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Abstract: Bean leaf diseases are the major risk aspect for plant growth, and early detection is critical for farmers but 

challenging due to the complex structure of bean leaf diseases. Bean leaf diseases such as bean rust and angular leaf 

spots significantly diminish the quality and yield of agricultural products. Accurate detection is crucial for enhancing 

crop Yield and quality. To tackle this challenge, this paper proposes a novel approach using a deep stacked ensemble 

learning model, which combines the predictions of several pre-trained Convolutional Neural Network (CNN) models 

based on the Transfer Learning (TL) technique and utilizes a meta-learner on averaged predictions to detect bean leaf 

diseases. We have trained three pre-trained CNN models—EfficientNetB3, InceptionV3, and MobileNetV2—on a 

bean leaf dataset with 1296 leaf images and assessed their efficiency. Finally, we utilized a stacked ensemble learning 

approach, where the average of the predictions from these models are used as features to train an ensemble model to 

enhance the detection accuracy of bean leaf diseases. The proposed stacked ensemble method, particularly the 

combination of EfficientNetB3 and InceptionV3, achieves exceptional results with a classification accuracy of 99.22%, 

precision of 99.24%, recall of 99.22%, and F1-score of 99.22% on the test data with reduced training time, 

outperforming other state-of-the-art models. 
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1. Introduction 

Agriculture plays a prominent role in the 

development of any country’s economy. Diseases in 

plant leaves present a notable risk to crop health, 

impacting both their productivity and overall quality 

[1]. Plant diseases reduce agricultural production 

quantity and quality by 20-40%, with leaf diseases 

alone accounting for 42% of losses in this field [2].  

Beans are a valuable crop worldwide, providing 

millions of people with a staple food source and 

income. Renowned for their rich protein content and 

associated health benefits, beans play a key role in 

promoting nutritional well-being, and 30% of this 

crop is produced by small-scale farmers in Latin 

America and Africa [3, 4]. This underscores the 

significant contribution of beans in supporting the 

livelihoods and nutritional needs of communities in 

these regions. On the other hand, bean leaves are 

susceptible to a variety of diseases, some caused by 

fungi and others by bacteria [5].  

 Bean production suffers heavily from diseases 

like angular leaf spot and bean rust. These pathogens 

disrupt healthy growth and reduce yields. Farmers 

often turn to various types of pesticides to combat  

these diseases. For example, fungicides, biological 

control methods, and cultural practices like 

intercropping can manage both angular leaf spot and 

bean rust [6, 7]. However, overreliance on chemical 

pesticides poses serious risks to human health and the 

environment. To minimize reliance on harmful 

chemicals, save costs, and protect the environment, 

early detection of plant leaf diseases is crucial.  
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Unfortunately, identifying disease with the naked 

eye can be challenging for humans [3]. Despite 

existing disease control methods, accurately 

identifying and classifying plant leaf diseases 

remains crucial to minimizing yield losses in 

agriculture. This is where automated identification, 

particularly through readily available smartphone 

technology, shines. Affordable smartphones are 

empowering farmers to capture images of diseased 

leaves and, with the help of dedicated apps, receive 

instant diagnoses. This early detection enables 

targeted interventions, minimizing reliance on harsh 

chemicals and maximizing crop yields [8].  

As research progresses, smartphone-based 

disease identification has the potential to 

revolutionize agriculture, promoting sustainability 

and food security [9]. Accurate detection and 

classification of bean leaf diseases is essential for 

early-stage problem resolution. This work aims to 

address farmers’ challenges in identifying bean leaf 

diseases, providing a solution for early-stage disease 

intervention. By facilitating the early detection and 

treatment of bean leaf diseases, the initiative strives 

to enhance both the quality and quantity of crops. 

Ultimately, this contributes to boosting farmers’ 

profits by promoting healthier crops and more 

efficient agricultural practices. 

This paper proposes a deep stacked ensemble 

learning model that combines the predictions of 

several pre-trained CNN models based on the TL 

technique for detecting bean leaf images. We have 

trained three pre-trained models namely, 

EfficientNetB3, InceptionV3, and MobileNetV2 on 

the bean leaf dataset and assessed their efficiency, 

and then finally utilized stacked ensemble learning 

which is based upon utilizing the averages of the 

component models. The final predictions from these 

base models are utilized as features to train an 

ensemble model. 

The main contributions of this study are the 

following tasks: 

1. Present a deep stacked ensemble learning 

method for the multiclass classification of 

bean leaf diseases which increases the 

reliability of automated diagnoses of bean 

leaf diseases by providing robustness against 

dataset noise and unpredictability also it 

improves overall prediction accuracy, 

decreasing the possibility of incorrect 

classifications.  

2. The proposed method allows for a more 

thorough exploration of the feature space, 

allowing for the detection of subtle patterns 

that individual models may find difficult to 

discover. 

3. TL and fine-tuning are being utilized to 

extract meaningful and informative features 

from images of bean leaves. Instead of 

training a deep learning model from scratch, 

the pre-trained models EfficientNetB3, 

InceptionV3, and MobileNetV2 were utilized 

as a starting point to reduce the training time. 

4. The efficiency of the pre-trained CNN models 

(EfficientNetB3, Inception V3, and 

MobileNetV2) is assessed on a bean leaf 

dataset, providing insights into their 

performance and suitability for the task. 

The rest of this paper is organized as follows: 

Related work approaches utilized for diagnosing crop 

leaf diseases are presented in Section 2. The proposed 

stacked ensemble learning model architecture based 

on EfficientNetB3, InceptionV3, and MobileNetV2 

is proposed in Section 3. Section 4 shows the 

experimental results with a comparative analysis of 

state-of-the-art models. Finally, conclusions based on 

the study findings and outlined probable areas for 

future research are introduced in section 5. 

2. Related works 

In recent times, researchers have put forth various 

approaches for identifying bean leaf diseases through 

the utilization of machine learning. These approaches 

aim to develop automated solutions that can help 

farmers identify infected leaves early on, preventing 

significant damage to crops. The following is an 

overview of the latest published research on the 

classification of diseases affecting bean leaves.  
Muthukannan et al. [10] proposed a framework 

for classifying crops based on their disease using 

neural network methods such as Feed Forward 

Neural Network (FFNN), Learning Vector 

Quantization (LVQ) and Radial Basis Function 

Networks (RBF). The overall classification accuracy 

for FFNN, LVQ, RPF are 90.67%, 56.77% and 

71.18% respectively. Their experiments showed that 

the FFNN method achieved the best accuracy, 

reaching about 90.67%. Nonetheless, the dataset 

utilized was insufficiently large to adequately assess 

the proposed method, comprising only 118 samples 

of plant leaf images. 

Kawasaki et al. [11] proposed a new architecture 

depending on Convolutional Neural Networks 

(CNNs) to identify and detect the disease present in 

the leaves of cucumber crop. The model achieved an 

accuracy of 94.9% on cucumber leaf dataset with 

total 800 leaf images, effectively distinguishing 

between zucchini yellow mosaic virus, melon yellow 

spot virus, and the non-diseased category. Training 

CNNs from scratch is utilized in this research can 
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classify diseases efficiently, but takes more 

processing time. Hence main weakness of this 

research is early detection of infection is not possible. 
Devaraj et al. [12] introduced an innovative 

automated system based on computer vision for 

classifying and early detection of diseases in bean 

crops. The methodology involves the application of 

histogram equalization for image enhancement. The 

enhanced images undergo segmentation through a 

hybrid clustering approach, combining k-means and 

the watershed algorithm. Features are then extracted 

from the segmented areas using Principal Component 

Analysis (PCA), and the final classification is 

achieved through Support Vector Machine (SVM) 

classification. SVM demonstrates robust 

performance in disease classification. The precision, 

recall, error rate, and average accuracy achieved were 

73.6%, 81.2%, 15%, and 84%, respectively. 

However, the bean leaf dataset used was too small to 

properly evaluate the proposed method, as it only 

contained 400 samples. 

Sahu et al. [13] introduced a study comparing the 

performance of pre-trained models and training from 

scratch in the agricultural domain, specifically 

focusing on the training of CNNs. The paper shows 

the principles behind training a CNN from the 

beginning and utilizing pre-trained models. The 

experiment involved bean crop leaf images with total 

1296 images, encompassing both infected and 

healthy samples. A significant improvement in 

accuracy was observed, with the validation accuracy 

increasing from approximately 70% to 97.06%. The 

test accuracy achieved an impressive 96.06%. The 

challenge of this method utilized leading deep neural 

networks, which are usually quite slow. 

Sahu et al. [14] proposed deep learning models 

for the classification of diseases affecting bean crops. 

The study specifically compared CNN based deep 

learning models for the classification of two common 

bean leaf diseases, namely angular leaf spot and bean 

rust. The results of the experiments indicated that 

GoogleNet outperformed VGG16 in the task of 

disease classification for bean leaf crops dataset with 

1296 leaf imagess with an accuracy of 95.31%. The 

challenge of this method utilized leading deep neural 

networks, which are usually quite slow. 

Abed et al. [15] presented a real-time framework 

for assessing the health status of bean leaves by using 

Deep Neural Networks (DNNs). The U-Net 

architecture was applied in the study to identify and 

locate bean leaves within input images. The study 

evaluates the performance of five distinct deep-

learning models: VGG-19, VGG-16, Densenet121, 

ResNet34, and ResNet50 on the bean leaf dataset 

with total 1296 images.  

Table 1. A literature overview of several proposed 

methods, including references, crop types, datasets, 

architectures, and accuracy 

Reference 

Author year 
Datasets Architecture Accuracy 

Muthukannan 

et al. [10] 

(2015) 

plant 

leaf 

images 

118 

FFNN, LVQ, 

RBF 

90.67%, 

56.77%, 

71.18% 

Kawasaki et 

al. [11] 

(2015) 

cucumbe

r leaf 

images 

800 

CNN 94.9% 

Devaraj et al. 

[12] 2017 

beans 

leaf 

image 

400 

hybrid 

clustering 

approach (k-

means and 

the 

watershed), 

PCA, SVM 

84% 

Sahu et al. 

[13] (2020) 

beans 

leaf 

image 

1296 

CNNs, Pre-

trained 

networks 

56.08%, 

96.06% 

Sahu et al. 

[14] (2021) 

beans 

leaf 

image 

1296 

GoogleNet,V

GG16 

95.31%, 

93.75% 

Abed et al. 

[15] (2021) 

beans 

leaf 

image 

1296 

Densenet121, 

ResNet34, 

ResNet50, 

VGG-16, 

VGG-19 

91.01% 

using 

Densenet

121 

Elfatimi et al. 

[16] (2022) 

beans 

leaf 

image 

1296 

MobileNets, 

optimization 

methods 

92.97% 

 

Önler [17] 

(2023) 

beans 

leaf 

image 

1296 

Hybrid model 

(HOG, 

transfer 

learning) 

99.24% 

Singh et al. 

[18] (2023) 

beans 

leaf 

image 

1295 

MobileNetV2

, 

EfficientNetB

6, NasNet 

91.74% 

Suma et al. 

[19] (2023) 

beans 

leaf 

image 

990 

AlexNet 96.8% 

Elfatimi et al. 

[20] (2024) 

beans 

leaf 

image 

1296, 

1231, 

2527 

MobileNets,  

GradCAM 

92.97% 

94.53% 

93.75% 

 

The results reveal an impressive Classification 

Accuracy Rate (CAR) of 91.01% using the 

Densenet121 model for multi-classification tasks. 
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One drawback of this technique was the extensive 

execution time due to its numerous parameters. 

Elfatimi et al. [16] presented a new method to 

identify and classify bean leaf diseases into their 

classes by utilizing MobileNet model and bean leaf 

images with total 1296 images. This work was based 

on MobileNet and based on an accurate comparison 

and evaluation of MobileNet architectures 

(hyperparameters and optimization methods) that 

define smaller and more efficient MobileNets 

models, the classification average accuracy of this 

work is more than 97% on the training dataset and 

more than 92% on test data for two unhealthy classes 

and one healthy class. 

Önler in [17] introduced an Artificial Neural 

Network (ANN) model for the detection of bean leaf 

diseases. This network was developed by integrating 

descriptive vectors extracted from bean leaves, 

utilizing both transfer learning feature extraction and 

histogram-oriented gradient (HOG) feature 

extraction methods. The dataset employed in the 

study comprised images of bean leaf crops with total 

1296 images representing classes related to bean rust, 

angular leaf spot, and healthy leaves. Remarkably, 

the model demonstrated impressive performance, 

accuracy rates of 98.33%, 98.40%, and 99.24% in the 

training, validation, and test datasets, respectively. 

In their work [18], Singh et al. proposed the 

utilization of three pre-trained deep learning models, 

namely MobileNetV2, EfficientNetB6, and NasNet, 

for transfer learning on the Beans Leaf image dataset 

with total 1296. The study also incorporated various 

optimization techniques to assess the performance 

variations among different CNN models. The 

EfficientNetB6 achieving an accuracy rate of 91.74% 

outperformed the other models. However, it needs 

different preprocessing techniques to improve the 

classification accuracy. 
Suma et al. [19] introduced AlexNet model to 

detect the beans leaf disease and classify the beans 

leaf image with 990 images into infected or healthy. 

The AlexNet model achieved 96.8% accuracy on the 

test dataset and 99.7% on the training dataset. 

Limitations of the model include the absence of 

explanation, over-optimism in its results, and 

challenges in generalization.  
Elfatimi et al. [20] developed a classification 

system for bean leaf diseases by utilizing MobileNet 

models. The effectiveness of the approach is 

evaluated by testing the model on three different bean 

leaf image datasets with varying difficulty. The 

GradCAM technique is applied to the model’s 

prediction to enhance the interpretability of a 

MobileNet CNN model in its classification of bean 

leaf images. The proposed approach achieved 

remarkable accuracy, with over 92% accuracy on all 

three datasets of bean leaf images. 

Much research has been carried out in recent 

years to develop automated methods of bean leaf 

disease detection. However, many of these methods 

use deep neural networks, which are usually quite 

slow, and most of these methods suffer from limited 

data size, which affects the model’s performance. 

Also, no study focuses on a stacked ensemble 

learning model for the multiclass classification of 

bean leaf diseases. In this work, we aim to improve 

the performance of the bean leaf disease detection 

model over state-of-the-art models by using a deep 

stacked ensemble learning model, which combines 

the predictions of several pre-trained CNN models 

based on the TL technique and utilizes a meta-learner 

on averaged predictions.  The main difference 

between our proposed and state-of-the-art models is 

that we introduce a stacked ensemble learning model 

based on TL for the multiclass classification of bean 

leaf diseases. This model increases the reliability of 

automated diagnoses by providing robustness against 

dataset noise and unpredictability. It also improves 

overall prediction accuracy, decreasing the 

possibility of incorrect classifications and also, 

reducing the training time, and overcomes the issue 

of limited data size by using the TL technique instead 

of training CNN from scratch. 

3. Proposed method 

This paper proposes a stacked ensemble learning 

model that combines the predictions of several pre-

trained CNN models based on the TL technique and 

utilizing a meta-learner on averaged predictions for 

detecting bean leaf images. Fig. 1 illustrates the 

detection proposed method employed in this study for 

bean leaf diseases. This method integrates the 

advantages of stacked ensemble learning with 

DCNNs based on TL to enhance the accuracy and 

reliability of image classification. The stacked 

ensemble model combines three individual 

classification models (EfficientNetB3, InceptionV3, 

and MobileNetV2) to create a more robust overall 

model. The integration strategy involves several 

steps: first, we apply data augmentation to the 

original  bean leaf images after preprocessing for the 

training and validation datasets. Then, each of the 

three CNN models is independently trained on this 

augmented data. Finally, their individual predictions 

are then merged through an average ensemble 

technique. The final predictions from these base 

models are utilized as features to train an ensemble 

model. This ensemble model determines the most 

effective way to combine the predictions from the  
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Figure. 1 Proposed model architecture of bean leaf detection 

 

 

base models, resulting in a final, more accurate 

prediction. Each step of the proposed architecture is 

explained in detail in the following subsections. 

3.1 Dataset collection and preprocessing 

The bean leaf dataset consists of images captured 

with smartphone cameras, featuring three classes: 

angular leaf spots, bean rust, and healthy, as shown 

in Fig. 2. The dataset was gathered by the Makerere 

AI research lab and annotated by experts at the 

National Crops Resources Research Institute 

(NaCRRI) [21]. The images are 500 × 500 pixels in 

RGB format. The dataset is divided into training, test, 

and validation subsets for training, validating, and 

testing the machine learning model. Specifically, the 

training dataset includes 1,035 images, the test 

dataset contains 128 images, and the validation 

dataset has 133 images. Table 2 details the number of 

images in each class: healthy, bean rust, and angular 

leaf spot. The model was trained and validated using 

the training and validation datasets, while the test 

dataset, which was not used during training, was 

employed to evaluate the model’s performance. In 

this study, the leaf image is resized to 224 × 224 × 3, 

which is then used to evaluate the performance of 

pre-trained models such as EfficientNetB3, 

InceptionV3, and MobileNetV2. Smaller images 

require fewer computations during both training and 

inference, leading to faster processing times. Fig. 2 

depicts several bean leaf image samples from the 

dataset. In this study, the pixel values of input images, 

post-resize, are normalized within the range of 0 to 

1. , each pixel value is multiplied by 1/255 for 

normalization.This normalization procedure ensures 

that the CNN model can effectively learn and 

optimize its parameters during the training process, 

promoting stability and efficiency in the gradient 

descent. 

   
(a) (b) (c) 

 

   
(d) (e) (f) 

Figure. 2 Examples of bean leaf images: (a) angular leaf 

spot, (b) healthy, (c) bean rust, (d) healthy, (e) healthy, 

and (f) bean rust 

 

 
Table 2. Depiction of the utilized datase 

Categor

y 
Training 

Validati

on 
Testing Total 

Angular 

Leaf 

Spot 

345 44 43 432 

Bean 

Rust 
348 45 43 436 

Healthy 342 44 42 428 

Total 1035 133 128 1296 

 

3.2 Data augmentation 

After preprocessing and splitting the data, data 

augmentation [22] is used during the training process 

to increase the dataset size and reduce the risk of 

overfitting, which is particularly useful when the 

training dataset is too small.  
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(a) (b) (c) 

 

   
(d) (e) (f) 

Figure. 3 Some samples of bean leaf images by utilizing 

different augmentation techniques: (a) angular leaf spot, 

(b) healthy, (c) angular leaf spot, (d) bean rust, (e) 

angular leaf spot, and (f) angular leaf spot 

 

This strategy includes geometric transformations 

such as rotations, shifts, zooms, shears, and flips. The 

images are randomly rotated up to 40 degrees and 

shifted vertically or horizontally by up to 0.2. Shear, 

zoom, and horizontal flip are all set to 0.2. The final 

step involves scaling the image pixel values from 

integers (0-255) to floats (0-1). During data 

augmentation, each image in the training and 

validation datasets undergoes a randomly selected 

augmentation process before being fed into the 

artificial neural network, as depicted in Fig. 3. The 

test dataset, representing real-world, unseen data, 

does not undergo data augmentation to ensure an 

unbiased evaluation of the model’s performance. 

3.3 Bean leaf diseases detection using deep stacked 

ensemble learning model 

This section detailes the pre-trained CNN models 

(EfficientNetB3, InceptionV3, and MobileNetV2) 

utilized for the stacked ensemble learning model and 

the proposed stacked ensemble learning model. 

3.3.1. EfficientNetB3 

EfficientNet [56] is a CNN architecture available 

in various versions, from EfficientNetB0 to 

EfficientNetB7. To achieve maximum model 

accuracy, EfficientNet models employ compound 

scaling, which balances the scaling of the 

convolutional network’s size across width, depth, and 

resolution [23].  

Compound scaling uses a compound coefficient 

to uniformly scale these dimensions, enabling 

efficient and balanced model growth [24]. For our 

classification task, we utilized EfficientNetB3, as 

larger networks with increased width, depth, or 

resolution generally achieve higher accuracy. The 

EfficientNetB3 model features a depth of 210 layers 

and consists of 11.1 million parameters. This deeper 

network captures intricate and rich features, ensuring 

better generalization to new tasks. Additionally, the 

wider network of EfficientNetB3 optimally extracts 

features and patterns, enhancing its performance in 

classification tasks. Fig. 4 shows the architecture of 

the proposed pre-trained EfficientNetB3 network 

architecture for the detection of bean leaf diseases. 

3.3.2. InceptionV3 

InceptionV3 [25] is a deep learning model based 

on CNNs designed for image classification. It was 

designed to facilitate deeper networks while keeping 

the parameter count manageable, containing fewer 

than 25 million parameters. The model’s architecture 

comprises symmetric and asymmetric building 

blocks, such as fully connected layers, convolutions, 

max pooling, and dropouts [26]. It also makes 

extensive use of batch normalization for the 

activation inputs. The model calculates the loss using 

the SoftMax function. Fig. 5 illustrates the 

architecture of the proposed pre-trained InceptionV3 

model for the detection of bean leaf diseases. 

3.3.3. MobileNetV2 

The MobileNetV2 model [27] is CNN that comprises 

53 layers and 88 depthwise separable convolutions. 

MobileNetV2 is an extension of MobileNetV1, 

designed specifically for mobile devices. Running 

neural networks on mobile devices enhances model 

availability and provides benefits such as increased 

security and reduced energy consumption. 

MobileNets utilize depthwise separable 

convolutional layers as their fundamental building 

blocks. MobileNetV2 introduces two key features to 

improve performance:  1.  Linear bottlenecks 

between layers: These help to preserve the essential 

information by compressing the data efficiently 

before passing it to the next layer. 2. Shortcut 

connections between bottlenecks: Similar to 

traditional residual connections, these shortcuts 

facilitate faster training and improved accuracy by 

enabling direct pathways for gradient flow.  These 

innovations enable MobileNetV2 to maintain 

efficiency while achieving higher accuracy and speed 

in training. Fig. 6 illustrate the architecture of 

MobileNetV2 for detection bean leaf diseases.  All 

models (EfficientNetB3, InceptionV3, and 

MobileNetV2) undergo fine-tuning for the detection 

of bean leaf diseases. 
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Figure. 4 Architectural design of fine-tuned EfficientNetB3 Model 

 

 

 
Figure. 5 Architectural design of fine-tuned InceptionV3 Model 



Received:  October 2, 2024.     Revised: November 1, 2024.                                                                                            311 

International Journal of Intelligent Engineering and Systems, Vol.18, No.1, 2025           DOI: 10.22266/ijies2025.0229.22 

 

 
Figure. 6 Architectural design of fine-tuned MobileNetV2 Model 

 

 

During fine-tuning, the following alterations are 

applied to the models for retraining the models 

utilizing the dataset [21]. Bean leaf images underwent 

preprocessing and normalization before being 

utilized for networks training. Then, data 

augmentation techniques were applied to enhance 

dataset processing efficiency. All layers within the 

networks were trainable, enabling them to extract 

features from the images effectively. For these 

models, the top layers are excluded to use their pre-

trained weights and the acquired feature 

representations. The redesigned new classifier part of 

each model utilizes a global average pooling layer 

instead of a flattening layer after the feature extractor 
to reduce the number of learning parameters, 

followed by adding two dense layers with sizes of 

512 and 3 neurons, respectively, as shown in Figs. 4-

6. The output layer consists of three neurons for 

classifying images into three classes: angular leaf 

spots, bean rust, and healthy. Each dense layer, 

except the output layer, is followed by a dropout layer 

with a rate of 0.2. Dropout is employed during 

training to prevent overfitting by reducing the 

model’s capacity. The dense layers utilize a Rectified 

Linear Unit (ReLU) activation function, while the 

output layer employs a softmax activation function 

for multi-class classification. Also, Fine-tuning each 

model includes retraining all layers of each model, 

except freezing the first ten layers of each model. The 

mathematical computation of the softmax activation 

function is as follows [28]: 

 

Softmax (𝑥𝑖) =
𝑒𝑥𝑖

∑ 𝑒𝑥𝑖𝑛
𝑗=0

    (1) 

 

Where xi denotes the input vector and n represents 

the number of classes. 

3.3.4. Proposed stacked ensemble learning model 

To improve the performance of the overall 

classification model, selecting a high-performance 

classification model as the base model is crucial. The 

classifier’s predictive ability is closely linked to its 

capacity to extract high-quality features, making the 

choice of a high-performance CNN essential for 

feature extraction. Deep neural networks, known for 

their high capacity and flexibility, often exhibit high 

variance and low bias. Averaging the outputs of 

independent models can significantly reduce this 

variance. In this study, we address this using the 

average ensemble method by averaging the softmax 

probability values of all models, accommodating the 

varying output magnitudes from different models.  
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Figure. 7 The Architecture of the proposed deep stacked ensemble learning 

 

 

The stacked ensemble learning model utilized in this 

work was created using multiple pre-trained CNN 

models, including EfficientNetB3, InceptionV3, and 

MobileNetV2, which shows more than 95% 

accuracy. The three individual classification models 

are combined to create a more robust overall model. 

The combination strategy involves several steps: 

first, we apply data augmentation to the original bean 

leaf images after preprocessing for the training and 

validation datasets. Then, each of the three pre-

trained CNN models is trained independently on this 

augmented data. Finally, the softmax output 

probabilities of the three models are averaged to pass 

as input into a new classifier to produce the final 

output. Average prediction is calculated using the 

following Eq. (2): 

 

Average ensemble=argmax
1

n
∑ pij
n
j=1    (2) 

 

Where 𝑝𝑗 the output propability of ith class label 

of the jth model and n is the total number of the 

single models. 

The new classifier consist of two dense layers 

with 512, 3 neuronus, respectively.  The output layer 

consists of three neurons for classifying images into 

three classes: angular leaf spots, bean rust, and 

healthy. The stacked average ensemble method 

leverages the diversity of base classifiers to construct 

a more robust and reliable overall model. This 

approach involves calculating the average of 

predictions from each individual model for a given 

input image. By averaging these predictions, the 

method reduces the impact of individual model 

variations and errors, thereby enhancing the 

reliability and accuracy of the final prediction. This 

stacked ensemble approach enhances the model’s 

classification performance by leveraging the 

strengths of each individual model.  The architecture 

of the proposed deep-stacked ensemble learning 

model is shown in Fig. 7. 

4. Experimental results and analysis 

Detecting bean leaf diseases is crucial for 

preventing their spread in farming environments. 

Therefore, conducting various experiments to 

evaluate the effects of multiple deep-learning models 

and stacked ensemble learning models on the bean 

leaf dataset [21] is inherently valuable. These 

experiments offer numerous benefits, including 

improved disease management and agricultural 

productivity. For this purpose, we carried out several 

experiments in this section to showcase the 

effectiveness of the proposed models on the dataset 

[21]. This section presents the results obtained from 

several experiments, the overall experimental 

analysis for bean leaf disease detection utilizing 

different pre-trained CNN (EfficientNetB3, 

InceptionV3, and MobileNetV2) models, and stacked 

ensemble learning models. Three stacked ensemble 

models are presented in this work. The first stacked 

ensemble model 1 combines the three pre-trained 

CNN models (EfficientNetB3, InceptionV3, and 

MobileNetV2), the second stacked ensemble model 2 

combines EfficientNetB3 and MobileNetV2, while 

the third stacked ensemble model 3 combines 

EfficientNetB3 and InceptionV3. A comparative 

analysis of these models introduces and compares the 

results obtained from these models with recent state-

of-the-art approaches. Finally, the most effective 

performing model is obtained. 

All codes of the proposed models were written in 

python and trained on a kaggle where a kaggle search 

project is created to supply everybody with free 

NVIDIA Tesla-P100 GPU resources for their deep 

learning projects and research. Each user is presently 

specified 16GB of RAM, and it will be up to 29GB. 
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4.1 Training and validation accuracy 

In the training step, all pre-trained 

(EfficientNetB3, InceptionV3, and MobileNetV2 

models used in this study undergo fine-tuning for the 

detection and classification of bean leaf images. Fine-

tuning each model includes retraining all layers of 

each model, except freezing the first ten layers of 

each model to update their weights with the utilized 

dataset [21]. The weights parameters of these layers 

are fine-tuned utilizing optimizer Adam with 

categorical cross-entropy as the loss function. The 

categorical cross-entropy function measures the 

performance of a classification model whose output 

(class score) is a probability value between 0 and 1. 

Categorical cross-entropy is calculated as [28]:  

 

𝐿(𝑦, 𝑝) = −∑ 𝑦𝑗
𝑛
𝑗=0 𝑙𝑜𝑔(𝑝𝑗)   (3) 

 

Where 𝑦𝑗  is the actual value and 𝑝𝑗  is the predicted 

value. 

 

The early stopping technique is used in this work 

to stop the training process after 15 epochs if the 

validation accuracy does not improve to prevent the 

proposed model from overfitting. The 

hyperparameters for these networks can be indicated 

in Table 3. 

 

 
Table 3. Training hyperparameters used while fine-tuning 

the deep learning model 

Hyperparameters of Hybrid model 
Learning rate 0.0001 

Optimizer Adam 

Batch Size 32 

Max Epochs 50 

Early stopping 15 epochs 

 

 
Table 4. The accuracy rates of training, and validation for 

all the proposed models 

 

Model 

Tr- 

Acc% 

Val-

Acc% 

Training 

time 

EfficientNetB3 99.6 97.7 0:11:34 

InceptionV3 98.4 98.4 0:09:32 

MobileNetV2 99.8 96.9 0:13:01 

Stacked 

ensemble model 

1 

99.2 99.2 0:08:16 

Stacked 

ensemble model 

2 

99.4 99.2 0:06:44 

Stacked 

ensemble model 

3 

99.8 99.2 0:06:52 

Table 4 shows the accuracy rates for training and 

validation datasets for three pre-trained models 

(EfficientNetB3, InceptionV3, and MobileNetV2) 

alongside the proposed stacked ensemble models. 

The EfficientNetB3 model attained an accuracy of 

99.6% and 97.7% for training and validation 

datcompleting training in 11 minutes and 34 seconds. 

In comparison, the InceptionV3 model achieved 

accuracies of 98.4% and 98.4% for training and 

validation data with a training time of 9 minutes and 

32 seconds. The MobileNetV2 model achieved an 

accuracy of 99.8% and 96.9% for training and 

validation data within a training time of 13 minutes 

and 1 second. The stacked ensemble models showed 

notable performance improvements. Stacked 

ensemble model 1, which combines EfficientNetB3, 

InceptionV3, and MobileNetV2, achieved an 

accuracy of 99.2% on training data and 99.2% on 

validation data, with a training time of 8 minutes and 

16 seconds. Stacked ensemble model 2, combining 

EfficientNetB3 and MobileNetV2, reached an 

accuracy of 99.4% on training data and 99.2% on 

validation data, with a reduced training time of 6 

minutes and 44 seconds. Another stacked ensemble 

model 3 combining EfficientNetB3 and InceptionV3 

also achieved high accuracy rates of 99.8% on 

training data and 99.2% on validation data, with a 

training time of 6 minutes and 52 seconds. The 

training and validation accuracy curves with the 

number of training epochs are displayed in Fig. 8 for 

all the proposed models to show their performance  in 

classifying bean leaf diseases.  

As shown in Table 4 and Fig. 8, the stacked 

ensemble models, especially those combining 

EfficientNetB3 and InceptionV3 or EfficientNetB3 

and MobileNetV2, achieve superior validation 

accuracy compared to individual models, indicating 

better generalization and robustness.The individual 

models, while strong, particularly MobileNetV2, 

show signs of overfitting. Stacked ensemble models 

generally require less training time compared to the 

average of individual models, with Ensemble Model 

2 (EfficientNetB3, MobileNetV2) being the most 

efficient. The ensemble models balance training and 

validation accuracy more effectively than individual 

models. This balance is crucial for real-world 

applications where unseen data must be accurately 

predicted. In conclusion, stacked ensemble models 

not only enhance performance by improving 

validation accuracy and mitigating overfitting but 

also do so efficiently with reduced training times. 

This makes them a preferable choice for robust and 

reliable classification tasks. 
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Figure. 8 Comparison of training and validation accuracy for: (a) EfficientNetB3 model, (b) InceptionV3 model, (c) 

MobileNetV2 model, (d) stacked ensemble model 1, (e) stacked ensemble model 2, and (f) stacked ensemble model 3 

 

 

4.2 Evaluation metrics of model performance 

Different performance metrics were utilized in 

this work to assess the performance of the proposed 

models. We measured the classification performance 

of the proposed models by utilizing several metrics 

like Accuracy, Recall, Precision, and F1-score. [29, 

30].  

 

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =
TP

(TP+FP)
     (4) 

 

𝑅𝑒𝑐𝑎𝑙𝑙 =
𝑇𝑃

(TP+FN)
     (5) 

 

𝐹1 − 𝑠𝑐𝑜𝑟𝑒 = 2 ∗
𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛∗𝑅𝑒𝑐𝑎𝑙𝑙

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛+𝑅𝑒𝑐𝑎𝑙𝑙
   (6) 

 

𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =
(TN+TP)

(TP+TN+FP+FN)
    (7) 
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Figure. 9 Comparison of performance metrics for all proposed models 

 

 
Table 5. Performance metrics for the proposed model 

Models 

\Metrices 

Precision

% 

Recall

% 

F1-

score% 

Accuracy

% 

EfficientB

3 model 
96.38 96.12 96.09 96.09 

Inception

V3 model 
95.51 95.33 95.31 95.31 

MobileNe

tV2 model 
92.34 91.47 91.40 91.40 

Stacked 

ensembel 

model 1 

97.82 97.67 97.67 97.65 

Stacked 

ensembel 

model 2 

98.51 98.45 98.45 98.44 

Stacked 

ensembel 

model 3 

99.24 99.22 99.22 99.22 

 

Where TP signifies the count of True Positive 

samples, denoting instances accurately predicted as 

belonging to the positive category. TN stands for 

True Negative samples, representing instances 

correctly predicted as belonging to the negative 

category. FP corresponds to False Positive samples, 

indicating instances inaccurately predicted as 

positive.  Lastly, FN represents the count of False 

Negative samples, highlighting instances incorrectly 

predicted as negative when they are positive.  

Table 5 presents the performance metrics for all 

pre-trained CNN (EfficientNetB3, InceptionV3, and 

MobileNetV2) and the stacked ensemble proposed 

models. Fig. 9 shows the comparative performance of 

Precision, Recall, F1-score, and testing accuracy for 

all proposed models. According to Table 5 and Fig. 

9, the stacked ensemble model 3, which combines 

EfficientNetB3 and InceptionV3, outperformed 

(EfficientNetB3, InceptionV3, and MobileNetV2) in 

all metrics, achieving the highest percentages for 

Percision (99.24%), Recall (99.22%), and F1-score 

(99.22%) along with the highest testing accuracy of 

99.22%. The testing accuracy for EfficientNetB3, 

InceptionV3, MobileNetV2, and the stacked 

ensemble proposed model 1, model 2, and models 3 

are 96.09%, 95.31%, 91.40%, 97.65%, 98.44%, and 

99.22%, respectively. The stacked ensemble model 3, 

which utilizes a meta-learner trained on the averaged 

predictions of EfficientNetB3 and InceptionV3, 

demonstrates superior performance compared to the 

other stacked proposed models and individual 

models, indicating that these models together provide 

the most comprehensive feature extraction and 

classification capability. The results show that the 

overall accuracy of the proposed stacked ensemble 

model increases significantly, reaching its peak 

accuracy when combining multiple predictions from 

two or three robust networks rather than relying 

solely on each network individually, where the 

stacked ensemble method reduces the impact of 

individual model variations and errors, thereby 

enhancing the reliability and accuracy of the final  
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Figure. 10 The confusion matrix for: (a) EfficientNetB3 model, (b) InceptionV3 model, (c) MobileNetV2 model, (d) 

stacked ensemble model1, (e) stacked ensemble model 2, and (f) stacked ensemble model 3 

 

 

prediction. This stacked ensemble model improves 

the model’s classification performance by leveraging 

the strengths of each individual model. 

The confusion matrix performs as a tabular 

representation to visually evaluate the performance 

of a prediction model. It keeps counts of predictions 

made by the model, distinguishing between correct 

and incorrect classifications in each cell. Fig. 10 

displays the confusion matrices of EfficientNetB3, 

InceptionV3, MobileNetV2, and the stacked 

ensemble proposed model utilized in this work. 

In Fig. 10, the confusion matrix reveals that the 

EfficientNetB3 model (Fig. 10(a)) correctly 

predicted all images of angular leaf spots and healthy 

classes. For the “bean rust” class, it identified 38 

images correctly and misclassified 5. Conversely, the 

InceptionV3 model (Fig. 10(b)) correctly 

identified all “angular leaf spots” images, while in the 

“bean rust” class, 38 images were correctly classified 

and misclassified 5. For the “healthy” class, it 

classified 41 images correctly and misclassified one 

as bean rust.  
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(a) (b) (c) 

 

   
(d) (e) (f) 

Figure. 11 Some correct and wrong predictions 

made on test data: (a) True Label: healthy Predicted 

Label: healthy, (b) True Label: angular leaf spot 

Predicted Label: angular leaf spot, (c) True Label: bean 

rust Predicted Label: bean rust, (d) True Label: bean rust 

Predicted Label: healthy, (e) True Label: bean rust 

Predicted Label: angular leaf spot, and (f) True Label: 

bean rust Predicted Label: angular leaf spot 
 

The MobileNetV2 model (Fig. 10(c)) correctly 

identified 40 “angular leaf spots” images with three 

misclassifications as healthy, while the bean rust 

class correctly identified 35 images and misclassified 

8. In the “healthy” class, it identified all images 

correctly. The stacked ensemble model 1, which 

combines (EfficientNetB3, InceptionV3, and 

MobileNetV2) (Fig. 10(d)) demonstrated robust 

performance by correctly identifying all images of 

angular leaf spots, bean rust, and healthy classes 

except for three image misclassifications as angular 

leaf spots in the “bean rust” class, while  The stacked 

ensemble model 2, which combines (EfficientNetB3 

and MobileNetV2) (Fig. 10(e)) demonstrated robust 

performance by correctly identifying all images of 

angular leaf spots, bean rust, and healthy classes 

except for two image misclassifications as angular 

leaf spots in the “bean rust” class, The stacked 

ensemble model 3, which combines (EfficientNetB3 

and InceptionV3) (Fig. 10(f)) demonstrated robust 

performance by correctly identifying all images of 

angular leaf spots, bean rust, and healthy classes 

except one image misclassifications as angular leaf 

spots in the “bean rust” class. The results from the 

confusion matrices in Fig. 10 highlight the substantial 

benefits of using stacked ensemble models over 

individual models. The ensemble approach, 

especially Stacked Ensemble Model 3, demonstrates 

superior performance by correctly classifying the 

majority of images across all classes with minimal 

errors. This underscores the effectiveness of 

combining EfficientNetB3 and InceptionV3, as their 

complementary strengths lead to enhanced model 

accuracy and robustness.  The ensemble method 

reduces the impact of individual model errors, 

resulting in a more reliable and accurate classification 

system. Fig. 11 shows some correct and wrong 

predictions made on test data. 

4.3 Comparative analysis 

In this section, we thoroughly evaluate the 

effectiveness of our proposed stacked ensemble 

model for detecting bean leaf diseases, performing a 

comprehensive comparison with state-of-the-art 

models. The proposed stacked ensemble models, 

which combines the predictions of multible pre-

trained models (EfficientNetB3, InceptionV3, and 

MobileNetV2), underwent rigorous training and 

evaluation on the bean leaf dataset [21]. The resulting 

classification report highlights the model’s strong 

performance, demonstrating high accuracy, precision, 

recall, and F1 score, validating its effectiveness in 

bean leaf disease detection. However, to further 

validate its performance, we compare it against all 

models introduced in this study and established state-

of-the-art models. This comparative analysis 

primarily focuses on precision Recall, f1-score, and 

accuracy metrics. Table 6 and Fig. 12 present a 

comparison between the proposed models and recent 

existing models executed on the [21] dataset. Notably, 

The EfficientNetB3 model achieved a testing 

accuracy of 96.09%. While it performed well, it 

struggled with certain misclassifications, particularly 

in the bean rust class. The InceptionV3 model 

achieved a testing accuracy of 95.31%. Similar to the 

EfficientNetB3 model, it had a few misclassifications, 

with one misclassification in the healthy class, while 

the MobileNetV2 model achieved a testing accuracy 

of 91.40%. This model showed the highest number of 

misclassifications, indicating a lower performance 

compared to EfficientNetB3 and InceptionV3. In 

Stacked Ensemble Models, the Stacked Ensemble 

Model 1 (EfficientNetB3, InceptionV3, and 

MobileNetV2) achieved a testing accuracy of 97.65%. 

This model demonstrated strong performance, 

significantly reducing the number of 

misclassifications across all classes. The Stacked 

Ensemble Model 2 (EfficientNetB3 and 

MobileNetV2) achieved a testing accuracy of 98.44%. 

This model further improved accuracy, indicating 

that even with fewer models, a well-chosen 

combination can outperform a larger ensemble. The 

stacked ensemble model 3, which combines 

EfficientNetB3 and InceptionV3, outperformed 

(EfficientNetB3, InceptionV3, and MobileNetV2), 

stacked ensemble model 1, stacked ensemble model  
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Table 6. Comparison of the proposed stacked ensemble model with existing models 

 

 
Figure 12. Comparison of precision, recall, F1 score, specificity, sensitivity and testing accuracy for different models 

 

 

2, and most existing models in all metrics, achieving 

the highest percentages for Percision (99.24%), 

Recall (99.22%), and F1-score (99.22%) along with 

the highest testing accuracy of 99.22%. This model 

showed the best performance, with the least number 

of misclassifications, highlighting the 

complementary strengths of EfficientNetB3 and 

InceptionV3. The performance improvement can be 

attributed to the ensemble’s ability to mitigate the 

weaknesses of individual models and enhance overall 

robustness. This underscores the significance of the 

ensemble approach in improving model performance 

for complex classification tasks like bean leaf disease 

detection. 

5. Conclusion 

This study introduces a robust stacked ensemble 

learning model for bean leaf disease detection by 

leveraging the strengths of multiple pre-trained CNN 

models based on TL and utilizing a meta-learner on 

Models Precision% Recall% F1-score% Accuracy% 

Sahu et al. [13] (2020) - - - 96.06 

Sahu et al. [14] (2021) - - - 95.31 

Abed et al. [15] (2021) - - - 90.01 

Elfatimi et al. [16] (2022) 92.98 93.02 92.94 92.97 

Önler [17] (2023) - - - 99.2 

Elfatimi et al. [20] (2024) 92.98 93.02 92.94 92.97 

EfficientNetB3 proposed model 96.38 96.12 96.09 96.09 

InceptionV3  proposed model 95.51 95.33 95.31 95.31 

MobileNetV2  proposed model 92.34 91.47 91.40 91.4 

Stacked ensemble proposed model 1 97.82 97.67 97.67 97.65 

Stacked ensemble proposed model 2 98.51 98.45 98.45 98.44 

Stacked ensemble proposed model 3 99.24 99.22 99.22 99.22 
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averaged predictions. This method reduces the 

impact of individual model variations and errors by 

averaging these predictions, thereby it appears as a 

more efficient and effective way to improve model 

performance, especially when the dataset is small and 

you need faster training. The experiments have 

shown that the stacked ensemble model 3, which 

combines EfficientNetB3 and InceptionV3, 

demonstrates superior performance in detecting bean 

leaf diseases, surpassing both the individual TL 

models and most state-of-the-art models in all 

metrics, achieving the highest percentages for 

Percision (99.24%), Recall (99.22%), and F1-score 

(99.22%) along with the highest testing accuracy of 

99.22% and with reduced training time.        

     Future research can explore more 

sophisticated meta-learning techniques, including 

gradient boosting machines or neural network-based 

Meta learners, to further improve the ensemble’s 

performance. Additionally, expanding the dataset and 

including more diverse disease types could enhance 

the model’s generalizability. We also expand this 

research to use a hybrid model between stacked 

ensemble learning and semantic ontology to make 

accurate detection for bean leaf diseases. 
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