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Abstract: Pedestrians typically form a small group with another pedestrian when they are traveling in the same 

direction and toward the same destination. While becoming members of a group of pedestrians, they dynamically 

interact with other pedestrians in the same group and outside the group. In order to understand pedestrian interaction, 

it is necessary to distinguish between pedestrians in a group and pedestrians not in a group. This can be achieved by 

performing semantic segmentation based on the JAAD dataset, which is suitable for observing pedestrian walking 

behavior with abundant annotation. In this research, we propose to perform semantic segmentation by utilizing 

directional-oriented density features. Density features are calculated by utilizing each joint relationship, while 

pedestrian direction can be predicted by calculated dot product based on shoulder, neck and hip joint. Segmentation is 

performed by employing a shallow U-network architecture, with fewer layers than the original U-network architecture. 

Compared with the original U-net architecture and its derived, our proposed method not only outperforms but also 

achieves stable performance from the early epoch in 6th epoch, and reaches a score over 0.97 during prediction, 

demonstrating its impressive performance. 

Keywords: Semantic segmentation, Group of pedestrians, Density features, Directional oriented. 

 

 

1. Introduction 

One of the most critical events related to 

pedestrian safety is when pedestrians are crossing the 

road, as they are in direct contact with other road 

users. Pedestrians, cyclists and motorcyclists can be 

categorized as vulnerable road users (VRU) due to 

their lack of protection. This vulnerability makes 

pedestrians the most at risk of harm when involved in 

a traffic collision. To mitigate this problem, many 

automakers are incorporating advanced pedestrian 

safety features into their latest vehicles, such as 

automatic emergency braking, forward collision 

warning, and pedestrian detection systems. However, 

these safety features have some limitations, including 

their sensitivity to lightning conditions, their reliance 

on sensor readings, and their inability to handle 

complex situations. Therefore, the implementation of 

an Advanced Driver Assistance System (ADAS) is 

necessary to effectively respond to the complex and 

ever-changing nature of pedestrian behavior. 

Understanding pedestrian behavior is challenging 

because each individual may have a unique pattern. 

Pedestrian behavior can be observed through their 

walking patterns, including speed, direction, and 

formation. Hu performs pedestrian re-identification 

of walking patterns based on the relationship of 

postural structures through hypergraph analysis [1]. 

Noh identifies and categorizes pedestrian risk 

clusters during traffic crossings based on individual 

walking patterns [2]. Neogi analyzed the interaction 

between pedestrians and car drivers by developing a 

contextual model based on each frame in the crossing 

situation [3]. analyzes crowd movement patterns by 
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pedestrian microsimulation and examines their egress 

walking behavior [4].  

The difficulty of understanding pedestrian 

behavior increases when pedestrians walk together as 

a group. As social beings, pedestrians constantly 

interact with others in the same group. While walking 

within the same group, pedestrians typically maintain 

their walking speed to maintain group cohesion [5, 6]. 

Zaki’s research also supports this claim, mentioning 

that certain leaders can influence group behavior and 

walking patterns [7]. When walking in a group, 

pedestrians form a distinct V pattern, which can be 

observed in their density data [8].  

Detecting groups of pedestrians can be achieved 

by combining the pedestrian feature space and 

constructing a graph to measure their correlation [9]. 

A group of pedestrians can also be viewed through 

multi-camera data to analyze the pedestrian field 

topology and further investigate their joint motion 

and mechanisms [9]. Cheng uses a density-based 

technique by integrating density-based clustering 

from each pedestrian spatial area [10]. Thus, density 

data can be used as a feature for observing 

pedestrians and their groups. 

The crowd of pedestrians can also be analyzed 

pixel-wise with pedestrian segmentation techniques. 

The group of pedestrians can also be achieved by 

examining the spatiotemporal relationship of 

pedestrian density [11]. Pedestrian segmentation can 

also be achieved by employing the Histogram of 

Oriented Gradients (HOG) and inputting it into the 

Mask R-CNN architecture [12]. Wang employs 

infrared imagery to generate heatmap pedestrian 

masks, which are utilized for pedestrian segmentation 

tasks [13]. 

In this experiment, we employ 2D pose 

estimation to extract pedestrian behavior. The 2D 

pose can be employed as a means of human action 

recognition (HAR) through observation of joint 

relationships [14, 15], the prediction of pedestrian 

crossing intentions [16, 17], and even can be 

performed in real-time scenario The advantages of 

2D pose estimation include the ability to perform 

thorough observation of pedestrians through 

relational joint observation and joint movement, as 

well as the extraction of spatio-temporal features. 

This experiment aims to leverage the advantage 

of 2D pose estimation by providing detailed 

pedestrian joint estimation. This joint data is then 

utilized to predict pedestrian direction. The density 

map feature is extracted as a group of pedestrian 

features, with each pedestrian direction considered 

when constructing this feature. 

The contributions of this study can be 

summarised as follows: 

- This research proposes that a direction-aware 

feature has been extracted as a group of 

pedestrians’ features. This feature was 

obtained by performing a dot calculation from 

the shoulder and hip joints, with the neck joint 

serving as the reference node. 

- A density map feature is being constructed by 

calculating the relationship between joints 

within and between pedestrians. 

The paper is structured as follows: Section 2 

explores the research foundation through equivalent 

research. Section 3 describes the suggested approach 

and dataset. Section 4 contains this study’s results, 

analysis, comparison within the similar U-net 

approach, and discussion, while section 5 presents the 

conclusion and future work. 

2. Related work 

Implementing group pedestrian segmentation 

involves a multitude of challenges, from managing 

occlusions to dealing with fluctuating pedestrian 

densities. In the complex environments where 

pedestrians often gather closely together, segmenting 

overlapping pedestrians in dense crowds is a 

particularly demanding task. It necessitates advanced 

approach that can effectively capture both appearance 

and contextual relationships among individuals, a 

task made difficult by viewpoint distortions and 

variations in pedestrian scale. The limitations of 

current methodologies in high-density situations 

often lead to problems such as overlooked detections 

and erroneous positives in group segmentation tasks. 

Observing groups of pedestrian interaction can be 

performed by detecting pedestrians and employing 

cluster-based analysis [18], tracking the movement of 

each pedestrian [19], recognition through each 

pedestrian walking similarities pattern [5]. ch 

pedestrian’s behavioral patterns in the temporal 

domain is computationally intensive. To address this 

issue, the group of pedestrians can be evaluated based 

on their density and spatial proximity. This density 

characteristic, which can be observed during queues 

in traffic lights [20], road side [21], and detecting 

density based on their cellular data [22], is proposed 

as an innovative approach to understanding 

pedestrian groups. The features are retrieved by 

analyzing pedestrian direction using the results of 2D 

pose estimation. 

Another approach for understanding pedestrian 

interaction is performing a group of pedestrian 

segmentation. Pedestrian segmentation can be 

executed by establishing adaptive regions of interest 

using stereo images [23], utilising circular shortest 

paths via infrared images [24], and implementing 
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intensity inhomogeneity [13]. Despite being designed 

for medical applications [25], the U-net architecture 

demonstrates notable efficiency even with 

constrained data availability [26]. As result, 

numerous segmentation tasks are executed through 

the development of U-net architecture. Wang is 

enhancing U-net by incorporating a residual block as 

the convolutional backbone [27, 28], enriching 

segmentation accuracy through building attention 

unit to focus on essential regions [29], and refining 

feature extraction through recurrent layer and 

residual connection. In this experiment, we propose a 

shallow U-net to aim at a group of pedestrian 

segmentation by distinguishing pedestrians to 

facilitate a comprehensive understanding of their 

behavior. 

3. Proposed method 

This research is composed of five sections, as 

illustrated in Fig. 1, to achieve group pedestrian 

segmentation. The process begins with a monocular 

image as the input data, which is then processed with 

2D pose estimation to obtain the joint prediction for 

each pedestrian. The direction of each pedestrian is 

calculated, and the group of pedestrians’ features are 

extracted using this data. Finally, the segmentation 

task is performed using the U-net architecture. 

3.1 Monocular dataset 

The study of pedestrian behavior is complex, as it 

is subject to many influences, including internal 

decision-making processes and external factors. The 

internal variables may be influenced by several 

factors, including the direction the pedestrian is 

moving, their intended destination, and their physical 

appearance. In contrast, several variables may 

influence exterior factors, including pedestrian 

relationships, traffic conditions, weather, and 

obstacles. A multitude of datasets are currently being 

developed to observe pedestrians. These include the 

KITTI vision dataset [30], the ETH Pedestrian 

Dataset [31], the TJU-DHD (Tianjin University-

Diverse Human Dataset) [32], the JAAD (Joint 

Attention in Autonomous Driving) dataset [33], and 

the PIE (Pedestrian Intention Estimation) Dataset 

[34]. However, only the JAAD and PIE datasets are 

equipped with behavioral annotations. The JAAD 

dataset offers comprehensive behavioral annotations 

for pedestrian behavior and interactions, while the 

PIE dataset focuses on pedestrian behavioral 

annotations. 

The JAAD dataset is recorded using a high-

quality monocular dashcam positioned on the 

dashboard of a moving vehicle. The dataset provides 

authentic scenarios of pedestrians interacting with 

their environment by capturing real-time events 

during driving. JAAD meticulously adjusts the video 

length from 5 to 10 seconds to achieve a regular data 

distribution and mitigate data imbalance. The 

resulting dataset consists of 346 short videos 

annotated by experts to provide accurate and reliable 

information. The data may be used to study various 

aspects, including pedestrian intention while crossing, 

 

 
Figure 1. Proposed block diagram for semantic segmentation group of pedestrians 
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pedestrian interaction with drivers, and pedestrian 

behavior while walking on or crossing the road. 

3.2 2D Pose estimation 

Extracting pedestrian behavior from a monocular 

video is inherently challenging due to the absence of 

depth information in the data. Due to the dynamic 

nature of the environment, in which the distance 

between vehicles and pedestrians is subject to change, 

the images of pedestrians are susceptible to scaling 

issues. Furthermore, a multitude of pedestrian 

scenarios result in occlusion. It is, therefore, essential 

to accurately identify and extract the behavioral 

characteristics of each pedestrian. One of the most 

frequently utilized methodologies is deploying a 

pedestrian detector, such as YOLO [35] or 

multispectral pedestrian detection [36]. However, 

this solution presents a challenge regarding resource 

consumption, as it necessitates an additional step 

following the recognition of each pedestrian. This 

study uses two-dimensional pose estimation to 

accurately identify pedestrians’ positions and 

anticipate each individual’s joint movements. 

A thorough examination of the JAAD dataset 

revealed that many scenes depicted vehicles 

approaching pedestrians. These scenarios are 

observed at zebra crossings, intersections, parking 

lots, and indoor areas. The number of pedestrians 

depicted in each dataset image ranges from one to 

thirteen. However, the dataset does not include 

images of large crowds. Consequently, we propose 

the utilization of Open Pose as a framework for 2D 

pose estimation, as Open Pose is particularly well-

suited for scenarios involving the estimation of 2D 

poses of multiple pedestrians. Pose estimation is 

achieved using bottom-up methodologies that yield 

detailed joint information for pedestrians [37]. 

The open pose can extract 135 key points 

representing human joints. It provides an output 

format BODY25, which includes 25 human joints 

and extensive information about hand joints, foot 

joints, and facial expressions. This research used the 

BODY25 format, where each pedestrian is 

represented by 25 joint locations in 2D Cartesian 

coordinates. Each joint is accompanied by a 

confidence degree. 

3.3 Pedestrian direction prediction 

Per our observation, pedestrians tend to cross the 

road together. This behavior is frequently observed 

when they are waiting by the roadside. Pedestrians 

tend to form groups with other individuals headed to 

the same destination while awaiting the clearance of 

traffic to cross the road.  

 
Figure. 2 Pedestrian direction prediction based on 𝑉1 and 

𝑉2 dot product from 25 joint node 

 

Upon the arrival of a traffic halt, the pedestrians cross 

the road in unison at a consistent walking speed. 

Pedestrians on the left side of the road cross in the 

direction of the right side, whereas those on the right 

side cross in the direction of the left. Consequently, 

the direction of each pedestrian is in opposition to 

their initial position. 

The direction of pedestrians can be predicted by 

examining the dot product of two vectors, 𝑉1 and 𝑉2, 

which are obtained from the 2D pose estimation 

results of each pedestrian. The value of 𝑉1 is 

determined by subtracting 𝐽5  from  𝐽1 , while 𝑉2 is 

calculated by subtracting 𝐽8  from  𝐽1 . 𝑉1  represents 

the vector observation from the neck to the shoulder, 

while  𝑉2 represents the observation from the neck to 

the hips. The direction of a pedestrian can be 

determined by combining the dot product of two 

vectors.  Fig. 2 illustrates how 𝑉1  acts as a global 

reference vector can be utilized, as demonstrated in 

Eq. (1), which depicts the direction from the neck to 

the right shoulder. A positive dot product result 

indicates that the predicted direction of the pedestrian 

is aligned with the global “right” direction. 

Conversely, a negative value suggests that the 

predicted direction is opposite. Conversely, a 

negative value suggests that the predicted direction is 

opposite. The dot product calculation can be 

expressed using the following equation, where 𝑉1 

and 𝑉2 are the input vectors and 𝜃 is the reference for 

direction. 

 

𝑉1 ∙ 𝑉2 = ‖𝑉1‖‖𝑉2‖ cos 𝜃    (1) 

 

3.4 Density map extraction feature 

The proximity of pedestrians can be used to 

identify a group of pedestrians.  
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(a) 

 
(b) 

Figure. 3 The construction of density features based on 

gaussian filter with: (a) 3D plane visualization of 

gaussian filter and (b) 2D plane visualization gaussian 

filter based on its centroid 

 

If two or more pedestrians are nearby, they can be 

considered part of the same group. However, this 

approach may result in ambiguity due to the 

possibility of different starting points. While near 

another pedestrian, they cannot be classified as part 

of the same group of pedestrians because they are 

moving in opposite directions. Thus, it is important 

to extract a group of pedestrians while considering 

their direction. 

 

𝐺(𝑥, 𝑦) =  
1

2 𝜋𝜎2 
 𝑒

−
𝑥2+ 𝑦2

2𝜎2     (2) 

 

Algorithm 1 is developed to extract the pedestrian 

feature. This approach aims to derive a density map 

that includes a group of pedestrian characteristics. A 

density map aims to identify and examine the spatial 

patterns of pedestrian proximity within a specified 

area. The decomposition of 𝑑𝑒𝑛𝑠𝑖𝑡𝑦𝐿 and 𝑑𝑒𝑛𝑠𝑖𝑡𝑦𝑅 

is accomplished using a calculation derived from Eq. 

(1). Pixel density characteristics can be obtained by 

analyzing the inter- and intra-joint relationships 

among pedestrians. The noise in the data can be 

reduced by applying a Gaussian filter to each dataset. 

Each pedestrian joint is represented by a point 

defined by x and y coordinates in a 2D coordinate 

system. If the density feature is calculated using this 

dot data, the result will be a null of data. Therefore, 

the variance size is induced by modifying based on a 

Gaussian filter kernel. Filter kernel adjustment can be 

accomplished by adjusting the value of 𝜎 , as 

demonstrated in Eq. (2) and Algorithm. 1 in lines 11 

and 12. The construction of the density map is 

illustrated in Fig. 3, comprising a 3D image in Fig. 

3(a) and a 2D image in Fig. 3(b). This is crucial in 

modulating the adjacent pixel, leading to a more 

refined data output. The primary consequence of the 

increase σ is its effect on the area width. As 𝜎 grows, 

the value diverges further from the data center. A 

density map was created by intersecting a 3D image 

with a 2D plane, as illustrated in Fig. 3(a), and this 

2D plane can be represented as a 2D density map 

feature, as shown in Fig. 3(b). 

The advantages of utilizing 2D pose estimation is 

the data of pedestrians is provided detailed in form of 

joint data, by utilizing this data then there are no 

required performing pedestrians detector. Therefore, 

we can easily acquire each pedestrian bounding box, 

by performing calculations regarding the maximum 

and minimum of x and y coordinates. While group of 

pedestrians bounding box can be obtained by 

calculating proximity of each pedestrian bounding 

box in same frame. Ee can develop Algorithm 2 to 

compute the bounding box for individual pedestrians 

as well as groups of pedestrians. 

3.5 Shallow U-net architecture 

The extraction group of pedestrian features 

resulted in nine features, which were composed 

𝑑𝑒𝑛𝑠𝑖𝑡𝑦𝐿 , 𝑑𝑒𝑛𝑠𝑖𝑡𝑦𝑅 , 𝑝𝑒𝑑𝐵𝐵𝐿 , 𝑝𝑒𝑑𝐵𝐵𝑅 ,
𝑔𝑟𝑜𝑢𝑝𝐵𝐵𝐿 , 𝑔𝑟𝑜𝑢𝑝𝐵𝐵𝑅 , with additional 3 layer of 

original image. To ensure data integrity, all features 

are required to have the same data shape, with 

dimensions of 256 𝑥 25. This consistency is crucial, 

as deep learning architectures are designed to handle 

data with high integrity. 

 

Algorithm 1 Building density map feature 

        Input: 2D pose coordinate   
        Output: 𝑑𝑒𝑛𝑠𝑖𝑡𝑦𝐿 , 𝑑𝑒𝑛𝑠𝑖𝑡𝑦𝑅    
        Parameter: 25 joint coordinates 

1: Set 𝑛_𝑝𝑒𝑑 = number of pedestrian 

2: Set 𝑑𝑒𝑛𝑠𝑖𝑡𝑦𝐿 dimension = [256, 256]  
3: Set 𝑑𝑒𝑛𝑠𝑖𝑡𝑦𝑅  dimension = [256, 

256]    
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4: for i = 0, in range i < 𝑛_𝑝𝑒𝑑 do 

5:  𝑑𝑖𝑟 =  ‖𝑉1‖‖𝑉2‖ cos 𝜃 

6:  if 𝑑𝑖𝑟 < 0 then     
7:     calculate 𝑑𝑒𝑛𝑠𝑖𝑡𝑦𝐿 based on each joint  
8:  else   
9:     calculate 𝑑𝑒𝑛𝑠𝑖𝑡𝑦𝑅 based on each 

joint    
10: end for   
11: Gaussian filter (𝑑𝑒𝑛𝑠𝑖𝑡𝑦𝐿 , 𝜎 )    
12:Gaussian filter (𝑑𝑒𝑛𝑠𝑖𝑡𝑦𝑅 , 𝜎)         

 

Algorithm 2 Building bounding box feature 

        Input: 2D pose coordinate   
        Outpu 𝑔𝑟𝑜𝑢𝑝𝐵𝐵𝐿 , 𝑔𝑟𝑜𝑢𝑝𝐵𝐵𝑅 ,   
𝑝𝑒𝑑𝐵𝐵𝐿 , 𝑝𝑒𝑑𝐵𝐵𝑅   
        Parameter: 25 joint coordinates 

1: Set n_𝑝𝑒𝑑 = number of pedestrian 

2: Set 𝑔𝑟𝑜𝑢𝑝𝐵𝐵𝐿 , 𝑔𝑟𝑜𝑢𝑝𝐵𝐵𝑅  
3: Set 𝑝𝑒𝑑𝐵𝐵𝐿 , 𝑝𝑒𝑑𝐵𝐵𝑅     
4: for i = 0, in range i < n_𝑝𝑒𝑑  do 

6:    if 𝑑𝑖𝑟 < 0 then 

7:       calculate 𝑝𝑒𝑑𝐵𝐵𝐿 based on 

each joint     
8:    else  
9:       calculate 𝑝𝑒𝑑𝐵𝐵𝐿  based on each 

joint   
10: end for    
11: for 𝑑𝑡_𝐵𝐵, in 𝑝𝑒𝑑𝐵𝐵𝐿 do    

12:    if 𝑑𝑡_𝐵𝐵 intersect then        

13:         𝑔𝑟𝑜𝑢𝑝𝐵𝐵_𝐿 append(𝑑𝑡_𝐵𝐵)    

14: for 𝑑𝑡_𝐵𝐵, in 𝑝𝑒𝑑𝐵𝐵𝑅 do   
15:    if 𝑑𝑡_𝐵𝐵 intersect then        
16:         𝑔𝑟𝑜𝑢𝑝𝐵𝐵𝑅 append(𝑑𝑡_𝐵𝐵)         

 
The U-Net architecture is employed due to its 

reputation for high-performance segmentation, even 

with limited data. This architecture is commonly used 

for performing segmentation in medical images with 

high complexity and various data patterns. It is 

derived from the autoencoder concept, with layers 

performing the functions of encoding, bottlenecks, 

and decoding. This architecture is modified with skip 

connections between each layer to improve model 

performance by preserving spatial information and 

improving gradient flow.  

In this study, we utilize the shallow U-Net 

architecture to segment a group of pedestrians. Our 

approach involves employing three layers of the U-

Net, with filter size configurations that commence 

with 64 in the initial layer, 128 in the second layer, 

and 256 in the third layer bottleneck layer. We ensure 

that the dimensions of the filters are harmonized 

across both the encoder and decoder layers. 

Compared with the original U-Net architecture, our 

shallow U-Net architecture has fewer layers. 

4. Experimental result and discussion 

This experiment aims to perform semantic 

segmentation on a group of pedestrians. The 

segmentation process employs joint density 

calculations based on the results of 2D pose 

estimation. This approach allows for observing the 

relationship between the joints of individual 

pedestrians and those of other pedestrians in the scene. 

To differentiate between pedestrians moving in 

different directions, this experiment employs a 

method of predicting the direction of pedestrian 

movement based on the coordination of their 

shoulder and hip joints with their neck as the 

reference point. 

4.1 Group of pedestrian feature extraction 

The group of pedestrian features is composed 

of  9  layers, which consist of 𝑑𝑒𝑛𝑠𝑖𝑡𝑦𝐿 , 𝑑𝑒𝑛𝑠𝑖𝑡𝑦𝑅 ,
𝑝𝑒𝑑𝐵𝐵𝐿 , 𝑝𝑒𝑑𝐵𝐵𝑅 , 𝑔𝑟𝑜𝑢𝑝𝐵𝐵𝐿 , 𝑔𝑟𝑜𝑢𝑝𝐵𝐵𝑅 , with 

additional three layers of original image. The 

illustration of this feature can be observed in Fig. 4. 

The data presented therein was extracted from 

video_149. The video was selected for analysis due 

to its suitability for illustrating the formation of 

groups of pedestrians. In this video, vehicles move 

closer to the intersection, where pedestrians are 

waiting on both sides. The pedestrians on both sides 

await the vehicle’s arrival and maintain visual contact 

with it. A group of pedestrians forms on the right side, 

comprising two individuals, while a single pedestrian 

is waiting on the left side. Upon the vehicle’s halt, the 

pedestrians on both sides commenced traversing the 

roadway. As pedestrians cross the road, they interact 

with each other, which can result in forming a group. 

The employment of group features based solely on 

density data, without consideration of pedestrian 

direction, may result in ambiguity regarding the 

group’s integrity. Therefore, the integrity of the 

group of pedestrians can be maintained by 

constructing a density data set based on their 

direction of movement. 

Fig 4 portrays a scenario where a single 

pedestrian traverses the crossing from the left lane 

while two pedestrians proceed in a group from the 

right side. Fig. 4(a) illustrates the actual image data 

of the event, while Figs. 4(b) and 4(c) together 

provide a density features of both directions. By 

examining both density features, it becomes apparent 

that the head, hands, hips, and legs of each pedestrian 

contribute to the generation of relational data based 

on their proximity.  
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(a) (b) (c) (d) (e) 

 

 
(f) (g) (h) (i)  

Figure. 4 Group of pedestrian feature extraction result: (a) Monocular image, (b) densityL, (c) densityR, (d)bin densityL, 

(e)bin densityR, (f)ped BBL, (g)ped BBR, (h)group BBL, and (i)group BBR 

 

 

 
(a) (b) (c) 

 

 
(d) (e) (f) 

Figure. 5 Density map comparation based on different gaussian margin: (a)𝜎 = 0, (b)𝜎 = 1, (c)𝜎 = 3, (d)𝜎 = 5,  

(e)𝜎 = 7, and (f)𝜎 = 10 
 

In the 𝑑𝑒𝑛𝑠𝑖𝑡𝑦𝑅  representation, the second 

pedestrian on the right displays a higher density than 

the first pedestrian in the same group. One 

disadvantage of employing density as a spatial 

feature is that pedestrians far from the camera may 

experience size integrity issues. To address this 

limitation, binarization of the density data is 

employed, as illustrated in Figs. 4(d) and 4(e). The  

𝑏𝑖𝑛 𝑑𝑒𝑛𝑠𝑖𝑡𝑦𝐿  and 𝑏𝑖𝑛 𝑑𝑒𝑛𝑠𝑖𝑡𝑦𝑅  are calculated by 

normalizing the data based on both density features 

using binary data. The binarized data is employed as 

target data masking. 
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 (d) (e)  

Figure. 6 Overlay of pedestrian density features with a directional grouping and boundary box: (a)𝜎 = 1, (b)𝜎 = 3, 

(c)𝜎 = 5, (d)𝜎 = 7, and (e)𝜎 = 10 

 

 Pedestrian density features can be obtained by 

utilizing the Algorithm. 1. However, the original 

Algorithm. 1 resulted in zero data due to each 

pedestrian’s joint coordination being represented by 

a dot at the respective coordinate of each joint 

location. To address this challenge, we modified the 

Algorithm. The modifications were made to lines 11 

and 12 of the Algorithm when applying the Gaussian 

filter, as these lines were found to be the key areas 

affecting the data clarity. 

As shown in Fig. 5, the impact of varying margins 

on density features is significant. Our series of 

observations with varying 𝜎 value, including 0, 1, 3, 

5, 7, and 10, clearly demonstrate the importance of 

choosing the right 𝜎  value. Fig. 5(f) reveals the 

ambiguity in the pedestrian data, emphasizing the 

need for careful consideration of 𝜎 value to ensure 

data clarity. Based on visual inspection of Figs. 5(a) 

and 5(b), insufficient data are found, which may lead 

to ambiguous results. The optimal feature is produced 

with margins 3, 5, and 7, as seen in Figs. 5 (c) to 5(e). 

A group of pedestrian bounding boxes is built by 

utilizing Algorithm.2. A group of pedestrian 

bounding boxes can be obtained by detecting each 

individual pedestrian bounding box. Each pedestrian 

bounding box is detected by considering the area of 

each 2D joint. 

The results of the pedestrian bounding boxes are 

vividly depicted in Figs. 3(f) and 3(g), providing a 

clear visual representation. As shown in Fig. 3(g), the 

height difference between the two pedestrians is 

clearly discernible. The differences, caused by their 

respective positions, indicate varying data depths. 

The bounding box of the group of pedestrians is 

clearly visible in Figs. 3(h) and 3(i). However, there 

is no data in Fig. 3(h) due to the presence of 

pedestrians forming the related pedestrian group. In 

contrast, Fig. 3(i) clearly illustrates the occupancy of 

the group of pedestrians. 

 The outcome of Algorithm. 1 and Algorithm. 2 

can be presented in Fig. 6 by overlaying density 

features and the bounding boxes of pedestrian groups. 

Fig. 6 was constructed by applying various σ values 

following Eq. (2). Fig. 6 illustrates the impact of 

shifting on 𝜎 value on density feature and bounding 

box dimensions. An increase in 𝜎 value will result in 

more extensive data and lead to ambiguity. This 

image further confirms the findings of directed 

pedestrian group detection. A group of pedestrians is 

divided into two directions, designated by distinct 

colors: a red bounding box for those traveling to the 

right and a blue bounding box for those moving to the 

left. Despite the increase in feature size 

corresponding with σ shifting, the direction-oriented 

group for pedestrian bounding box identification 

demonstrates excellent performance. 

4.2 Imbalance data issue 

Based on the observations in the JAAD dataset, 

we found that the event of pedestrians forming a 

group of pedestrians is limited. JAAD dataset 

provides 346 videos with a length of 5 to 10 seconds. 

Thus, all the data has a total of 82,032 and involving 

2,786 pedestrians. Based on observations, this 

number is narrowed to 15,220 frames for data with 

pedestrians and decreases significantly to 3,535 

frames with a group of pedestrians context. Based on 

calculations of Algorithm 2, 941 frames were 

detected with pedestrians with direction from left and 
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pedestrians with direction from right. Thus, the 

enormous difference between the number of frames 

with a group of pedestrians and those without a group 

of pedestrians could result in an imbalanced data 

issue. To mitigate this issue and maintain normal data 

distribution, we perform balancing data processing. 

Data processing can be fulfilled by carefully 

inspecting data distribution on every video and 

performing frame filtering. 

Video_149 is utilized to visualize the data 

balancing procedure. This video contains a total of 

299 frames, and by employing Algorithm. 2, the 

result is that 198 frames do not contain a group of 

pedestrians, while 101 frames contain a group of 

pedestrians. To balance the data then, we use the 

number frame containing a group of pedestrians as a 

reference and choose data with a group of pedestrians 

with an additional 10% data margin. Thus, the 

nongroup of pedestrians is shrunk into 111 frames. 

By employing this approach then, the total frame of 

video_149 becomes 212 frames. We can obtain 7.423 

from the previous version with only 3,535 frames by 

utilizing this approach. 

4.3 Segmentation model performance 

In order to prevent overfitting due to the data 

sequence, this experiment separated data into training, 

validation, and testing data. Additionally, data 

shuffling is employed to ensure the integrity of the 

experimental process. The data set is divided into 

three subsets: 70% of the data is allocated to the 

training set, 15% is designated for the validation set, 

and the remaining 15% is reserved for the testing set. 

The training and validation data are employed during 

the training sessions, whereas the testing data are 

utilized for the prediction sessions. 

The model performance will be evaluated using 

three metrics: loss, Intersection of Union (IoU), and 

Dice coefficient. The loss metric assesses the 

performance of the trained model by comparing the 

discrepancy between the predicted and ground truth 

values. While the IoU assesses the overlap between 

the prediction and the ground truth, the Dice 

coefficient serves a similar purpose, with an 

additional calculation that weighs positive true 

instances, thereby rendering the Dice coefficient 

more sensitive than the IoU. 

In this experiment, the model’s performance will 

be evaluated twice by calculating each 𝜎 value and 

subsequently analyzing the results in more detail 

based on each epoch. Additional observations will be 

conducted by comparing the performance of our 

proposed shallow U-Net architecture with that of the 

original U-Net architecture. The data of each 

performance metric is presented in Table 1. The data 

in Table 1 is an average of all the data points from all 

the epochs and is equipped with the standard 

deviation. The simulation was conducted with 

identical epochs of 8 and a batch size of 16. 

Based on data from Table. 1, Shallow U-net 

performs better than U-net. However, both models 

share similar characteristics due to utilizing the same 

backbone concept. Performance on σ=1 is adversely 

affected by the insufficient density of the data, which 

results in feature ambiguity. While performance 

improves from σ=3 onwards, there is a slight decline 

from σ=10. This evidence supports our initial 

hypothesis, as illustrated in Fig. 5. The larger size 

results in data ambiguity due to the border between 

each joint becoming vaque and unclear. 

The most notable performance stability is 

achieved with σ=3, σ=5, and σ=7.  

 
Table 1. Performance comparison of shallow U-net and U-net with various gausssian margin (metric shown in average 

value ± standard deviation) 

  𝜎 𝑣𝑎𝑟𝑖𝑎𝑛𝑐𝑒 

Model Metric 1 3 5 7 10 

S U-net 

Loss 0.0166 ± 0.0229 0.0265 ± 0.0137 0.0195 ± 0.0237 0.0381 ± 0.0415 0.0643 ± 0.0624 

Val Loss 0.0091 ± 0.0052 0.0223 ± 0.0057 0.0122 ± 0.0058 0.0254 ± 0.0126 0.0448 ± 0.0352 

IoU 0.7939 ± 0.1667 0.8986 ± 0.0479 0.9414 ± 0.0557 0.9174 ± 0.0744 0.9093 ± 0.0785 

Val Iou 0.8377 ± 0.0739 0.9133 ± 0.0164 0.9579 ± 0.0165 0.9372 ± 0.0288 0.9347 ± 0.0397 

Dice  0.8626 ± 0.1540 0.9379 ± 0.0342 0.9666 ± 0.0376 0.9531 ± 0.0491 0.9485 ± 0.0505 

Val Dice 0.9085 ± 0.0482 0.9482 ± 0.0091 0.9783 ± 0.0088 0.9672 ± 0.0158 0.9657 ± 0.0222 

U-net 

Loss 0.0245 ± 0.0416 0.0321 ± 0.0240 0.0304 ± 0.0439 0.0403 ± 0.0562 0.0524 ± 0.0628 

Val Loss 0.0102 ± 0.0068 0.0230 ± 0.0064 0.0172 ± 0.0122 0.0228 ± 0.0166 0.0313 ± 0.0160 

IoU 0.7571 ± 0.2361 0.8804 ± 0.0735 0.9156 ± 0.0961 0.9174 ± 0.0989 0.9203 ± 0.0853 

Val Iou 0.8276 ± 0.0941 0.9068 ± 0.0240 0.9405 ± 0.0400 0.9494 ± 0.0298 0.9485 ± 0.0258 

Dice  0.8230 ± 0.2403 0.9255 ± 0.0536 0.9501 ± 0.0661 0.9499 ± 0.0704 0.9533 ± 0.0582 

Val Dice 0.9009 ± 0.0644 0.9445 ± 0.0135 0.9686 ± 0.0225 0.9736 ± 0.0164 0.9732 ± 0.0140 
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(b) 

Figure. 7 U-net architecture model performance during 

training: (a)Semantic Segmentation – IoU and Dice and 

(b)Semantic Segmentation - Loss 

 

 
Table 2. Comparison of prediction performance between 

Shallow U-net, U-net, Attention U-net and R2 U-net  

Metric 
S U-

net 

U-

net[25] 

Atten 

Unet[29] 

R2 

Unet[28] 

IoU 

Score 
0.9716 0.9671 0.9428 0.1766 

Dice 

Coeff 
0.9855 0.9832 0.9705 0.2960 

Avg 

Prec 
0.9864 0.9847 0.9747 0.5089 

Recall 0.9911 0.9855 0.9514 0.8121 

 

All performance metrics for both models exhibit 

satisfactory results, with values exceeding 0.90. Both 

models demonstrated the capacity to comprehend the 

data and perform semantic segmentation with 

commendable efficacy. Nevertheless, a more detailed 

examination of the performance data reveals that the 

shallow U-net model exhibits superior performance, 

demonstrating more stable performance across all 

measurements and attaining the highest performance 

levels. 

An in-depth performance analysis is performed 

by focusing with σ=5 on shallow U-net architecture. 

The performance of the shallow U-Net architecture 

model during the training session can be observed in 

Fig. 7. In this experiment, we utilize an early stopping 

function to prevent overfitting, enhance 

generalization, and conserve computational resources. 

Early stopping function can be maintained by closely 

observing the validation loss. The performance 

metric in Fig. 7 indicates that the model demonstrates 

proficiency in learning the data. A breakdown of the 

loss metric in Fig. 7(b) reveals a positive trend in the 

data. The loss during training and the training itself 

improve from the earliest epoch and continue until 

epoch 5. After that, the trend appears to be leveling 

off. The IoU and Dice coefficient in Fig. 7(a) 

illustrate a similar pattern. The model encounters 

difficulties in the early epochs for both training and 

validation. However, the trend continues to increase, 

indicating that the model is learning the data correctly 

and reaching a plateau from epoch six onwards. 

To evaluate our model’s predictive capability, we 

compare it to the shallow U-net, the original U-net 

[25], Attention U-net [29] and R2 U-net [28] which 

employ the same U-net architecture as their backbone. 

Table. 2 compares all methods, this comparison is 

performed using IoU score, dice coefficient, average 

precision, and recall. All the prediction comparisons 

are performed by utilizing the same data. Table. 2 

compares all methods; this comparison is performed 

using IoU score, dice coefficient, average precision, 

and recall. All the prediction comparisons are 

performed by utilizing the same data. Based on Table 

2, it is shown that shallow U-net, U-net, and attention 

U-net perform flawlessly, reaching performance 

scores above 0.95 for IoU score, dice coefficient, 

average precision, and recall. The performance 

indicates that the model is learning the data very well 

and could perform prediction with the best 

performance. However, attention U-net performance 

is behind the original U-net and shallow U-net. This 

may be caused by the attention mechanism increasing 

model complexity, and attention gates tend to 

struggle with performing fine-grained segmentation. 

Based on comparison between the original U-net 

and shallow U-net shows that both models perform 

very well, and both model performances have similar 

performance. However, our proposed model, which 

has less layer advantage, has more agile data learning 

advantages. 

Based on the data in Table 2, we can observe that 

the recurrent residual U-Net is unable to achieve the 

same level of performance as the other method. R2 is 

experiencing difficulties in terms of IoU, Dice 

coefficient, and average precision. In contrast, the 

recall performance is relatively robust, with a value 

exceeding 0.80. It appears that the R2 U-Net is not an 

optimal choice for segmenting groups of pedestrians. 

Performance issues may be caused by residual 

connections increasing model complexity, thus 
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causing vanishing gradients, slower convergence, 

and slower learning time. Thus, the resulting R2 U-

Net learning rate falls behind other methods. 

The shallow U-net, as a proposed method, has 

shown remarkable performance across all metrics. 

The recall score, reaching 0.9911, is a testament to 

the model’s exceptional ability to accurately identify 

true positive segmentations, leaving a strong 

impression of its capabilities. 

5. Conclusion 

In this research, we demonstrate semantic 

segmentation for a group of pedestrians from the 

JAAD dataset. We propose a direction-oriented 

density feature as a group of pedestrian features. The 

density feature is constructed by calculating 

pedestrian joint proximity and correlating it with 

another pedestrian. The density feature is constructed 

with several scenarios by adjusting the σ value in the 

Gaussian filter. Pedestrian direction is predicted 

using a dot product based on the shoulder, neck, and 

hip joint and the neck to shoulder joint as a directional 

reference. We perform depth modification by 

constructing a shallow U-net architecture. 

There are six σ value scenarios, and by comparing 

all of the performances, the best performance is 

achieved with σ=5. Both shallow and original U-net 

architecture are performing well and have similar 

performance due to having the same backbone. 

However, based on detailed performance observation, 

our shallow U-net is performing better and achieving 

stable performance during the early sixth epoch. 

There is no overfitting and underfitting problem. By 

comparing with another model that employs U-net as 

its backbone, our proposed model could perform 

prediction flawlessly with all performance of IoU 

metric, Dice coefficient, average precision, and recall 

with a score over 0.97. 

We are expected to understand dynamic 

pedestrian interaction more effectively by employing 

semantic segmentation on a group of pedestrians.  By 

understanding pedestrian interaction patterns then, 

pedestrian safety can be ensured. 
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