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Abstract: Leukemia is one of the deadliest types of cancer. The hospitals have been working on several occasions to 

conduct early screenings of the preventable death. Unfortunately, leukemia detection is very expensive. This study 

tries to classify Leukemia images to find the best value of the hyperparameter using the Grid Search method processed 

using Pre-trained EfficientNetV2-S. We have modified the activation function ReLu6 (Variant of the Rectified Linear 
Unit has value less than 6) to SeLu6 (Variant of the Scaled Exponential Linear Unit has value less than 6) to help the 

network maintain stable statistical properties during training. Our proposed model has five major stages: Input layer, 

Stem Layer, Mobile Inverted Bottleneck Convolution (MBConv), Fused Mobile Inverted Bottleneck Convolution 

(Fused-MBConv) and Head layer. We use a total of five different Fused-MBConv layers. The depth-wise 

convolutional architecture and expansion operation are fused into one single unified step. The process can be applied 

to improve the general performance to be more reliable and precise in getting responses. Our proposed way adopts a 

comprehensive scaling approach to adjust the depth, width, and image resolution proportionally. Besides, MBConv 

and Fused-MBConv are applied to enhance the performance of the model. We utilize Grid Search to perform 

hyperparameter tuning and obtained α = 0.001, and E = 10 as the optimal hyperparameter for our proposed architecture 

model. Our proposed model has been tested on the C-NMC-2019 Leukemia image dataset. Experimental in the training 

process have achieved accuracies 98.89% to 99.80%. The validation results give an accuracy within the range of 
96.65% to 98.31%, while the testing results produce accuracy within the range of 98.01% to 99.85%. The AUC values 

for all folds have constantly generated an area of 0.97. We compare our proposed results with other methods, and the 

comparison results have shown that our performance results are better than EfficienNetB0, CNN-based ECA Module, 

Vision Transformer, Majority Voting Technique, CNN Model-based Tversky Loss Function, and Lightweight 

EfficientNet-B3. This research results can be followed up as product innovation in medical fields. 

Keywords: Grid search, Leukemia image, Product innovation, Preventable death, EfficientNetV2-S. 
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1. Introduction 

The computer vision has been implemented in 

several fields, especially biomedical imaging. 

Automatic detection, prediction, and classification 
processing have supported the research results. Some 

researchers carried out and developed research 

associated with biomedical imaging like leukemia 
detection and classification. Early leukemia 

diagnosis needs to be done early because early action 

can increase the chance of recovery. They developed 

an aggregated deep-learning model for classifying 
Acute Lymphoblastic Leukemia. They have applied 

augmentation to overcome the limitations of the 

dataset and transfer learning strategies to accelerate 
the learning process. Their research results 

demonstrate that our method can combine features 

extracted from the best deep-learning models, 
achieving a test accuracy of 96.58% in diagnosing 

Acute Lymphoblastic Leukemia [1]. One limitation 

of the research is that large discrepancies between the 

source and target domains may result in a loss of 
model performance. 

One of the complete studies, starting from the 

morphological analysis of blood cells, is done 
manually by experienced operators. The paper 

proposes an automated approach for recognizing and 

classifying WBCs from microscopic images, which 
initiates with WBCs identification and proceeds with 

the extraction of morphological features demanded 

for the ultimate stage of classification. The results 

were supplied with 92% accuracy [2]. One of the 
limitations of this study is the quality of the 

classification results depends on the image pre-

processing stage. If the pre-processing is not properly 
done, it will directly lead to classification errors. 

Other studies have also been performed with another 

approach—namely, by first performing fuzzy-based 

color segmentation in order to separate leukocytes 
from the rest of the blood components. 

Discriminative features like the shape and texture 

of nuclei are used to identify leukemia with the help 
of new shape features, namely Hausdorff Dimension 

and contour marks followed by classification by a 

Support Vector Machine (SVM) [3]. Such an 
approach may be less practical in distinguishing 

between different subtypes of leukemia, which 

require further analysis. Inconsistent results may be 

obtained due to variability in image acquisition and 
analysis processes. 

In addition, a different approach was used, which 

was an optimized Dense Convolutional Neural 
Network (DCNN). This model achieved a high 

accuracy of 97.2%, with correct cancer predictions 94 

times out of 100 trials, outperforming conventional 

machine learning methods such as SVM and 
Decision Tree [4]. It shows that the DCNN model is 

adequate for determining cancer types in bone 

marrow with fewer parameters. However, small 

changes in the training data can result in significantly 
different tree structures, affecting the results’ 

consistency. 

Another approach researchers use in leukemia 
image classification is to segment white blood cells 

with pre-processing, conversion from RGB to 

CMYK, histogram equalization, thresholding with 
the Zack technique, and image background removal 

[5]. Furthermore, color, texture, and shape features 

are extracted and normalized using z-score, min-max, 

and gray-scaling. In the study, the dataset used for the 
experiment was ALL-IDB2, consisting of 260 cell 

images (130 normal and 130 leukemia). Various 

classifiers were tested, and the final results showed 
that the K-Nearest Neighbors (K-NN) algorithm 

achieved the highest classification accuracy. 

Nonetheless, the study has a limitation in that the 
color model may be less robust to changes in scale or 

rotation, which can affect classification accuracy. 

Researchers used a few features, such as shape, 

color, and texture, and extracted by using background 
removal techniques [6]. The proposed method yields 

92% accuracy in identifying 245 of 267 leukocytes 

from 33 ALL-IDB1 images and with Support vector 
Machine and RBF kernel can classify ALL-IDB1 

images up to 93% accuracy and 98% sensitivity. 

Another researcher has produced a similar approach. 

It depends on grey level co-occurrence matrix 
(GLCM) based feature extraction and probabilistic 

principal component analysis (PPCA) based feature 

reduction. The related features are then utilized in a 
random forest (RF) based classifier [7]. A 

considerable number of experiments is carried out on 

ALL-IDB1 dataset, and comparative analysis is also 
executed with the existing schemes in terms of 

sensitivity, specificity, and classification accuracy. 

The segmentation accuracy was 96.29%, while the 

classification accuracy was 99.004% for the nucleus 
and 96% for the cytoplasm. The GLCM is reliable for 

small datasets like ALL-IDB1 or ALL-IDB2, but for 

the bigger datasets, it focuses more on local 
information, which makes it not able to grab broader 

patterns or more detailed textures in the images. 

In the recent past, a majority of researchers have 
used Convolutional Neural Networks in the detection 

and classification of tasks for Leukemia images. This 

study proposed a method that utilizes Convolutional 

Neural Network (CNN) for the classification of 
normal and abnormal blood cell images. The 

proposed method achieved 96.6% accuracy using the 

ALL-IDB1 dataset of 1,188 blood cell images [8]. 
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Others also reported the application of transfer 
learning of DenseNet201, in order to reduce the 

number of training steps and evaluate the effect of 

dataset pre-processing [9]. Results demonstrated that 

the DenseNet201 model produced the best 
performance at an 0.87 AUC, which utilized 

histogram equalization and reduced the performance. 

Among the disadvantages of DenseNet201 is that this 
model is developed for more general image 

recognition, so it may not be optimal considering the 

specific characteristics in the ALL-IDB1 dataset. 
Another very important factor affecting the results is 

inappropriate hyper-parameter selection during 

training. 

New results have been reported that using a 
computer-based system to diagnose leukemia, 

utilizing Convolutional Neural Networks (CNN) and 

transfer learning has been tested with a Support 
Vector Machine as a classifier, without a 

segmentation process first. The test results using 

ALL-IDB1 showed that feature extraction using 
CNN and similarity measurement using SVM 

produced more than 99% accuracy [10, 11]. 

Choosing the proper kernel and hyperparameters is 

crucial; an incorrect choice can reduce the model’s 
performance.  

The use of convolutional neural networks (CNN) 

has displaced convolutional methods for feature 
extraction, such as grey-level co-occurrence matrix 

(GLCM), colour co-occurrence matrix (CCM) [12], 

Principal Component Analysis (PCA), Linear 

Discriminant Analysis (LDA), Linear Preserving 
Projection (LPP), Independent Component Analysis, 

and appearance-based kernels. One of the strengths 

of CNN is that it combines the processes of feature 
extraction and classification. CNN is becoming a 

viral method in medical image classification, 

including Leukemia image diagnosis. Since the 
introduction of CNNs, many studies have 

demonstrated their superiority in various image 

classification tasks. However, the CNN method is 

also not free from shortcomings, such as the need for 
large training data and high computation time to 

perform the training and learning process. 

Several researchers have been conducting studies 
to classify the Leukemia images, among them is the 

classification of Leukemia based on pattern 

extraction using GLCM and its derivatives [7, 12]. 
GLCM and its derivatives are two-order-based 

statistical approaches in analyzing the texture of an 

object. The GLCM process starts with the forming of 

a matrix equal to the number of grey levels of the 
image by considering its nearest neighbors. Second-

order statistics are subsequently applied to provide 

the object pattern characteristics in terms of 

homogeneity, energy, entropy, and contrast, 
depending on the outcome of the matrix formation. In 

this manner, several drawbacks are associated with 

this approach: “limiting object texture information 

[13, 14]. GLCM and its derivatives prove to be much 
sensitive in respect to position, scale, and rotation 

alterations, on which classification results are solely 

dependent. The GLCM cannot do optimally if an 
image of reasonably low contrast level is used. The 

last disadvantage is that GLCM cannot extract multi-

scale features. These defects make GLCM less 
precise in modeling positive and negative Leukemia 

images. 

Because of these deficiencies, more sophisticated 

feature extraction techniques, such as Leukemia 
images, have been commonly applied in the 

classification of medical images. Application of 

Convolutional Neural Networks (CNNs): CNNs can 
automatically extract significant features from 

images without any explicit steps in defining texture 

features [15, 16]. Deep Learning-Based Models: 
More complex deep learning models, such as ResNet, 

DenseNet, and EfficientNet, can provide better 

results in medical image classification due to their 

ability to handle complexity and variation in data. 
Considering these drawbacks, it is important to 

choose a feature extraction method that suits the 

characteristics of the data and the purpose of the 
analysis, especially in critical applications such as 

medical diagnosis.  

AlexNet was an important milestone in 

introducing image patterns before LeNet, but this 
method has some significant weaknesses. AlexNet 

has about 60 million parameters, which requires large 

storage memory and long computing time. Such 
architectures would lead to overfitting conditions, 

especially on smaller data sets, despite the use of data 

augmentation techniques, hits, and drop-outs [17, 18]. 
Some researchers have conducted Leukemia image 

classification using Pre-trained AlexNet Architecture, 

where they employed Acute Lymphoblastic 

Leukemia - Database (ALL-IDB dataset, two classes 
with 130 images each class). The results show that 

98.05% [17], 96.1% [18], and 98% [19] accuracies. 

However, the method is not efficient, as the method 
requires high costs for pre-processing, data 

augmentation, segmentation, and classification. Even 

though the researchers only used small data as a 
dataset in the experiment. Meanwhile, other 

researchers have also conducted image classification 

for Acute Myeloid Leukemia (AML) [20]. However, 

they used the same method, which is called AlexNet. 
They delivered 98.58% accuracy for classification. 

Unfortunately, manual microscopic examination is 

tedious and time-consuming. 
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On the other hand, VGGNet also introduces its 
architecture with many convoluted layers of small 

size. However, this condition also creates problems, 

including large memory requirements, where 

VGGNet requires 140 million parameters, which is 
also huge. The impact of this memory requirement 

will cause the speed to slow the training process and 

decision-making to slow. This architecture is 
inefficient for use in mobile applications. Some 

researchers have employed pre-trained VGGNet to 

classify Leukemia images [21, 22]. They have 
delivered 93.01% accuracy using fine-tuning of pre-

trained VGG16 [22]. The limitation of the research is 

the unavailability of the huge and well-annotated 

dataset. The available data is not extensive and well-
annotated, so there are dependencies. In addition, 

other researchers have produced accuracy. 

The GoogleNet architecture has tried to reduce 
the number of parameters using the Inception module. 

Still, the complexity of the architecture applied 

affects the implementation, and tuning of the model 
becomes more complex, especially in 

hyperparameter adjustment [23]. They employed 

Contrast-Limited Adaptive Histogram Equalization 

(CLAHE) to segment the main object and a new 
hybrid technique to classify the Leukemia image, 

which combines CNN feature extraction with an 

Efficient Salp Swarm Algorithm (ESSA) to optimize 
the extracted features. They delivered 98.1% and 

98.8% accuracies for the dataset 1 and 2 [23]. 

However, the GoogleNet architecture has some 

weaknesses. First, GoogleNet will be more difficult 
to understand and implement when using many layers 

and Inception modules. Secondly, it requires much 

training time and memory because of the number of 
parameters and computational operations used. Third, 

the complexity of GoogleNet is relatively high, so it 

can lead to overfitting, especially when using small 
or less varied training data. 

The research conducted by Amreen Batool and 

Young-Cheol Byun focuses on developing an 

algorithm for more accurate classification of acute 
lymphoblastic leukemia (ALL) by utilizing deep 

learning techniques through the lightweight 

EfficientNet-B3 model [24], their proposed model 
has delivered 99.31% accuracy. Given the difficulty 

in distinguishing between ALL cancer cells and 

normal cells through microscopic analysis, their 
study introduces a model that uses deep separable 

convolution to improve the classification 

performance of leukemia cells. This model is 

evaluated using the C-NMC-19 dataset and is 
measured by confusion matrix such as accuracy, 

precision, recall, and f1-score. The results show that 

the model is superior to other deep learning models, 

and is more efficient with fewer parameters. In 
addition, the proposed algorithm is compared with 

other classification algorithms that also use the same 

dataset: C-NMC-2019. Gao et al. [25] proposed the 

EfficientNetB0 architecture and compared it with 
various CNN models, including ResNet and 

Inception V3, where the presented method achieved 

the highest classification accuracy of 95.18%. 
Meanwhile, Ullah et al. applied CNN-based ECA 

module to improve hyper-parameters and obtained 

91.10% accuracy [26]. Another study recommended 
a vision transfer model with 88.20% accuracy [27]. 

In addition, the study conducted by Ghaderzadeh et 

al. introduced a deep learning-based model by 

applying eight convolutional neural network (CNN) 
models to extract features and classify lymphoblast 

and normal cells. Of the eight models, four CNN 

models with the best performance were selected to 
form an ensemble classifier using the majority voting 

method. The proposed architecture was evaluated 

using C-NMC-2019, the accuracy results reached 
98.5% [28]. Voting technique was also applied to 

compare the model performance in accuracy. 

Experimental findings showed that Ansari et al. [29] 

used Tversky loss function based on CNN model, 
their proposed architecture have delivered 99.01% 

accuracy. 

Reflecting on the limitations highlighted in 
earlier research conducted by previous scholars, we 

introduce EfficientNetV2-S, a new class of 

convolution networks to enhance the scale efficiency 

curves of parameters and drive state-of-the-art 
performance on various tasks. We optimized the 

parameter values of models and frequencies in neural 

architecture (NAS) searches and scales. We employ 
Search Grid as a tuning hyperparameter to find the 

best hyperparameter during training. We also 

modified an activation function Relu6 into SeLu6 to 
support the network in maintaining stable statistical 

properties during the training process. Our results 

indicate that the EfficientNetV2 model can practice 

more architecture than before. Increasing image size 
can speed up the training process. In this work, we 

also presented a new progressive learning procedure 

to balance the regularization and image size 
techniques, so it is also suitable for classifying 

objects at low resolution. 

2. Material and method 

2.1 Material 

We employed the ImageNet-trained to evaluate 

our proposed architecture using the C-NMC-2019 

dataset. The dataset splitted into two components, 
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which are  a training set and testing set. The training 
set consists of 26 persons (with 3389 images) and 47 

people diagnosed with acute lymphoblastic Leukemia 

(ALL, totaling 7272 images). Furthermore, the 

preliminary testing set consists of 648 ALL images 
from 15 individuals and 13 individuals with ALL 

(1219 images). Overall, the training and testing sets 

contain 10,661 and 1867 images. 
In this study, we use a pre-trained model that was 

previously trained on the ImageNet dataset. ImageNet 

is one of the largest and most famous datasets in the 
computer vision domain. ImageNet has 1,281,167 

training images, 50,000 validation images, and 

100,000 test images. ImageNet images have a large 

variety that allows the trained model to learn various 
general features of images, such as patterns, shapes, 

textures, and colours. A pre-trained model is a model 

that has undergone training. ImageNet allows its 
weights or parameters to be optimized to identify 

common visual features. The training results of the 

model already have knowledge, which can be helpful 
to adapt when used for different object classifications. 

2.2 Method 

Our proposed method comprises five layers, with 

several sub-layers for each layer. The main stages are 

Input, Stem, Mobile Inverted Bottleneck Convolution 
Layer (MBConv), Fused- MBConv, and Head layers, 

as shown in Fig. 1. 

2.2.1. Input layer 

The architecture of EfficientNetV2s has 

mentioned that it allows the input image to be 224x24 
with three channels. It indicates that every entered 

image has to be uniformly re-sized to an already 

known scale of 224 p by 224 pixels. At the same time, 

input resolution and the skipped volume can also be 
transmitted as colouring images, which are twenty-

four bits-for instance, eight bits for each red, green, 

and blue channel. 
 

 
Figure. 1 Our Proposed Method 

2.2.2. Stem layer 

The stem layer that forms an essential element of 

the architecture of EfficientNetV2-S then has a 

tremendous impact on it. It is a starting place for input 
images and conducts preliminary work before higher 

layers are used to perform more complex feature 

extraction and classification operations, included in 

multiple operations in a series to convey more 
information with a relatively large kernel size, 

followed by batch normalization and the Sigmoid 

Liner Unit activation function. Specifically, the stem 
layer usually involves the 3x3 convolution with 32 

Kernels and stride=2 on the input image to capture 

local features and reduce the dimensions. 
Furthermore, batch normalization is used to 

normalize the feature maps to improve the 

convergence of the training phases. The next step is 

to pass the result to the activation function, which 
makes the function and allows the network to learn 

more layers of abstraction using the Sigmoid Liner 

Unit activation function, as shown in Fig. 2. 

2.2.3. Mobile inverted bottleneck convolution layer 

(MBConv) layer 

MBConv process aims to maximize 
EfficientNetV2-S performance by expanding an 

input channel, applying depth-wise convolution, and 

projecting back to a lower-dimensional space. In 
addition, MBConv also ensures the network can learn 

complex representations at a minimum cost. In this 

stage, there are several processes: Expansion phase, 
Depth-wise convolution, Squeeze-and-excitation, 

and Projection phase. We provide a list of variables, 

as shown in Table 1, to facilitate the understanding of 

the equations we use. 
 

Expansion phase 

The Expansion phase goal is to increase the input 
channels using point-wise convolution, followed by 

an activation function.  

 

 
Figure. 2 Stem Layer 
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Table 1. The Notation Employed in the Proposed Method 

No Symbols Description 

1 𝒳, 𝒲𝑒 , 𝑡, 𝐴𝑐𝑡𝑖𝑣𝑎𝑡𝑖𝑜𝑛 

and 𝒳𝑒 

Input tensor, convolution weight, expansion factor, activation function, and 

output tensor 

2 (𝐻, 𝑊, 𝐶𝑖𝑛), (1, 1, 𝐶𝑖𝑛 , 𝑡 ×
 𝐶𝑖𝑛),  and (𝐻, 𝑊, 𝑡 × 𝐶𝑖𝑛), 

Dimension of input tensor, convolution weight, and output tensor  

3 𝑊𝑒,  ⊙, 𝑋, and 𝑋1  Depth-wise convolution weight, a Hadamard operation, an input, constant 

value, and an expanded feature map. 

4 𝑋2  output depth-wise convolution 

5 ⨂  Convolution operation 

6 𝐺𝐴𝑃(𝑋)𝑐  Global average pooling for (X) specific c channel 

7 𝐻  The height of the feature map or the input tensor. 

8 𝑊  The width of the feature map or the input tensor. 

9 𝑖, 𝑗  Index of height and width of the feature map 

10 𝑍𝑅𝑒𝐿𝑈 , and 𝑏  Output of Rectified linear unit and bias 

11 𝑍𝑠𝑒  Sigmoid Output of Global average pooling 

12 𝑊𝑝  Projection convolution weight with the shape dimension (1, 1, 𝑡 × 𝐶𝑖𝑛 , 𝐶𝑜𝑢𝑡), 

where 𝐶𝑖𝑛  and 𝐶𝑜𝑢𝑡 show the number of channels used for input and output. 

13 𝑊𝑓𝑢𝑠𝑒𝑑  and 𝑊𝑝𝑟𝑜𝑗   weight of the combined convolution filter and projection weight 

14 k Kernel size 

15 𝐺𝐴𝑃(𝑌)𝑐   Global average pooling for (Y) specific c channel 

16 𝑌𝑖𝑗𝑐 , 𝑊𝑓𝑐 , 𝑏𝑓𝑐 , and 𝑍ℎ  Fused-MBConv result, fully connected weight, fully connected bias, and fully 

connected result 

17 𝑊𝑓𝑐
(𝑡)

  Initial value can be generated from the randomly normal distribution (𝒩) 

using mean 0 and variance  
1

𝑛𝑖𝑛
 

18 Tp, Tn, Fp, and Fn  True positive, true negative, false positive, and false negative 

19 , K Learning rate and the value of fold cross validation 

 

 

Suppose the following variables 

𝒳, 𝒲𝑒 , 𝑡, 𝐴𝑐𝑡𝑖𝑣𝑎𝑡𝑖𝑜𝑛  and 𝒳𝑒  represent an input 

tensor, convolution weight, expansion factor, 

activation function, and output tensor. In addition, 
input tensor, convolution weight, and output tensor 

have dimension (𝐻, 𝑊, 𝐶𝑖𝑛), (1, 1, 𝐶𝑖𝑛, 𝑡 ×  𝐶𝑖𝑛),  and 
(𝐻, 𝑊, 𝑡 × 𝐶𝑖𝑛),  respectively. The symbols of 

𝐶𝑖𝑛 and 𝐶𝑜𝑢𝑡  state number of channel input and 
output at the tensor. In this case, the model using the 

SeLU6 to replace ReLU6 activation functions is as 

follows. 
 

𝑋1 =

𝑚𝑖𝑛 (6, 𝜆 {
𝑊𝑒 ⊙ 𝑋  𝑖𝑓 𝑊𝑒 ⊙ 𝑋 > 0

𝛼(𝑒𝑊𝑒 ⊙𝑋 − 1)  𝑖𝑓 𝑊𝑒 ⊙ 𝑋 ≤ 0
)  (1) 

 

𝑊𝑒,  ⊙, 𝑋, 𝜆, and 𝑋1  represent depth-wise 

convolution weight, a Hadamard operation, an input, 
constant value, and an expanded feature map. 

 

Depth-Wise Convolution  

Depth-wise convolution carries out the task of 

independent filter. It is conducted on each input to 

reduce memory usage and computational complexity 

as shown in Eq. (2).  
 

𝑋2 = 𝑚𝑖𝑛(𝑚𝑎𝑥(0, 𝑊𝑑⨂𝑋1), 6)    (2) 

𝑋2 is output depth-wise convolution 

 

Squeeze-and-excitation 

It is required to help recalibrate the feature map 

by global average pooling followed by fully 

connected layers using ReLU and Sigmoid activation 

functions. 
 

𝐺𝐴𝑃(𝑋)𝑐 =
1

𝐻×𝑊
∑ ∑ 𝑋𝑖𝑗𝑐

𝑊
𝑗=1

𝐻
𝑖=1      (3) 

 

𝑍𝑅𝑒𝐿𝑈 = 𝑀𝑎𝑥(0, 𝐺𝐴𝑃(𝑋) × 𝑊 + 𝑏)    (4) 
 

𝑍𝑠𝑒 =
1

1+𝑒−( 𝐺𝐴𝑃(𝑋)×𝑊+𝑏)     (5) 

 

𝐺𝐴𝑃(𝑋)𝑐 , 𝐻, 𝑊, 𝑖, and 𝑗  represent Global 
average pooling for specific channel, the height of the 

feature map or the input tensor, the width of the 

feature map or the input tensor, index of height, and 
index of width. 

 

Projection Phase 

This stage is used to prevent the channels from 
going back to output. It employs point-wise 

convolution as follows. 
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𝑋3 = 𝑋2⨂𝑊𝑝     (6) 

 

𝑊𝑝 describes projection convolution weight with the 

shape dimension (1, 1, 𝑡 × 𝐶𝑖𝑛 , 𝐶𝑜𝑢𝑡) , where 

𝐶𝑖𝑛 and 𝐶𝑜𝑢𝑡  show the number of channels used for 

input and output. 

2.2.4. Fused-mobile inverted bottleneck 

convolution layer (Fused-MBConv) 

One of the variations of the Mobile Inverted 

Bottleneck Convolution (MBConv) standard used in 

efficient neural network architectures is Fused-

Mobile Inverted Bottleneck Convolution (Fused-
MBConv). In this case, we involve five different 

Fused-MBConv, as shown in Fig. 3. This process has 

integrated the expansion and depth-wise 
convolutional model into a single operation. This 

process improves an architecture’s performance for 

accurate results and reduces the computational time 

required for training. Fused-MBConv employs Fused 
Expansion and Depth-wise Convolution, as shown in 

Eq. (7). Suppose 𝑋  is the input tensor with 
(𝐻, 𝑊, 𝐶𝑖𝑛) dimension. We can write the operation in 
the Fused-MBConv as follows. 

 

𝑋𝑓𝑢𝑠𝑒𝑑 = 𝑚𝑎𝑥(0, 𝑋⨂𝑊𝑓𝑢𝑠𝑒𝑑)    (7) 

 

𝑌 = 𝑋𝑓𝑢𝑠𝑒𝑑⨂𝑊𝑝𝑟𝑜𝑗     (8) 

 

Regarding Eq. (7), the 𝑊𝑓𝑢𝑠𝑒𝑑  has the shape size 

(𝑘, 𝑘, 𝐶𝑖𝑛 , 𝑡 × 𝐶𝑖𝑛) dimension, the symbol of 𝑘 shows 

the kernel size.  

 

 
Figure. 3 Fused-MBConv Model at Our Proposed Method 

Furthermore, the variables 𝑊𝑓𝑢𝑠𝑒𝑑  and 𝑊𝑝𝑟𝑜𝑗  

represent the weight of the combined convolution 

filter and projection weight. Based on Fig. 3, we 

obtained information that Fused-MBConv operations 
were performed as many as five times with the same 

stride and a different number of Fused-MBConv, i.e., 

3, 5, 5, 7, and 9 times. 
 

Head Layer 

In general, the last operation of the neural 
network is to change high-level features into 

classification output. In addition, the head layer 

involves some operations, i.e., global average 

pooling as shown in Eq. (9), fully-connected 
activation function. Fully-connected transforms the 

global average pooling results into the classification 

result as the following Equations 
 

𝐺𝐴𝑃(𝑌)𝑐 =
1

𝐻×𝑊
∑ ∑ 𝑌𝑖𝑗𝑐

𝑊
𝑗=1

𝐻
𝑖=1      (9) 

 

𝑍ℎ = 𝐺𝐴𝑃(𝑌) × 𝑊𝑓𝑐 + 𝑏𝑓𝑐              (10) 

 

𝑅𝑒𝐿𝑈(𝑍ℎ) = max (0, 𝑍ℎ)              (11) 
 

𝑆𝑜𝑓𝑡𝑚𝑎𝑥 = (
𝑒𝑍𝑖

∑ 𝑒𝑍𝑖𝑗
)              (12) 

 

The symbols of 𝑌𝑖𝑗𝑐 , 𝑊𝑓𝑐 , 𝑏𝑓𝑐 , and 𝑍ℎ describe the 

Fused-MBConv result as shown in Eq. (8), fully 

connected weight, fully connected bias, and fully 
connected result, respectively.  

 

𝑊𝑓𝑐
(𝑡+1)

= 𝑊𝑓𝑐
(𝑡)

− 𝜂 ×
𝜗ℒ

𝜗𝑊𝑓𝑐
              (13) 

 

The initial value of 𝑊𝑓𝑐
(𝑡)

 can be generated using the 

Xavier Initialization  
 

𝑊𝑓𝑐
(𝑡)

~𝒩 (0,
1

𝑛𝑖𝑛
)              (14) 

 

Eq. (14) shows that the initial values of 𝑊𝑓𝑐
(𝑡)

 can be 

generated from the randomly normal distribution 

(𝒩) using mean 0 and variance  
1

𝑛𝑖𝑛
. 

2.2.5. Performance measurement 

We also measure the classification results based 

on the Eq. (12). We employ confusion matrix to 

measure accuracy, precision, recall, and f1-score of 
our experimental results as follows 

 

𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =
𝑇𝑝+𝑇𝑛

𝑇𝑝+𝑇𝑛+𝐹𝑝+𝐹𝑛
              (15) 
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𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =
𝑇𝑝

𝑇𝑝+𝐹𝑝
              (16) 

 

𝑅𝑒𝑐𝑎𝑙𝑙 =
𝑇𝑝

𝑇𝑝+𝐹𝑛
              (17) 

 

𝐹1 − 𝑆𝑐𝑜𝑟𝑒 =
2× 𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛×𝑅𝑒𝑐𝑎𝑙𝑙

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛+𝑅𝑒𝑐𝑎𝑙𝑙
              (18) 

 

True Positive (𝑇𝑝) describes that the actual target 
and prediction are positive. If the actual target and 

prediction are negative, then it shows True Negative 
(𝑇𝑛). False Positive (𝐹𝑝) shows the actual target is 
negative, where the prediction delivers positive. If the 

actual target is positive and prediction are negative, 

then it is called False Negative (𝑇𝑛). 

3. Results and discussion 

In this present paper, we utilized two important 

hyperparameters to obtain the best model: 

𝑙𝑒𝑎𝑟𝑛𝑖𝑛𝑔 𝑟𝑎𝑡𝑒 = {𝛼|(0.001, 0.0001, 0.00001) ⊆
𝛼} , K-Fold= {𝐾|(1, 2, 3, 4, 5) ⊆ 𝐾}  and 𝑒𝑝𝑜𝑐ℎ =
{𝐸|(5, 10, 15) ⊆ 𝐸}. In addition, we employ the Grid 

Search method to select the best hyperparameter 
value. Regarding the above three hyperparameters, 

we have composed experimental scenarios based on 

combination of two hyperparameter: 𝛼 and 𝐸. 

3.1 Training results 

The experimental results using our proposed 
architecture based on the Grid Search results with the 

best hyperparameter values are  𝛼 = 0.001, and  
𝐸 = 10  as the best hyperparameter. We have 
represented the best experimental results, as shown in 

Figs. 4 to 7. The model has performed reasonably 

well on the C-NMC-2019 image dataset, as reflected 

in the accuracy and average accuracy. The accuracies 
range from 98.89% to 99.80%, where the highest 

achieved by this model is around 99.80%.  

 

 
Figure. 4 Proposed Method Training Accuracy 

 
Figure. 5 Our Proposed Method Validation Accuracy 

 

The mean accuracies are between 95.06% and 

95.43%, as described in Fig. 4. A minimal variation 
between the models’ analytical values implies that it 

has provided an almost consistent performance, while 

a small range under mean accuracy indicates stable 
experimental results. Thus, the ideal combination 

would be a model having an accuracy of 99.08% with 

a mean accuracy of 95.43%. 

3.2 Validation results 

Our proposed method has passed the validation 

results. This is the best model score for 98.31% of 

accuracy, and the average test will be as high as 

96.74%. This shows no variation in the accuracy and 
mean of accuracies outcomes implies a consistent 

model performance for all training set types. From 

the above analysis, we can observe that models are 
well-trained, generalize to new data, and can be 

deployed reliably. Further steps may be fine-tuning 

hyper-parameters and maybe making use of an 

ensemble method for an even more robust and more 
accurate model. 

Based on Figs. 4 and 5, we can state that models 

have good results in the training and validation 
phases. It is a typical pattern: the accuracy should 

slightly drop from training to validation, showing that 

your model could generalize well. This model which 
demonstrated the best training performance with 

99.08% accuracy and 95.43% mean. The model is 

also consistent concerning validation- at 98.09% 

accuracy and mean, it becomes an excellent 
generalized model for deployment. Additional 

validation and even ensemble techniques may be 

adopted to improve stability and accuracy. 

3.3 Model evaluation using training and validation 

datasets 

Over the training and validation phases, the best 

performance model illustrated eminent accuracy, as 
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Figure. 6 Our Proposed Method Validation Accuracy 

 
 

 
Figure. 7 Our Proposed Method:  The Best Performance 

of the Testing Results Using 0.001 Learning Rate and 
Ten Epochs 

 

always shown by its validation results. The high 

training accuracies (99.34% to 99.92%) and near 
perfect validation accuracies (98.11% to ~100%, only 

the third model has one sample wrong) suggest an 

ideal generalization of the model on processes new 
data, unseen by it during its development phase, as 

seen in Fig. 6. The close-to-perfect validation 

accuracies make us realize that a model is robust and 
reliable for practical applications. The other 

validation fell 98.11%, which is significantly less, 

and we can ignore it as the combined performance of 

the model on both datasets was top-notch. 

3.4 Testing results 

We produced the testing experimental results: 

accuracy, precision, recall, and f1-score, as shown in 
Fig. 7. These results confirm that the model performs 

well during training, validation, and testing. On the 

first fold, the results show a high recall. It indicates 

that the model captures the positive cases with 
precision slightly lower, suggesting some false 

positives. We can also strengthen all performance on 

the second fold with few false positives and negatives. 
We also identify high recall but lower precision on 

the third fold. Similar with the second fold, we 

demonstrated well-balanced precision and recall, 

indicating effective identification of true positives 
with minimal errors in the fourth fold. The last fold 

displays High precision and recall. It shows a solid 

ability to identify positive cases and maintain overall 
accuracy correctly. 

The classification model performed very well, 

with accuracy ranging between 97.12% and 99.85% 
in each fold, indicating high accuracy. The 3rd fold 

achieved the highest accuracy of 99.85%, indicating 

that the model could correctly recognize most 

samples. This performance shows that setting a 
learning rate of 0.001 and using ten epochs is optimal, 

as shown in Fig. 7. 

The precision value is high in all folds, reaching 
98.43% in the first fold, indicating the model’s ability 

to minimize false positive predictions. In addition, 

the recall was highest in the 3rd fold at 98.76%, 
indicating that the model could identify almost all 

positive samples, although there were some minor 

variations between the other folds. 

The F1-score was also high and consistent, with a 
range of 97.67% to 98.39%, indicating a good 

balance between precision and recall. It shows that 

the model has stable performance in detecting 
positive classes and maintaining overall accuracy in 

each fold. Overall, these results show that the model 

is highly reliable and has a high potential to be 

applied to similar data.  

3.5 Receiver operating characteristic of the testing 

result 

We have plotted the experimental results in the 

form of ROC and calculated the AUC value to 
identify the performance of our proposed method, as 

shown in Fig. 8. The plotted results show that our 

proposed method has produced an AUC of 0.97 for 
all folds, as shown in Fig. 8. The high and stable AUC 

value indicates that the proposed method performs 

well, as our proposed method can distinguish positive 

and negative classes. 
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(a) 

 

(b) 

 

  
(c) 

 

(d) 

 

 
(e) 

Figure. 8 The ROC and AUC Graphic of Our Experimental Results: (a) 𝐾 = 1, (b) 𝐾 = 2, (c) 𝐾 = 3, (d) 𝐾 = 4, and (e) 

𝐾 = 5 

 

3.6 Comparison of results 

To measure achievement level to other methods, 
we have compared our accuracy results with other 

techniques that use the same leukemia image dataset: 

C-NMC-2019, i.e., Lightweight EfficientNet-B3 [24], 
EfficienNetB0 [25], CNN Based ECA Module [26], 

Vision Transformer [27], Majority Voting Technique 

[28], and CNN Model based Tversky Loss Function 

[29]. Our proposed method has produced the best 

result with 99.85% accuracy. Its achievement 
outperformed the others, i.e., Lightweight 

EfficientNet-B3 [24], EfficienNetB0 [25], CNN-

Based ECA Module [26], Vision Transformer [27], 
Majority Voting Technique [28], CNN Model-based 

Tversky Loss Function [29], as shown Table 2.  
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Table 2. Comparison Result Between Our Accuracy 

Results with the Other Methods 

Methods 
Accuracy 

(%) 

Lightweight EfficientNet-B3 [24] 99.31 

EfficienNetB0 [25] 95.18 

CNN-Based ECA Module [26] 91.1 

Vision Transformer [27] 88.2 

Majority Voting Technique [28] 98.5 

CNN Model-based Tversky Loss 

Function [29] 
99.01 

Our Proposed Method 99.85 

 

Our results have delivered 99.85% accuracy. The best 

accuracy of our experimental results occurred on the 

3-fold cross-validation, E=10, and = 0.001 . Our 

complete results can be seen in Fig. 7. Our best 
achievement occurred on the 3rd fold, which are 

99.85%, 98.01%, 98.76%, and 98.39% for accuracy, 

precision, recall, and F1-score, respectively. It 

indicates that our proposed method is visible to 
implement on the real word, such as the biomedical 

field to help a leukemia specialist doctor. 

4. Conclusion 

The results of hyperparameter tuning using the 

Grid Search method from learning rate and epoch, 

which are (0.001,0.0001,0.0000 ⊆ α} and 

{E|(5,10,15)⊆E} for the C-NMC-2019 dataset have 

obtained the best hyperparameters, namely learning 

rate (α=0.001), and epoch (E=10). 

The optimal hyperparameters are realized on our 

proposed model. Summary: The following is the 
experimental result for the training and validation 

phases on the C-NMC-2019 dataset. During the 

training phase, the obtained accuracy fluctuated 
between 99.34% and 99.92%. In the validation phase, 

the achieved accuracy was between 98.11% and 

~100%. The highest accuracy of 99.80% was 

obtained with an average accuracy of 95.43%. The 
best average validation accuracy was 96.74%, with 

the highest validation accuracy being 98.31%. 

A small decrease in the next model, to 98.11% in 
validation, is very reasonable. From the results of 

validation, one can understand that the model shows 

good generalization ability by the tiny decrease in 
accuracy from the training phase to the validation 

phase. Results like these prove the model has reliable 

ability to be applied to new data outside of the data 

used during the process of training. 
As indicated by the testing results, the proposed 

method performs very well in terms of classification 

for leukemia, with accuracy falling between 97.12% 
and 99.85% for each fold. On the third fold, the 

model reached the highest accuracy of 99.85%, 

which manifests that the model can classify most of 
the samples rightly. From the results, it could be 

figured out that the learning rate setting at 0.001 with 

10 epochs is the most optimal configuration of the 

proposed model. 
Precision and recall values are also consistently 

high on all folds, reaching 98.43% on the first fold 

and the highest recall of 98.76% on the third fold. The 
presented data demonstrates that the model can keep 

false positive predictions low and correctly classify 

most of the positive samples. The F1-score is 
between 97.67% and 98.39%, which shows that there 

is a good balance between precision and recall and 

stable performance in the detection of positive classes. 

The ROC curve is a plotted curve; it is, therefore, 
shown in the following that the value of AUC in all 

folds is 0.97, indicating the model has great power in 

separating positive and negative samples of the class. 
The accuracy results obtained are higher than other 

methods applied to the same dataset, C-NMC-2019: 

Lightweight EfficientNet-B3, EfficienNetB0, CNN-
Based ECA Module, Vision Transformer, Majority 

Voting Technique, and CNN Model-based Tversky 

Loss Function. 
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