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Abstract: This study addresses the challenge of predicting airflow volume in under-actuated zones, where 

occupant behavior and environmental factors complicate standard models. To improve prediction accuracy, we 

propose the Sigmoid Parametric Shifted ReLU (SPS-ReLU) with custom weight scaling as a novel activation 

function within a Multi-Layer Perceptron Artificial Neural Network (MLP-ANN) model. The model was trained 

and tested on a time-series dataset from a controlled environment, using optimal time intervals (5, 15, and 30 

minutes) identified through polynomial regression analysis. These intervals best capture airflow patterns: the 5-

minute interval effectively handles rapid fluctuations in Zones 1 and 2, while the 15-minute interval is better 

suited for the gradual changes in Zone 3. Results show that SPS-ReLU, particularly with a weight scale of 1.5, 

significantly improves accuracy, achieving an RMSE of 2.3891 and R² of 0.9974, outperforming both standard 

and advanced activation functions. Comparatively, DPReLU achieved an RMSE of 3.0469 and R² of 0.9957, 

while ReLU’s RMSE was 22.5458 with an R² of 0.7741. This demonstrates SPS-ReLU’s capability to balance 

smoothness and flexibility, enabling it to capture intricate airflow dynamics within dynamic environments. The 

findings highlight SPS-ReLU with custom scaling and optimal time intervals as an effective solution for 

enhanced airflow predictions in under-actuated zones. 

Keywords: Airflow volume, The under-actuated zone, Neural network, Occupant behavior, Time interval, 

Polynomial regression, System optimization, Environmental control. 
 

 

1. Introduction 

Heating, Ventilation, and Air Conditioning 

(HVAC) systems, also referred to as building air 

management systems, are essential for ensuring air 

quality and thermal comfort in modern buildings [1]. 

These systems manage the regulation of airflow, 

temperature, and humidity across various zones, each 

of which may have distinct ventilation requirements 

[2]. HVAC systems typically function through 

refrigeration cycles that control the volume of airflow 

delivered to each zone, thereby maintaining optimal 

environmental conditions [3]. The primary objective 

of these systems is to foster a comfortable and healthy 

indoor environment while balancing the needs of 

occupants and maximizing energy efficiency [4]. 

HVAC zones are generally categorized into two 

types: fully-actuated and under-actuated zones [5]. In 

fully-actuated zones, airflow volume is consistently 

regulated, and cooling loads are calculated based on 

fixed occupancy and stable environmental conditions 

[6]. Conversely, under-actuated zones, which feature 

multiple ventilation zones within a single area, 

exhibit more dynamic cooling loads and variable 

airflow demands [7]. This variability is driven 
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primarily by occupant behavior and the fluctuating 

environmental needs of different areas within the 

same zone. As a result, under-actuated zones pose 

greater challenges in maintaining proper airflow 

volume, due to the complexity of their ventilation 

requirements. 

In under-actuated zones, time intervals are critical 

due to the cyclical nature of occupant presence and 

behavior, which directly impacts airflow demands 

across varying periods such as months, weeks, days, 

and specific times of day [8]. Frequent changes in 

occupancy require assessing airflow variations at 

specific intervals to meet fluctuating ventilation 

needs effectively. Accurate evaluation of these 

variations enables HVAC systems to adapt to real-

time demands, ensuring consistent airflow volume 

for optimal thermal comfort and air quality. 

Conditioned air is distributed from the Air Handling 

Unit (AHU) machine to each zone via a network of 

ducts, with airflow volume regulated by Variable Air 

Volume (VAV) devices [7]. However, current 

systems rely heavily on temperature and humidity 

sensors with pre-configured setpoints, which are not 

dynamically adjusted in real time. This static 

approach limits the system’s ability to respond to the 

frequent fluctuations in occupant behavior and 

environmental conditions within under-actuated 

zones, leading to inefficiencies in energy use and 

suboptimal air quality regulation [9]. Therefore, 

effective airflow control must assess specific time 

intervals for each zone to maintain ideal 

environmental conditions, considering the cyclical 

nature of occupancy in such variable settings. 

Several studies have been conducted on the topic 

of airflow volume control in both fully-actuated and 

under-actuated zones. These studies have explored 

various approaches to improving indoor air quality, 

including occupant behavior-based ventilation using 

machine learning algorithms. For instance, Lee et al. 

[10] developed a model that optimized an Artificial 

Neural Network (ANN) based on mixed temperature 

values and the Economizer Control Algorithm, which 

considered both indoor and outdoor weather 

conditions. This model resulted in approximately 

20% energy savings for HVAC systems. Similarly, 

Kim and Cho [8] enhanced an ANN-based model for 

airflow volume control, optimizing it with selected 

scenarios and real-time setpoint values to suit actual 

room conditions, leading to a 16.7% improvement in 

HVAC energy efficiency.  

Further advancements were made by Wei et al. 

[11] from Beijing University took this a step further 

by proposing a Model Predictive Control (MPC) 

framework based on ANNs, which targets the airflow 

volume control within multi-zone VAV systems. 

Their study outlined the intricate interaction between 

zone temperature processes and supply airflow 

volume control, introducing a hierarchical control 

approach that optimizes energy consumption. The 

validation through experimental data collected from 

a laboratory setup reinforced the potential of ANN-

based MPCs in minimizing energy usage while 

maintaining indoor comfort. In another study, Wei et 

al.[12] developed an airflow volume distribution 

control model by optimizing ANN through offline 

learning using the Lagrange Variational Approach 

and Optimal Horizon Feedback, which resulted in a 

6.12% improvement in HVAC energy efficiency. 

According to previous research, the Artificial 

Neural Network (ANN) approach is the most often 

used method for airflow volume prediction-based 

occupant behavior. This machine learning technique 

excels at modelling non-linear relationships and has 

proven effective in capturing the complex dynamics 

of occupancy-driven airflow. However, the 

performance of ANN models largely depends on the 

choice of activation function [13], which can 

significantly affect their ability to handle varying 

environmental conditions, especially in cyclical 

patterns across different zones. Proper weight 

initialization can significantly enhance the model’s 

convergence and stability, further improving 

predictive accuracy [14]. 

Standard activation functions such as ReLU 

(Rectified Linear Unit), PReLU (Parametric ReLU), 

and Leaky ReLU are widely used for their simplicity 

and computational efficiency. ReLU is particularly 

popular for addressing vanishing gradient issues, but 

in complex environments with varying occupancy 

across multiple zones, it can result in lower 

smoothness scores, limited output range, and higher 

final training loss, affecting its ability to accurately 

predict cyclical airflow patterns [15]. PReLU and 

Leaky ReLU, by incorporating small negative slopes, 

offer an extended output range and improved 

smoothness scores, contributing to lower final 

training loss [16, 17]. However, despite these 

enhancements, both PReLU and Leaky ReLU still 

face challenges in fully adapting to dynamic 

environments with fluctuating occupant behavior, 

especially when predicting cyclical airflow variations 

in real-time. 

To address the limitations of standard activation 

functions, more advanced functions such as Flexible 

Rectified Linear Units (FReLU) and Dynamic 

Parametric Rectified Linear Units (DPReLU) have 

been developed. FReLU introduces flexibility by 

allowing the activation threshold to be learned, 

enhancing model adaptability across varying 

environmental conditions and zones [18]. However, 
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this added complexity can result in overfitting, 

especially in small datasets or highly variable 

occupancy scenarios. DPReLU incorporates dynamic 

parameters that adjust based on input features, 

making it more suitable for environments with 

fluctuating occupancy and cyclical patterns [19]. 

Despite these improvements, DPReLU’s increased 

model complexity can lead to higher computational 

demands and increased complexity due to more 

learnable parameters. While both FReLU and 

DPReLU improve the handling of dynamic airflow 

demands and occupancy variations, challenges 

remain in fully optimizing ANN models for airflow 

volume prediction across different zones, particularly 

in cyclical behaviors and real-time fluctuations. 

Therefore, further refinement of activation functions 

is essential to enhance accuracy and efficiency of 

airflow volume prediction. 

In addition to the choice of activation function, 

the issue of weight initialization is crucial to the 

performance of an ANN model [20]. Improper weight 

initialization can lead to vanishing or exploding 

gradients, which can hinder the model's learning 

process during backpropagation [21]. If the weights 

are too small, the gradients may shrink exponentially, 

causing slow learning or even stopping the training 

[22]. On the other hand, if the weights are too large, 

the gradients can grow uncontrollably, leading to 

unstable updates and divergence during training. In 

environments with cyclical patterns and fluctuating 

conditions such as varying airflow across different 

zones due to occupant behavior careful weight 

initialization is crucial [23]. Standard methods like 

Glorot (Xavier) and He initialization promote stable 

gradient flow, but they have limitations. Glorot 

assumes symmetrical activations and normalized 

inputs, which may not hold in complex, non-linear 

models, leading to underfitting [24]. He initialization 

works well with ReLU but may not handle cyclical 

patterns effectively [25]. Both methods can fail to 

capture subtle environmental variations, risking 

underfitting or overfitting. To improve model 

generalization, customized initialization strategies, 

such as scaled initializations was needed to better 

adapt to the dynamic relationships between occupant 

behavior and airflow. 

The present study proposes an advanced airflow 

volume prediction model using a Multilayer 

Perceptron Artificial Neural Network (MLP-ANN) 

with a novel Sigmoid Parametric Shifted ReLU (SPS-

ReLU) activation function. This proposed model 

incorporates strong improvements in predictive 

performance through three primary strengths: the 

unique combination of the sigmoid and ReLU 

functions in SPS-ReLU, which offers dynamic 

adaptability to both positive and negative input 

values for better handling of non-linear patterns; a 

custom weight scaling method for precise control 

over neuron activation, which improves model 

convergence and accuracy in complex, cyclical 

environments; and an optimized feature engineering 

process that captures spatial, temporal, and 

behavioral variations crucial for reliable predictions 

in under-actuated zones. Together, these elements 

create a robust model that effectively balances 

predictive accuracy, smoothness, and computational 

efficiency, improving the ability of HVAC systems 

to manage airflow volume in dynamic, occupant-

driven settings. 

The organization of this research paper adheres to 

a structured approach, beginning with a 

comprehensive introduction to the proposed Sigmoid 

Parametric Shifted ReLU (SPS-ReLU) activation 

function and its significance in airflow volume 

prediction within under-actuated zones. We then 

explore the theoretical foundations of activation 

functions and custom weight scaling methods, 

providing the rationale for incorporating SPS-ReLU 

within a Multilayer Perceptron Artificial Neural 

Network (MLP-ANN) framework. Subsequently, we 

meticulously outline our methodology, detailing the 

data collection process, feature engineering 

techniques, and model architecture design, all 

tailored to enhance predictive performance in 

dynamic, occupant-driven environments. The 

empirical analysis section presents an in-depth 

evaluation of experimental results, comparing the 

SPS-ReLU activation function against both standard 

and advanced activation functions in terms of 

predictive accuracy and generalization. Finally, we 

conclude with a thorough discussion and 

interpretation of the findings, highlighting the 

implications of SPS-ReLU in enhancing HVAC 

system efficiency and proposing potential directions 

for future research in predictive modeling for airflow 

control in under-actuated zones. 

2. Methods 

This case study was executed at the Universitas 

Trilogi Library, as illustrated in Fig. 1. The library 

comprised five rooms, designated from 1 to 7, which 

constituted the under- actuated zones. Each zone 

encompassed multiple distinct areas. Data collection 

and observational sampling were systematically 

undertaken in room 3, specifically within a corner 

section. This room was segmented into three 

ventilation-specific areas, each with a coverage of 25 

m²,   providing   a   structured   environment   for   the  



Received:  October 12, 2024.     Revised: November 5, 2024.                                                                                          394 

International Journal of Intelligent Engineering and Systems, Vol.18, No.1, 2025           DOI: 10.22266/ijies2025.0229.29 

 

 
Figure . 1 Layout of Universitas Trilogi Library 

 

analysis of occupant behavior and environmental 

conditions. 

This research employed a systematic 

methodology, starting with data collection in the 

Universitas Trilogi Library, specifically focusing on 

room 4, which was divided into three ventilation-

specific areas of 25 m² each. Airflow volume was 

measured in these areas to capture real-time 

dynamics, while time intervals were set at 5, 15, 30, 

and 60 minutes to track fluctuations in occupant 

behavior and environmental conditions. The pre-

processing stage involved feature engineering to 

create new variables, followed by feature selection 

and retention to refine the dataset for optimal 

performance. A predictive model for airflow volume 

was developed using a Multilayer Perceptron 

Artificial Neural Network (MLP-ANN) with 

optimized activation functions. The model's 

performance was rigorously assessed through Root 

Mean Squared Error (RMSE), R², and comparative 

evaluations of various activation functions. In the 

final stage, the proposed model, incorporating SPS-

ReLU with custom weight initialization, was 

compared against state-of-the-art ANN models using 

standard activation functions (ReLU, PReLU, Leaky 

ReLU) and advanced functions (FReLU and 

DPReLU), demonstrating its improved performance. 

2.1. Data collections 

Data for this research were systematically 

gathered from three distinct zones (Zone 1, Zone 2, 

and Zone 3) within an office environment during 

regular weekdays (Monday to Friday) from 8 AM to 

4 PM. Spanning a total of 14 weeks, the data 

collection covered several weeks of continuous 

observation. Throughout this period, observations 

were recorded at 5-minute intervals, resulting in a 

comprehensive dataset that captured detailed insights 

into the occupant dynamics and environmental 

conditions. A total of 478 individuals were observed 

during the entire duration, with the data meticulously 

covering a range of occupant activities including 

sitting, standing, walking, reading, talking, squatting, 

writing, sleeping, typing, and the use of electronic 

devices such as headphones, laptops, and mobile 

phones. 

The data related to occupant behavior was 

manually recorded by reviewing CCTV footage, and 

the frequency and number of occupants engaging in 

each activity were documented. This information was 

organized into a spreadsheet, with each variable 

representing a distinct occupant activity. 

Simultaneously, indoor and outdoor environmental 

conditions, including temperature, relative humidity, 

and air pressure, were collected automatically using 

sensors installed in each zone. These sensor data were 

extracted and saved in separate spreadsheet files. 

Finally, the occupant behavior data and 

environmental data were integrated into a single 

unified dataset, allowing for a holistic analysis of the 

relationship between occupancy patterns and 

environmental factors. 

2.2. Airflow volume measurement 

Accurate measurement of airflow volume is 

essential in maintaining optimal environmental 

conditions within HVAC systems, particularly in 

under-actuated zones where occupant behavior and 

environmental variables fluctuate dynamically. In 

this study, airflow volume was determined through a 

series of calculations that account for initial airflow 

requirements, air needed per person, and ventilation 

air [26]. These calculations provide a comprehensive 

measure of airflow distribution to meet both occupant 

and environmental demands. The formula for 

calculating the total airflow volume is as follows: 

 

AV2 = AV1 + ARP + VA                     (1) 

 

Where: 

• AV2 represents the total airflow volume, 

• AV1 is the initial airflow volume, 

• ARP is the air required per person, and 

• VA denotes the ventilation air. 

The initial airflow volume (AV1) is determined 

by three primary factors: the airflow requirement for 

the area’s size, the rate of air exchange, and the 

minimum airflow per occupant. It is calculated as 

follows: 
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AV1 = CFMarea + CFMchange + minCFMperson (2) 

 

Where: 

• CFMarea is the airflow requirement based on the 

area’s volume, 

• CFMchange indicates the rate of air exchange per 

minute (set to 8.3 cubic meters per minute in 

this study), and 

• CFMperson is the minimum airflow volume 

required per person (typically set to 20 CFM). 

This calculation ensures that each area has a 

sufficient baseline airflow volume based on its size, 

ventilation rate, and the presence of occupants. 

Ventilation air (VA) is calculated to maintain 

proper indoor air quality by considering the 

difference in humidity levels between indoor and 

outdoor environments [27]. This can be 

mathematically expressed as: 

 

VA =
Qtotal

4340 ×(Humout−Humin)
                  (3) 

 

Where: 

• Qtotal represents the total airflow volume, 

• Humout is the humidity level outside the 

building, and 

• Humin is the humidity level inside the building. 

This formula accounts for the added ventilation 

air required to balance indoor humidity, particularly 

when there are significant differences between indoor 

and outdoor humidity levels, which can affect 

occupant comfort and indoor air quality. 

2.3. Time interval measurement 

In this section, 3rd-degree polynomial regression 

was employed to assess the relationship between 

airflow volume and different time intervals [28] (5 

minutes, 15 minutes, 30 minutes, and 60 minutes) for 

each of the three zones (Zone 1, Zone 2, and Zone 3). 

The purpose of this analysis was to determine the 

most appropriate time interval for capturing 

fluctuations in airflow volume by evaluating the R² 

values, which represent the goodness of fit of the 

polynomial model. The general form of a 3rd-degree 

polynomial regression is expressed as: 

 

𝑦 = β0 + β1x +  β2x2 +  β3x3            (4) 

 

Where: 
• y represents the predicted value, 
• x denotes the time interval (in minutes), 
• 𝛽0 is the intercept, 
• 𝛽1, 𝛽2, 𝛽3 are the coefficients 

corresponding to the linear, quadratic, and 
cubic terms, respectively. 

This mathematical formulation allows the model 

to capture nonlinear relationships between time 

intervals and airflow volume, accounting for the 

complexity of airflow volume changes over different 

time periods in each zone. 

2.4. Feature pre-processing 

This step includes feature engineering, feature 

selection, and feature retention. Feature engineering 

is a critical first step in predictive modelling, aimed 

at transforming raw data into meaningful input that 

can enhance the model’s performance.  

1. Feature Engineering 

To capture the repetitive daily patterns inherent in 

the time variable, cyclic encoding of time was 

performed. Time, which repeats every 24 hours, was 

transformed into two cyclic components using sine 

and cosine functions. The transformation ensures that 

the model can recognize the cyclical nature of time, 

avoiding discontinuities between the end and start of 

the day [29, 30]. The formulas for time encoding are: 

 

timecos = cos (
2π×timeinminutes

1440
)           (5) 

 

timecos = cos (
2π×timeinminutes

1440
)           (6) 

 

Where time represents the hour of the day, 

ranging from 0 to 23. These transformations enable 

the model to detect cyclic patterns over time, which 

is crucial for data exhibiting strong daily or seasonal 

variations. 

Additionally, the zone feature was one-hot 

encoded to account for the spatial variation in air 

volume requirements across different zones. One-hot 

encoding involves converting categorical variables 

into binary vectors [31]. For example, if the dataset 

has three zones (zone_1, zone_2, zone_3), each zone 

is represented as a binary feature. This allows the 

model to treat each zone distinctly, ensuring that the 

spatial characteristics of each zone are preserved in 

the dataset. 

2. Feature Selection 

The next critical task was to identify which of 

these features had the most significant impact on the 

target variable air volume. To achieve this, the study 

employed mutual information regression, a robust 

non- linear method for measuring the dependency 

between the input features and the target. Mutual 

information is especially suited for this study as it 

captures both linear and non-linear relationships, 

which are likely to exist in such a complex 
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environment influenced by dynamic factors like 

temperature, humidity, and human occupancy. 

Mutual information is defined as the reduction in 

uncertainty of the one variable given knowledge of 

another [32]. For two random variables X (a feature) 

and Y (the target variable), mutual information 

I(X;Y) is computed as: 

 

I(X; Y) = ∑ ∑ p(x, y)log (
p(x,y)

p(x)p(y)yϵYxϵX )       (7) 

 

Where: 

• p(x,y) is the joint probability distribution of X 

and Y, 

• p(x) and p(y) are the marginal probabilities of 

X and Y, respectively. 

In this study, features with mutual information 

scores above a threshold of 0.5 were retained for their 

high predictive power, while those below the 

threshold were excluded to streamline the model. 

 

Table 1. Dataset Features 

Features Description 

num-occupant The total number of occupants present in the zone. 

num-stand The number of occupants standing in the zone. 

num-sit The number of occupants sitting in the zone. 

num-walk The number of occupants walking in the zone. 

num-squat The number of occupants squatting in the zone. 

num-read The number of occupants reading in the zone. 

num-talk The number of occupants talking in the zone. 

num-write The number of occupants writing in the zone. 

num-sleep The number of occupants sleeping in the zone. 

num-typing The number of occupants typing in the zone. 

num-light- work The number of occupants engaged in light work in the zone. 

num- headphone The number of occupants using headphones in the zone. 

num- mobilephone The number of occupants using mobile phones in the zone. 

num-computer The number of occupants using computers in the zone. 

indoor-temp The temperature inside the monitored zone 

indoor-hum The relative humidity inside the monitored zone (in %). 

indoor-air- pressure The air pressure inside the monitored zone (in Pa). 

outdoor-temp The temperature outside the monitored zone 

outdoor-hum The relative humidity outside the monitored zone (in %). 

outdoor-air- pressure The air pressure outside the monitored zone 

cfm-vent-air 
The volume of air being supplied to the zone by the 

ventilation system, measured in cubic feet per minute (CFM) 

time-sin 
The sine transformation of the time in minutes to reflect 

cyclical patterns (e.g., daily cycles). 

time-cos 
The cosine transformation of the time in minutes to 

complement the sine representation. 

zone one-hot 

One-hot encoded representation of the zones, where each 

zone is represented by a binary feature: zone_1, zone_2, and 

zone_3, indicating whether the observation belongs to that 

specific 

air-vol-req 
The required volume of air to meet the environmental and 

occupant demands in the zone 
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3. Feature Retention 

One of the challenges identified in the feature 

selection process was the risk of eliminating features 

that, despite having low mutual information scores, 

were known to be contextually important specifically, 

time and zone. Feature retention was employed to 

address this issue. In this phase, the engineered 

features for time (time_sin, time_cos) and the one-hot 

encoded zones were force-retained in the final feature 

set. This approach aligns with the understanding that 

feature selection is not merely about statistical 

significance but also about contextual relevance, 

which can enhance model performance and 

interpretability [33, 34]. 

This decision was rooted in the understanding 

that these features, while possibly showing lower 

statistical relevance in mutual information, are 

indispensable for maintaining the model’s connection 

to real-world temporal and spatial contexts. Retaining 

these features ensures that the model reflects the 

operational realities of air volume dynamics, which 

vary based on both the time of day and the specific 

zone being observed. 

The retained features, in combination with the 

high-ranking features from mutual information, form 

a comprehensive set that balances statistical 

importance with domain-specific knowledge. This 

holistic feature selection and retention strategy 

safeguards against the loss of critical contextual 

variables, thereby enhancing the model's capacity to 

make reliable predictions across varying temporal 

and spatial conditions. 

2.5. Dataset features 

The dataset is a comprehensive combination of 

feature engineered and original features, 

encompassing occupant behavior, electronic usage, 

and environmental conditions. These features have 

been meticulously curated to capture the 

complexities of the airflow system in under-actuated 

zones. The target variable, or output feature, is 

airflow volume, which is essential for assessing the 

efficiency and accuracy of predictive models within 

the study. Table 1 presents a detailed breakdown of 

the dataset's features, which are instrumental in 

examining both the environmental and occupant-

driven factors that influence airflow dynamics. By 

integrating cyclic time transformations and zone-

specific one-hot encodings, the dataset offers a robust 

structure for understanding the interplay between 

time, occupancy, and environmental conditions in 

predicting airflow volume. 

2.6. Airflow volume prediction mode 

In this study, a Multilayer Perceptron Artificial 

Neural Network (MLP-ANN) was developed to 

predict airflow volume requirements in under-

actuated zones, with a focus on optimizing the model 

through hyperparameter tuning. The architecture of 

the MLP-ANN consisted of three primary layers: 1 

input layer, 1 hidden layer, and 1 output layer, each 

playing a critical role in transforming the input data 

into accurate airflow volume predictions. The 

experiment was conducted across three distinct 

models based on the activation functions used. The 

First Model employed standard activation functions 

[35], including ReLU, PReLU, and Leaky ReLU. The 

Second Model utilized more advanced activation 

functions, such as FReLU [18] and DPReLU [19]. 

Finally, the Third Model implemented the proposed 

approach, featuring a Sigmoid Parametric Shift 

ReLU (SPS-ReLU) with a custom scale of weight 

initialization. 

The hyperparameters for all models were 

carefully selected to balance computational 

efficiency and model performance in learning 

complex patterns. Below is a Table 2 outlining the 

hyperparameter tuning strategies: 

The number of neurons in the first hidden layer 

was varied within a range of 32 to 128, optimizing 

both the learning capacity and computational load. To 

mitigate overfitting, a dropout rate between 0.0 and 

2.0 was employed, deactivating neurons during 

training to improve the model's generalization ability. 

The learning rate was adjusted between 1×10⁻⁴ and 

1×10⁻², ensuring effective gradient updates during 

optimization. All models used a batch size of 32 and 

were trained for 100 epochs, providing sufficient 

iterations for convergence.  

Hyperparameter tuning was performed using the 

Random Search technique with 50 iterations, which 

efficiently explored the hyperparameter space 

without the need for exhaustive searches.  The  Adam 

 
Table 2. Hyperparameter Strategies 

Hyperparameter Range 

Neurons in hidden layer 32 to 128 

Dropout rate 0.0 to 2.0 

Learning rate 1×10⁻⁴ to 1×10⁻² 

Batch size 32 

Epochs 100 

Optimizer Adam 

Random search iterations 50 

Cross-validation 10-Fold 
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optimizer, known for its adaptive learning rates and 

efficiency in deep learning tasks, was used for model 

training. To evaluate model robustness and 

generalization, a 10-fold cross-validation was applied, 

dividing the dataset into multiple training and 

validation subsets to ensure a comprehensive 

performance evaluation.  

2.7. Proposed method of activation function 

The Proposed Model, however, introduced the 

novel Sigmoid Parametric Shifted ReLU (SPS-

ReLU), which combines the strengths of the sigmoid 

and ReLU functions. SPS-ReLU incorporates a 

trainable shift parameter 𝛽, allowing the function to 

dynamically adjust neuron activations based on input 

values, making it particularly well-suited to capturing 

the nonlinearities in airflow volume predictions. The 

SPS-ReLU function is mathematically expressed as: 

 

f(x) = {
α(σ(x − β)), if x <  β

α(x − β), if x ≥ β
            (8) 

 

Where 𝛼 is a scaling parameter, 𝛽 is a shift 

parameter, and 𝜎(𝑥) is the sigmoid function. This 

novel function smooths transitions and prevents 

abrupt neuron deactivation, enhancing the model’s 

ability to learn from complex, nonlinear data patterns. 

2.8. Custom scale of weight initialization 

A custom weight initialization method was 

developed, grounded in the principles of Glorot 

Uniform initialization, to enhance the neural network 

model's performance. This custom initializer 

introduced an adjustable scale parameter, allowing 

for the fine-tuning of the weight initialization range 

to better accommodate the specific architecture of the 

model. The initializer was implemented by 

constructing a class that extends 

tf.keras.initializers.Initializer, enabling precise 

control over the initialization process. The 

computation of the limit for the uniform distribution 

was adapted from the Glorot Uniform formula, with 

the number of input units (fan_in) and output units 

(fan_out) derived from the weight tensor's shape. The 

scale parameter introduces enhanced flexibility, 

enabling more precise control over the weight 

initialization range. The limit is calculated as: 

 

limit = scale ×  √
6.0

fanin+fanout
               (9) 

 

By adjusting the scale, it becomes possible to 

better regulate the distribution of weights across the 

neural network. The boundaries for weight 

initialization are determined by this scale, which 

defines the limit within which the weights are drawn. 

Mathematically, the weights are sampled from a 

uniform distribution that lies within the interval 

specified by the computed limit. Mathematically, this 

can be expressed as: 

 

W ~ Uniform(−limit, limit)             (10) 

 

The weight matrix, denoted as 𝑊, is initialized 

using a limit that is computed based on the scale 

parameter. This approach guarantees that the weights 

are uniformly distributed within the range [−limit, 

limit], ensuring balanced initialization. By 

constraining the weights within this interval, the 

method promotes faster convergence and enhances 

the efficiency of model training, ultimately leading to 

improved performance and stability during the 

learning process. 

2.9. Model evaluation 

The evaluation of the MLP-ANN prediction 

model's performance was carried out using three key 

metrics: Root Mean Squared Error (RMSE), Mean 

and the coefficient of determination (R²). RMSE, 

widely used for measuring prediction errors [36], 

represents the average magnitude of those errors and 

is defined mathematically as: 

 

RMSE =  √
1

n
 ∑ (At −  Ft)2n

t=1                (11) 

 
R², known as the coefficient of determination, is 

a critical metric used to assess the extent to which the 

variance in the target variable is explained by the 

input features of the model [37]. R² values range from 

0 to 1, where a value approaching 1 reflects a higher 

level of predictive accuracy. Essentially, a higher R² 

suggests that the model provides a superior fit to the 

observed data. The formula for computing R² is as 

follows: 

 

R2 = 1 −
∑ (yi−ŷi)2n

i=1

∑ (yi−y̅i)2n
i=1

                      (12) 

 

2.10. Activation function evaluation 

The activation function evaluation of the MLP-

ANN prediction model's performance was carried out 

using four key metrics: smoothness score and final 

training loss. The smoothness score of an activation 

function quantifies the extent to which the function 
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generates continuous and differentiable outputs [38]. 

This smoothness can be measured either by analyzing 

the second derivative of the activation function or by 

assessing the variance of gradients throughout the 

training process. Mathematically, the smoothness 

score, denoted as S, can be estimated as follows: 

 

S =  
1

N
 ∑ |

ϑ2f(xi)

ϑx2 |N
i=1                     (13) 

In this context, 𝑓(𝑥𝑖) denotes the activation 

function applied to the input 𝑥𝑖, while 𝑁 represents 

the total number of inputs. A lower smoothness score, 

S, signifies a smoother activation function. For 

practical evaluation, the smoothness of the function 

can be empirically assessed by monitoring the 

variance of the gradients during training. 

 
Table 3. Nomenclature for the Methods Section 

Symbol Description Units 

AV₂ Total airflow volume required for the area CFM  

(cubic feet per 

minute) 

AV₁ Initial or baseline airflow volume for the area CFM 

ARP Airflow volume required per occupant CFM 

VA Ventilation air required based on humidity levels CFM 

CFMarea Airflow requirement based on area volume CFM 

CFMchange Rate of air exchange per minute for the area CFM 

CFMmin Minimum airflow volume required per occupant CFM 

Qtotal Total initial airflow volume without humidity adjustment CFM 

Humout Humidity level outside the building % (percentage) 

Humin Humidity level inside the building % (percentage) 

time_sin Sine transformation of the time variable to reflect daily 

cyclic patterns 

- 

time_cos Cosine transformation of the time variable to reflect 

daily cyclic patterns 

- 

I(X; Y) Mutual information between a feature X and the target 

variable Y 

- 

p(x, y) Joint probability distribution of variables X and Y Probability 

p(x) Marginal probability of X Probability 

p(y) Marginal probability of Y Probability 

x Time interval (in minutes) Minutes 

β₀ Intercept in the polynomial regression - 

β₁, β₂, β₃ Coefficients for the linear, quadratic, and cubic terms in 

polynomial regression 

- 

y Predicted value in the polynomial regression - 

S Smoothness score of an activation function, measuring 

continuity and differentiability 

- 

f(xᵢ) Activation function applied to input xᵢ - 

N Total number of inputs or samples - 

L Training loss, often computed as Mean Squared Error 

(MSE) in regression tasks 

- 

yᵢ Actual value in training loss calculation - 

ŷᵢ Predicted value in training loss calculation - 

W Weight matrix in neural network initialization - 

α Scaling parameter in SPS-ReLU activation function - 

Β Shift parameter in SPS-ReLU activation function - 

σ(x) Sigmoid function applied to input x - 
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The final training loss serves as a critical measure 

of how effectively the neural network has learned 

from the training data [39]. It quantifies the 

difference between the network's predictions and the 

actual values, where lower loss values indicate 

superior performance. Depending on the specific task, 

various loss functions can be employed to calculate 

the training loss, 𝐿. For regression tasks, the mean 

squared error (MSE) is often the preferred choice and 

can be calculated as follows: 

 

LMSE =
1

N
 ∑ (yi −  ŷi)

2N
i=1                   (14) 

 
In this formula, yi represents the actual value, 

while �̂�𝑖  corresponds to the predicted value. 𝑁 

denotes the total number of samples. 

2.11. Nomenclature 

Table 3 present definitions for all variables, 

symbols, and terms used in the mathematical 

formulations throughout the Methods section. Each 

entry includes the symbol, a description of its role in 

the calculations, and the relevant units to aid in 

understanding the technical components of the 

airflow volume prediction model. 

3. Result and discussion 

The experiments were conducted using Python 

with the TensorFlow and Keras frameworks, 

leveraging their built-in functionalities to implement 

the proposed SPS-ReLU activation function and 

track key performance metrics. Each model, 

including the MLP-ANN models with standard 

activation functions (ReLU, PReLU, Leaky ReLU) 

[35] and advanced activation functions includes 

FReLU [18] and DPReLU [19], as well as the state-

of-the-art methods, was trained over a series of 

epochs until convergence. Performance metrics such 

as RMSE, R², smoothness score, and final training 

loss were logged at each epoch to monitor the 

learning progression. Cross-validation was 

performed to evaluate the generalizability of each 

activation function across different subsets of the 

dataset, thereby mitigating the risk of overfitting. 

3.1. Proper time interval 

Table 4 presents the results of the polynomial 

regression analysis across four different time 

intervals (5, 15, 30, and 60 minutes), demonstrating 

varying degrees of efficacy in capturing airflow 

volume patterns across the three zones. 

 

Table 4. R2 Score Comparison of Different Time 

Intervals for Each Zone 

Time 

Intervals 

R2 Score 

Zone 1 Zone 2 Zone 3 

5 min 0,044 0,061 0,015 

15 min 0,043 0,059 0,019 

30 min 0,030 0,019 0,012 

60 min 0,010 0,011 0,010 

 

For Zone 1, the 5-minute interval demonstrated 

superior performance, achieving the highest R² value 

(0.044). This indicates that the model effectively 

captured intricate and rapid variations in airflow 

volume, which are primarily modulated by real-time 

occupant behavior and dynamically fluctuating 

environmental factors. The finer granularity afforded 

by this interval enabled a more precise representation 

of immediate changes, thereby enhancing the model's 

sensitivity to subtle, short-term variations. In Zone 2, 

the 5-minute interval similarly yielded the highest R² 

value (0.061), underscoring its efficacy in 

harmonizing short-term volatility with longer-term 

trends. This interval provided an optimal framework 

for zones experiencing moderate airflow changes, 

allowing the model to encompass both transient shifts 

and gradual variations, thereby offering a 

comprehensive solution for processing temporally-

sensitive data.  

Conversely, Zone 3 exhibited its best 

performance with the 15-minute interval, achieving a 

marginally higher R² value (0.019) than the 5-minute 

interval. This interval proved more adept at 

modelling slower, non-linear airflow volume patterns, 

particularly in this zone, where changes tend to 

unfold over longer periods. The inclusion of cubic 

terms in the 3rd-degree polynomial model provided a 

more sophisticated representation of the gradual and 

complex airflow dynamics prevalent in this area. 

While the 60-minute interval was tested across all 

zones, it generally resulted in lower R² values, 

suggesting it is less effective at capturing more 

frequent and immediate airflow volume variations, 

particularly in zones with high occupant activity 

fluctuations. 

3.2. Feature pre-processing 

The feature selection process, conducted post-

feature engineering, has culminated in a strategically 

refined set of variables crucial for accurately 

predicting airflow volume within under-actuated 

zones. This selection was informed by the Mutual 

Information Scores, as depicted in the correlation 

heatmap   (Fig. 2),   which   provides   an   analytical  
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Figure. 2 Correlation Heatmap of Selected Features 

 

visualization of the interrelationships among the key 

features in the dataset.  

The process involved a sophisticated evaluation 

of feature relevance, allowing for a more targeted and 

efficient predictive model by isolating the variables 

most influential in capturing the dynamics of airflow 

volume. The heatmap highlights the pivotal role of 

features such as cfm-vent-air (1.905), cooling-load 

(1.737), and num-occupant (1.636), which emerged 

as the most influential predictors in modeling airflow 

volume. These features capture the fundamental 

dynamics of the HVAC system, particularly the 

interplay between ventilation rates, thermal load, and 

occupant density, which are critical for predicting 

airflow patterns across different zones. The 

integration of environmental variables, including 

outdoor-hum (0.782), outdoor-air-pressure (0.764), 

and indoor-air-pressure (0.583), underscores the 

significance of both external and internal climatic 

conditions in modulating airflow. 

As demonstrated in Fig. 2, these environmental 

factors show moderate correlations with airflow 

volume and cooling load, underscoring their role in 

predicting system responses to evolving atmospheric 

conditions. Their inclusion ensures the model 

captures the influence of environmental fluctuations, 

particularly in zones where such variations are 

pronounced. Additionally, time-based features such 

as time_sin (0.085) and time_cos (0.052) were 

retained for their capacity to represent periodic 

fluctuations in occupant behavior and environmental  

Table 5. Top Selected Features Based on Mutual 

Information Score 

Features 
Mutual Information 

Score 

cfm-vent-air 1.905 

cooling-load 1.737 

num-occupant 1.636 

num-walk 0.832 

outdoor-hum 0.782 

outdoor-air-pressure 0.764 

outdoor-temp 0.734 

indoor-hum 0.625 

indoor-temp 0.586 

indoor-air-pressure 0.583 

outdoor-air-pressure 0.764 

outdoor-temp 0.734 

indoor-hum 0.625 

indoor-temp 0.586 

indoor-air-pressure 0.583 

 

conditions, reflecting cyclical patterns over the day. 

These features are crucial for accounting for temporal 

shifts, as evidenced by their correlation with num-

walk (0.832), a significant predictor of airflow 

variability.  

The cyclic encoding of time enables the model to 

capture both immediate changes and long-term trends 

in airflow dynamics. Furthermore, zone-specific 

variables, zone_1 (0.058), zone_2 (0.056), and 

zone_3 (0.042), were preserved to address spatial 

variability across zones. These one-hot encoded 

features allow the model to adjust its predictions 

based on the unique characteristics of each zone, thus 

improving its predictive accuracy across distinct 

spatial contexts. 

The final set of selected features, summarized in 

Table 5, represents a comprehensive framework for 

predicting airflow volume. It strikes a balance 

between occupant behavior, environmental 

conditions, and temporal patterns, providing a solid 

foundation for a model that is both responsive to real-

time fluctuations and capable of capturing long-term 

trends. 

3.3. Airflow volume prediction model 

The hyperparameter tuning results, as detailed in 

Table 6, reveal the optimal configurations identified 

for each activation function within the MLP-ANN 

model. Key parameters, such as the number of units, 

dropout rate, learning rate, and, where applicable, the 

alpha and beta values, were meticulously optimized 

to maximize the model’s predictive capabilities. This 



Received:  October 12, 2024.     Revised: November 5, 2024.                                                                                          402 

International Journal of Intelligent Engineering and Systems, Vol.18, No.1, 2025           DOI: 10.22266/ijies2025.0229.29 

 

fine-tuning process encompassed a range of 

activation functions, including standard activation 

function [35] like ReLU, PReLU, and Leaky ReLU, 

as well as more advanced functions such as FReLU 

[18] and DPReLU [19]. Additionally, the Sigmoid 

Parametric Shifted ReLU (SPS-ReLU) with custom 

weight scales (0.5, 1.0, 1.5, 2.0) was calibrated to 

further enhance model performance. These 

adjustments reflect a targeted approach to refining the 

model’s architecture, ensuring that each activation 

function is optimally configured to handle the 

complexity of the predictive task. 

The ReLU activation function reached its optimal 

setup with 320 units, a dropout rate of 0.2, and a 0.01 

learning rate, indicating that this balanced 

configuration reduces overfitting while maintaining 

efficient learning. PReLU and Leaky ReLU, which 

process negative input values differently, required 

larger networks with 384 and 480 units respectively, 

along   with   similar   dropout   and   learning   rates, 

Table 6. Hyperparameter Tuning Results for the MLP-

ANN Model Across Different Activation Functions 

Activation Function Units 
Dropout 

Rate 

Learning 

Rate 

ReLU [35] 320 0.2 0.01 

PReLU [35] 384 0.2 0.01 

Leaky ReLU [35] 480 0.2 0.01 

FReLU [18] 512 0.3 0.01 

DPReLU [19] 352 0.2 0.01 

SPS-ReLU scale 0.5 64 0.2 0.004 

SPS-ReLU scale 1.0 96 0.1 0.001 

SPS-ReLU scale 1.5 96 0.1 0.002 

SPS-ReLU scale 2.0 128 0.1 0.002 

 

highlighting their need for greater capacity to capture 

intricate patterns. FReLU performed best with 512 

units and a 0.3 dropout rate, reflecting its ability to 

handle complex nonlinearities but with higher 

regularization.       DPReLU,       another       advanced 
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(b) 

 

(c) 
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(g) 

 

(h) 

 

(i) 

Figure. 3 CDF Plot of Models Across Different Activation Function: (a) ReLU, (b) PReLU, (c) Leaky ReLU, (d) FReLU, 

(e) DPReLU, (f) SPS-ReLU scale 0.5, (g) SPS-ReLU scale 1.0, (h) SPS-ReLU scale 1.5, and (i) SPS-ReLU scale 2.0 
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activation, found balance at 352 units and moderate 

regularization. The Sigmoid Parametric Shifted 

ReLU (SPS-ReLU), utilizing custom weight scales, 

adapted its configurations accordingly. For lower 

scales (0.5), it required fewer units (64) and a 

learning rate of 0.004. As the scale increased (1.0 to 

2.0), the model demanded more units, with the best 

setup at 128 units and a 0.002 learning rate for a 2.0 

weight scale. This flexibility suggests that SPS-ReLU 

adjusts effectively to different input scales, requiring 

careful tuning of units and learning rates to optimize 

performance. 

The CDF (Cumulative Distribution Function) 

plots in Fig. 3 present the results of airflow volume 

prediction using various activation functions 

implemented in an MLP-ANN model. These graphs 

demonstrate the alignment between actual and 

predicted values, enabling a comprehensive 

evaluation of model performance across different 

activation functions. 

Beginning with ReLU (Fig. 3 (a)), the plot shows 

a clear deviation between actual and predicted values. 

While it captures the overall trend, the model 

struggles with finer details, leading to less accurate 

predictions. This suggests that ReLU's inability to 

handle negative values may result in information loss, 

particularly in under-actuated zones. In contrast, 

PReLU (Fig. 3 (b)) shows improved alignment, as its 

learnable parameters adjust for negative inputs, 

narrowing the gap between actual and predicted 

values. Leaky ReLU (Fig. 3 (c)) further enhances 

prediction consistency by incorporating a small slope 

for negative inputs, offering smoother alignment and 

better accuracy across a broader range of airflow 

dynamics. 

The FReLU (Fig. 3 (d)) and DPReLU (Fig. 3 (f)) 

activation functions also display reasonably accurate 

predictions, closely following the actual cumulative 

probability trends. These functions' adaptations 

emphasize their flexibility in managing both positive 

and negative inputs, allowing them to generalize 

better across diverse airflow volume conditions. 

The SPS-ReLU with scaling factors (Figs. 3 (g)–

(j)) showcases progressive improvements in 

predictive performance as the scale increases. While 

the model with a scale of 0.5 (Fig. 3 (g)) shows 

moderate performance, the predictions become 

increasingly aligned with actual values as the scale 

reaches 2.0 (Fig. 3 (j)). This scaling amplifies the 

model's sensitivity to airflow volume variations, 

suggesting that higher scaling factors in SPS-ReLU 

enhance model adaptability, improving its 

generalization and prediction accuracy in complex 

under-actuated zones. 

3.4. Model performance 

The model performance evaluation, as depicted in 

Table 7, provides insightful distinctions among the 

activation functions in terms of predictive accuracy 

and generalization ability for airflow volume 

prediction within under-actuated zones. By analyzing 

the Root Mean Square Error (RMSE) and R² metrics, 

we can infer the strengths and limitations of each 

activation function in capturing complex airflow 

dynamics. 

Starting with ReLU, the model yields an RMSE 

of 22.5458 and an R² of 0.7741, indicating moderate 

predictive performance. Despite its simplicity, ReLU 

struggles to model the inherent non-linearity of 

airflow volume accurately, as evidenced by a 

relatively high error and lower R² value. This 

suggests that ReLU’s inability to activate negative 

values might result in the underestimation of certain 

patterns in airflow dynamics.  

The PReLU function, with an RMSE of 23.7645 

and R² of 0.7489, performs slightly worse than ReLU, 

which may be attributed to overfitting or an 

ineffective adaptation of the learnable parameters in 

this context. The increase in RMSE and 

corresponding decrease in R² suggest that the model 

does not generalize as effectively when leveraging 

the flexibility of PReLU. Leaky ReLU, with a 

significant increase in RMSE to 30.0834 and an R² of 

0.5979, exhibits the lowest performance among the 

functions tested. This performance degradation 

highlights that the model, even with a small slope for 

negative values, fails to capture the airflow volume 

patterns adequately. The high error and poor fit (low 

R²) suggest that Leaky ReLU introduces excessive 

noise into the model, compromising its prediction 

capabilities. 

FReLU offers an improvement over Leaky ReLU 

and PReLU, with an RMSE of 23.1021 and R² of 

0.7623, positioning it closer to ReLU’s performance. 

 
Table 7. Model Performance Based Activation Functions 

Activation Function RMSE R2 

ReLU [35] 22.5458 0.7741 

PReLU [35] 23.7645 0.7489 

Leaky ReLU [35] 30.0834 0.5979 

FReLU [18] 23.1021 0.7623 

DPReLU [19] 3.0469 0.9957 

SPS-ReLU scale 0.5 2.9571 0.9960 

SPS-ReLU scale 1.0 2.9017 0.9961 

SPS-ReLU scale 1.5 2.3891 0.9974 

SPS-ReLU scale 2.0 2.8457 0.9963 
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The relatively balanced performance of FReLU 

indicates that its adjustments for flexibility in 

handling features of airflow volume data contribute 

to a marginally better fit, though it still lags behind 

the optimal activation functions. The DPReLU 

function stands out significantly, achieving an RMSE 

of 3.0469 and an R² of 0.9957. This remarkable 

reduction in error and near-perfect fit to the actual 

values (R² approaching 1) underscores DPReLU’s 

superiority in capturing complex and non-linear 

relationships in airflow volume. The incorporation of 

deeper parametrization in DPReLU facilitates greater 

model flexibility and accuracy, making it highly 

effective for this prediction task. 

The SPS-ReLU functions, with varying weight 

scales, further improve on the model's performance. 

At a scale of 0.5, the RMSE drops to 2.9571, and the 

R² rises to 0.9960, indicating a highly accurate 

prediction. As the weight scale increases to 1.0, 1.5, 

and 2.0, the RMSE continues to decrease, with the 

lowest error observed at a scale of 1.5 (RMSE = 

2.3891, R² = 0.9974). This performance underscores 

the scaling effect’s ability to fine-tune the model's 

sensitivity to complex patterns in the data, resulting 

in highly precise predictions. 

3.5. Activation function performance 

The performance evaluation of activation 

functions in Table 8, based on smoothness scores and 

final training loss, provides critical insights into the 

trade-offs between function smoothness and model 

accuracy. The smoothness score reflects how 

smoothly the activation function transitions across 

different inputs, influencing the model's ability to 

generalize, while final training loss measures the 
model's prediction error during training. 

 

Table 8. Activation Function Performance of Models  

Activation 

Function 
Smoothness Score 

Final 

Training 

Loss 

ReLU [35] [0.43, 8.23, 33.50] 105.9575 

PReLU [35] [0.40, 9.12, 32.74] 98.4465 

Leaky ReLU 

[35] 
[0.40, 11.43, 32.50] 90.1188 

FReLU [18] [0.39, 10.24, 33.54] 111.4347 

DPReLU [19] [0.88, 17.84, 38.15] 88.4528 

SPS-ReLU 

scale 0.5 
[2.39, 39.02] 120.5627 

SPS-ReLU 

scale 1.0 
[1.33, 38.61] 89.7719 

SPS-ReLU 

scale 1.5 
[1.55, 38.87] 89.7916 

SPS-ReLU 

scale 2.0 
[1.54, 38.63] 85.9919 

ReLU, with smoothness scores [0.43, 8.23, 

33.50] and a final training loss of 105.9575, 

demonstrates a relatively low smoothness, especially 

in the second and third components, which suggests 

some rigidity in capturing complex patterns. Its 

higher training loss implies that the model struggles 

to achieve optimal predictions, indicating that 

ReLU’s zero-gradient behavior for negative inputs 

hampers the model's learning capacity in this context. 

PReLU improves upon ReLU with smoother 

transitions across inputs, reflected in scores [0.40, 

9.12, 32.74] and a reduced final training loss of 

98.4465. This enhancement suggests that the 

learnable parameter in PReLU allows the model to 

adjust to a wider range of input dynamics, resulting 

in better generalization and lower error. 

Leaky ReLU, with scores [0.40, 11.43, 32.50] and 

a training loss of 90.1188, demonstrates further 

reduction in error. This reflects the benefits of 

incorporating a small slope for negative inputs, 

allowing the model to retain more information during 

training and improving its prediction capabilities 

compared to the standard ReLU. 

FReLU, however, shows higher final training loss 

(111.4347) despite slightly better smoothness in 

[0.39, 10.24, 33.54]. This suggests that while the 

function transitions more smoothly, it may introduce 

instability or over-regularization, leading to reduced 

model accuracy. Dynamic Parametric ReLU 

(DPReLU) exhibits a notable leap in both smoothness 

([0.88, 17.84, 38.15]) and final training loss 

(88.4528), indicating superior performance. The high 

smoothness scores imply that DPReLU is adept at 

managing complex input variations, facilitating a 

more precise learning process. This leads to the 

lowest error among the non-SPS functions, 

demonstrating that DPReLU’s dynamic adaptation 

enhances the model’s ability to capture intricate 

patterns within the airflow volume data. 

The Sigmoid Parametric Shifted ReLU (SPS-

ReLU) family, particularly with scales of 0.5, 1.0, 1.5, 

and 2.0, shows a distinct pattern. At a scale of 0.5, the 

model demonstrates high smoothness ([2.39, 39.02]) 

but suffers from the highest final training loss 

(120.5627), indicating over-smoothing, which can 

lead to loss of essential information during training. 

However, as the scale increases, smoothness scores 

moderate, and the final training loss decreases, 

reaching its lowest value (85.9919) at a scale of 2.0. 

This balance suggests that moderate smoothing in 

SPS-ReLU with higher scaling allows the model to 

capture essential input variations while preventing 

overfitting or excessive regularization. 

The performance analysis of the activation 

functions within the MLP-ANN model reveals a 
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nuanced interaction between smoothness scores, final 

training loss, and predictive accuracy for airflow 

volume prediction in under-actuated zones. These 

results underscore the importance of selecting 

appropriate activation functions that balance 

generalization and accuracy, especially in a complex 

predictive environment influenced by occupant 

behavior and environmental dynamics. 

At the core of the discussion lies the 

understanding that different activation functions 

introduce unique learning dynamics, which directly 

affect the model's capability to generalize across 

varying patterns of airflow volume. ReLU, a baseline 

activation function, displays moderate performance 

with smoothness scores of [0.43, 8.23, 33.50] and a 

final training loss of 105.9575. The inherent 

limitation of ReLU stems from its inability to activate 

for negative inputs, leading to a loss of crucial 

information during training. This shortcoming is 

particularly visible in its moderate smoothness score, 

which suggests some rigidity in capturing more 

complex, non-linear variations in the airflow data. 

Consequently, the ReLU-based model exhibits an R² 

of 0.7741 and a RMSE of 22.5458, reflecting its 

limited ability to model the dynamic fluctuations 

typical in airflow volumes influenced by transient 

occupant behavior and environmental changes. 

When examining PReLU, we observe a slight 

improvement in generalization, as demonstrated by 

lower training loss (98.4465) and smoother 

transitions across input values, reflected in 

smoothness scores of [0.40, 9.12, 32.74]. The 

learnable parameter in PReLU allows the function to 

adjust the slope for negative inputs, thus enhancing 

its capacity to capture a broader range of input-output 

relationships. This adaptability mitigates some of 

ReLU’s deficiencies, leading to an R² of 0.7489 and 

RMSE of 23.7645, though PReLU still suffers from 

suboptimal error reduction, indicating that this 

activation function, while more flexible, may still not 

fully capture the complexity of the data. 

Leaky ReLU, which introduces a small slope for 

negative values, significantly improves the retention 

of information during training. Its lower final training 

loss (90.1188) relative to ReLU and PReLU, 

combined with smoothness scores of [0.40, 11.43, 

32.50], suggests that it can better handle the non-

linearities present in airflow volume dynamics. 

However, its performance is still limited in 

comparison to more sophisticated activation 

functions, as indicated by its relatively high RMSE of 

30.0834 and lower R² of 0.5979. This suggests that 

while Leaky ReLU provides better generalization 

over standard ReLU, it may introduce excess noise 

that reduces prediction accuracy. 

As we move to more advanced functions such as 

FReLU and DPReLU, we see marked improvements 

in both smoothness and training loss. FReLU 

demonstrates smoothness scores of [0.39, 10.24, 

33.54] with a final training loss of 111.4347, showing 

a slight enhancement in flexibility but still struggling 

with over-regularization, which limits its predictive 

accuracy. This is reflected in its RMSE of 23.1021 

and R² of 0.7623. In contrast, DPReLU exhibits a 

significant leap in both smoothness ([0.88, 17.84, 

38.15]) and final training loss (88.4528). The 

dynamic parametrization inherent in DPReLU allows 

the model to fine-tune its response to both positive 

and negative inputs, capturing complex, non-linear 

relationships with a high degree of accuracy. This is 

reflected in the remarkably low RMSE of 3.0469 and 

near-perfect R² of 0.9957, demonstrating DPReLU’s 

superiority in modeling intricate airflow volume 

dynamics within under-actuated zones. 

The Sigmoid Parametric Shifted ReLU (SPS-

ReLU) family, particularly with scaling factors 

ranging from 0.5 to 2.0, offers additional insights into 

the impact of scaling on model performance. At 

lower scales, such as 0.5, the model demonstrates 

high smoothness scores ([2.39, 39.02]) but suffers 

from the highest final training loss (120.5627) and 

moderate prediction accuracy (RMSE of 2.9571, R² 

of 0.9960), indicating over-smoothing where the 

model loses critical details necessary for accurate 

prediction. However, as the scale increases, the 

model's ability to generalize improves, and the final 

training loss decreases. At a scale of 1.5, the model 

achieves the best balance between smoothness and 

accuracy, with smoothness scores of [1.55, 38.87], 

final training loss of 89.7916, RMSE of 2.3891, and 

R² of 0.9974. This suggests that moderate scaling 

enables the model to capture both short-term and 

long-term patterns in airflow volume with high 

precision. The slight increase in training loss at the 

highest scale (2.0), where the final training loss is 

85.9919, smoothness scores are [1.54, 38.63], and the 

RMSE is 2.8457 with an R² of 0.9963, suggests that 

further increases in scaling may lead to diminishing 

returns or overfitting. 

4. Conclusion 

This study successfully developed and evaluated 

a series of activation functions within an MLP-ANN 

model for predicting airflow volume in under-

actuated zones. The analysis demonstrated that 

advanced activation functions, such as DPReLU and 

SPS-ReLU with scaling, significantly outperformed 

traditional functions like ReLU, PReLU, and Leaky 

ReLU. These advanced functions, particularly 
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DPReLU and SPS-ReLU with a scale of 1.5, 

achieved superior predictive accuracy with R² values 

of 0.9957 and 0.9974, and RMSEs of 3.0469 and 

2.3891, respectively. The adaptability and flexibility 

provided by these functions allowed for better 

handling of the complex, non-linear airflow patterns 

influenced by occupant behavior and environmental 

factors in under-actuated zones. 

The main achievement of this research lies in 

demonstrating how the careful selection and tuning 

of activation functions can lead to substantial 

improvements in model accuracy and generalization. 

By fine-tuning the scaling factors and incorporating 

dynamic parametrization, the model was able to 

capture intricate patterns in the airflow data that 

traditional functions failed to model effectively. 

However, this study also faced some limitations. The 

focus on a limited set of activation functions, while 

comprehensive, may not cover all possible variations, 

particularly hybrid functions that combine 

characteristics of multiple types. Additionally, the 

model was trained and tested using a specific dataset, 

and its generalizability across different environments 

or airflow systems remains to be fully validated. 

Another limitation lies in the complexity introduced 

by hyperparameter tuning for advanced activation 

functions, which could increase computational time 

and model optimization challenges in large-scale 

applications. 

For further work, it would be beneficial to explore 

hybrid activation functions that merge the strengths 

of different activation paradigms, potentially 

improving model accuracy further. Additionally, 

expanding the model's applicability to other 

environmental conditions and HVAC systems, as 

well as testing it across varied datasets, could 

strengthen its generalizability. Another promising 

direction is the integration of real-time data streams, 

allowing the model to dynamically adapt to changes 

in occupant behavior and environmental conditions. 

Moreover, reducing computational overhead while 

maintaining high accuracy remains a crucial area for 

future exploration, particularly in applications 

requiring real-time predictions and responses. 
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