Supervised Contrastive Learning Training 

Loss for SSCL PointNet and DGCNN with AdaCrossNet 

and CrossNet. 

 

4.4 Ablation study 

We investigate the impact of the proposed 

dynamic weight adjustment mechanism, 

AdaCrossNet, on self-supervised contrastive learning 

(SSCL) training performance. The graph in Fig. 3 

compares the training loss trajectories across 

different configurations: SSCL PointNet with 

AdaCrossNet and CrossNet and SSCL DGCNN with 

AdaCrossNet and CrossNet. The dynamic weight 

adjustment mechanism balances the learning focus 

between IM and CM tasks, resulting in improved 

convergence and more efficient learning. This study 

highlights the benefit of the AdaCrossNet mechanism 

in reducing the overall loss, especially when 

combined with the DGCNN architecture. 

As shown in Fig. 3, the models incorporating 

AdaCrossNet exhibit lower training loss than 

counterparts using CrossNet. Specifically, SSCL 

DGCNN+AdaCrossNet achieves the fastest 

convergence, reaching the lowest loss by the end of 

training. The results validate the strength of 

dynamically adjusting the weights of IM and CM 

objectives during training, leading to improved 

learning efficiency and better overall performance. 

This confirms that our dynamic weight adjustment 

strategy is particularly beneficial in multi-modal 

contrastive learning scenarios. 

5. Conclusion  

This section outlines our concerns about 

AdaCrossNet for CM contrastive learning. One key 

disadvantage is that it is difficult to state a suitable 

convergence criterion for the dynamic adjustment of 

the IM and CM losses. Also, the dynamic weight 

adjustment system depends on the convergence 

tracking of every modality, which may cause issues 

during training. For instance, excessive damping of 

the response to a change in any of the loss values, if 

the convergence is not achieved, could lead to 

unstable learning and increased iterations with even 

possible failure to converge, especially in sector 

weight adjustments. This kind of response time is 

detrimental because it also means one has to adjust 

the parameters, the smoothing factor, and the weight 

changing, therefore making the training process more 

elaborate than it was before. 

Another drawback is increasing the complexity of 

the training phase because of the need to 

proportionate the contribution of each modality. 

Typically, one modality suppresses the other during 

learning, which is undesirable. This leads to 

representations skewed towards a more dominant 

modality and limits the model’s performance on tasks 

that require both modalities to be active. This is 

partially resolved with dynamic weight adjustment in 

our implementation; however, more work is required 

to ensure both modalities are balanced in the final 

representation, especially in noise or unequal class 

distribution. Dynamic weight adjustments during 

training can also be computationally expensive, 

increasing training time and making it inconvenient 

for large-scale projects. 

6. Conclusion  

In this work, we have proposed AdaCrossNet, a 

novel dynamic weight modulation for CM 

contrastive learning of 3D point clouds and 2D 

images. The main contribution is implementing an 

adaptive intra-modal and cross-modal loss weighting 

strategy, which helps the model control the learning 

rate in different modalities during training. We have 

implemented exponentially weighted moving 

averages (EWMA) to improve the stability of weight 

modifications during training. Our contribution has 

been proved by extensive experimentation on various 

benchmark datasets. AdaCrossNet attained a 91.4% 

accuracy on the ModelNet40 classification challenge, 

exceeding the performance of CrossNet and 

CrossPoint. 

Furthermore, in point cloud segmentation on the 

ShapeNetPart dataset, AdaCrossNet surpassed other 

models, achieving a mean Intersection over Union 

(mIoU) score of 85.1%, in contrast to CrossNet's 

83.1% and PointNet++'s 83.8%. AdaCrossNet 

exhibited a notable enhancement in the 

ScanObjectNN dataset, achieving an accuracy of 

82.1%, illustrating its resilience across diverse 

workloads and datasets. The results validate that 

AdaCrossNet provides significant enhancements 

over alternative approaches, enhancing cross-modal 

contrastive learning and overall performance. With 

implications for broader use in 3D vision tasks, this 
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research improves the use of dynamic weighting in 

self-supervised learning for 3D point clouds. 
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